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Although the source of SARS-CoV-2 remains    
 uncertain, the most widely publicized theory of its 

origin has been zoonotic spillover from a wild animal or 
animals at a Wuhan wet market (World Health Organization 
2021a). This theory has, unsurprisingly, directed attention 
toward the potential risks to human health posed by direct 
contact with wildlife (Halbwax 2020). Between 40% and 
50% of emerging infectious diseases in human beings are 
believed to have come from wild animals, feral animals, or 
captive or farmed wildlife (Jones et  al. 2008, Billinis 2013, 
Haider et al. 2020), including 71.5% of viruses known to 
infect humans (Olival et al. 2017) and possibly all seven of 
the human-infecting coronaviruses (Ye et al. 2020).

For less obvious reasons COVID-19 and emerging infec-
tious diseases more generally have been linked with the way 
humans degrade or destroy nature. A headline in The New 
York Times Magazine posed the question “What do COVID-
19, Ebola, Lyme, and AIDS have in common?,” answering 
confidently with “They jumped to humans from animals 
after we started destroying habitats and ruining ecosystems” 
(Jaber 2020). CNN reported experts as having said that 
“rampant deforestation will only uncork more novel viruses” 
(Weir 2020). A Guardian headline announced, “Pandemics 
result from destruction of nature, say UN and WHO” 
(Carrington 2020). Considering the world's astounding 

diversity of ecosystems, pathogens, vectors, and forms of 
land change and the almost infinite combinations of these 
variables, one might expect some variety in the direction of 
messages on this topic and a little more nuance. However, 
all 37 news webpages that we sampled (see the supplemen-
tal material for our methodology) associated land change 
(a catch-all phrase that we use here for the many forms of 
land-use change, land cover change and habitat destruction) 
with increased spillover risk. We also sampled 95 webpages 
of organizations, from the World Health Organization 
(2021b) to the World Bank (Estavão and Kemper 2021). All 
but one of them conveyed a similar one-sided message.

The validity, accuracy, and implications of messaging that 
links land change to spillover risk are the focus of the present 
article. We are not arguing for a different consensus on the 
relationship between land change and spillover risk. Rather, 
we are cautioning against the widespread implication that a 
consensus exists. Our appeal is aimed at scientists, journal-
ists, and anyone else communicating scientific knowledge.

Why question messaging that links land change to 
disease spillover?
To begin with, the term land change includes various discrete 
states and processes that may have divergent implications for 
spillover risk. The form of land change that is perhaps most 
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convincingly and commonly implicated in spillover risk is 
habitat fragmentation. Fragmentation typically increases the 
interface between natural and modified habitats (Beasley 
et al. 2013, Allen and Wesner 2016, Kleinschroth and Healey 
2017, Borremans et al. 2019, Brock et al. 2019), which 
potentially increases human contact with wildlife and their 
pathogens (Hosseini et al. 2017, Faust et al. 2018). But this 
does not account for the fact that an inward expansion of 
modified habitat could result in decreased interface between 
natural and modified habitat (figure 1a). Along similar lines, 
if a fragment of natural habitat is the sole source of a zoo-
notic disease, then the complete destruction of that fragment 
could eliminate the risk of spillover altogether (figure  1b). 
Furthermore, “fragments” of nature can also be created—for 
example, by establishing a natural park within a city, which 
is regarded as being beneficial to human health (Elmqvist 
et al.  2015). The fragmentation rhetoric, in contrast, implies 
that creating such fragments would increase spillover risk, 

and their removal, by extension, would decrease that risk 
(figure 1c).

When it comes to the process, as opposed to the pat-
tern, of land change, spillover risk is challenging to model 
because of the complexities of wildlife host and pathogen 
dynamics (Alexander et al. 2012). But some differences in 
risk are intuitive. Burning vegetation, for example, involves 
minimal human–wildlife contact and decreases the abun-
dance of some pathogens (Albery et al. 2021), although 
smoke may help to spread others (Kobziar and Thompson 
2020). Logging, on the other hand, more predictably exposes 
people to wildlife and their pathogens and for longer (Faust 
et al.  2018).

Whatever the process or the pattern of land change, it 
is thought that some adaptable and mobile wildlife, such 
as rodents, may respond by resettling in adjacent human 
habitat, taking their pathogens with them (Altizer et al. 
2011, Hernández-Camacho et al. 2012, Ferreira-Junior et al. 

Figure 1. Three simplified hypothetical sets of scenarios in which land change may either increase or decrease zoonotic 
disease spillover risk. Each assumes that the natural area (black) is the source of spillover, and is devoid of human 
presence, whereas humans inhabit the modified habitat (white). In panel (a), increasing the size of modified habitat 
increases edge, and therefore spillover risk, if habitat modification expands outward, but decreases edge and spillover 
risk if it expands inward. In panel (b), reduction of natural area to fragments introduces an interface, and therefore 
a risk of spillover. However, if land change continues so that the fragment disappears altogether, there is once again 
no interface and therefore no spillover risk. In panel (c), restoration or creation of a fragment of natural area amid 
modified habitat could increase spillover risk, according to theory on habitat fragmentation. As in panel (b), removal of 
the fragment theoretically removes that risk.
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2018, Mendoza et al. 2020, Santini 2021). It is, however, not 
certain whether their relocation is a response to land change 
or simply a preference for accessible human habitat. Indeed, 
the literature on the relationship between land change and 
spillover risk seems sometimes to conflate proximity to 
nature per se, with proximity to the “newly exposed” nature 
that land change brings about.

These scenarios are partly just thought experiments, but 
they illustrate how difficult it can be to assess the risk of 
zoonotic spillover without knowing the amount, spatial 
pattern, and type of land change, not to mention zoonotic 
disease prevalence in wildlife, and incidences from which 
spillover could take place. Even when pathogen prevalence 
increases in wildlife populations, we still lack data and 
insights into the concomitant change in risk of exposure 
and transmission to human populations in the modi-
fied environment. Unsurprisingly, therefore, some authors 
acknowledge that the relationship between land change 
and spillover risk remains poorly understood (Sehgal 2010, 
Cumming et al. 2015, Suzán et al. 2015, Mastel et al. 
2018, Stark et al. 2019, Davey and Selvey 2020, White and 
Razgour 2020, Plowright et al. 2021, Reaser et al. 2021). The 
complexity of pathogen responses to land change cannot be 
reduced to simple one-size-fits-all proclamations.

Reviewing the rhetoric
Most primary research on the relationship between land 
change and spillover risk reports increased spillover risk 
with land change (Plowright et al. 2008, Beasley et al. 2013, 
Vanwormer et al. 2013, Scinachi et al. 2017, Santos and 
Almeida 2018). However, other authors report mixed results 
(Young et al. 2017, Afelt et al. 2018, Maaz et al. 2018, Young 
et al. 2021) and even decreased risk (Kowalewski et al. 2011, 
Shapiro et al. 2020, Riquelme et al. 2021). In some cases, the 
drainage of marshland (Jacups et al. 2011) and the removal 
of vegetation (Ducheyne et al. 2009), for example, have pro-
tected local communities from zoonotic disease.

We sampled 145 peer-reviewed papers with abstracts 
that made statements about the relationship between land 
change and spillover risk. Only 43 papers reported on the 
authors’ own findings on this relationship (primary research, 
including empirical studies and models), 23 of which (53%) 
associated land change with increased spillover risk. This 
proportion is roughly consistent with the findings of a 
systematic literature review by Gottdenker and colleagues 
(2014), in which 57% of studies documented increased 
pathogen transmission, whereas 43% observed decreased 
pathogen transmission, variable and complex pathogen 
responses, or no detectable changes. Other factors thought 
to influence rates of pathogen spillover (e.g., the loss of bio-
diversity, which is intertwined with land change) also turn 
out to be complex and heterogeneous in both the strength 
and the direction of the relationship (Wood et al. 2014, Rohr 
et al. 2020). In all of these cases, nonsignificant results (i.e., 
no relationship between land change and spillover risk) are 
likely to be underreported, as is expressed in the file drawer 

problem (Sterling 1959, Csada et al.  1996, Wood 2020, West 
and Bergstrom 2021).

In contrast to the variability evidenced in primary papers, 
we found that, of the 102 secondary papers (peer-reviewed 
review articles and commentaries) we sampled, 78% associ-
ated land change with increased spillover risk. This appar-
ent overstating of the evidence was even more pronounced 
among the webpages we sampled, only one of which did not 
associate land change with increased spillover risk.

Messaging also differed in terms of nuance. Although 
79% of primary papers acknowledged uncertainty in the 
way they communicated their findings about the relation-
ship between land change and spillover risk, this figure was 
53% for secondary papers and 31% for webpages. Although 
51% of primary papers indicated that the relationship was 
not necessarily causal, this figure was 10% for secondary 
papers and 4% for webpages. Although 74% of primary 
papers specified the pathogens responsible, this figure was 
30% for secondary papers and 17% for webpages. Although 
60% of primary papers specified the geographical location 
to which the relationship between land change and spillover 
risk applied down to the ecosystem or local scale, this figure 
was 3% for both secondary papers and webpages.

Peer-reviewed research can be expected to be more 
specific and nuanced than mainstream messaging, as was 
indicated in the primary papers we sampled. However, by 
some of the measures mentioned above, the specificity and 
nuance in secondary peer-reviewed papers was more akin to 
mainstream sources than to the primary research on which 
it is ostensibly based. Furthermore accuracy matters regard-
less of whether a message is communicated to a scientific or 
a general audience. Giving the impression that a phenom-
enon is universally applicable, when the empirical research 
suggests otherwise, is inaccurate and potentially misleading 
in any context.

Implications of simplistic messaging
Media attention to COVID-19 has been used as an oppor-
tunity to advocate the value of nature as a defense against 
future pandemics. But there are considerable risks in draw-
ing oversimplified and generic conclusions from complex 
and nuanced phenomena. Gregg and colleagues (2021) 
pointed out how well-intentioned rhetoric could inadver-
tently send a message precisely opposite to the message 
intended: implying that nature is a threat to humanity 
because of the thousands of viruses lurking unseen within 
it. We propose three additional arguments for accuracy and 
nuance.

First, policy or management decisions that are based 
on simplistic messaging risk neglecting local context. 
Policymakers and other decision-makers must understand 
that context if they are to make appropriate decisions for 
their communities. Solutions required at the local level 
will vary considerably with location and ecosystem, across 
species of pathogen, vector, and host, and across different 
forms of land change. Restoration or conservation of the 
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local environment is not guaranteed to decrease spillover 
risk. If vectors or reservoir hosts happen to be dependent 
on certain habitats (see, e.g., Bradley and Altizer 2007), 
the conservation of those habitats near human settle-
ment might make spillover more likely. Honest appraisals 
and mitigation of spillover risk are required in order to 
prioritize public health, although they may narrow down 
the options for simultaneously achieving conservation 
objectives.

Second, when messaging turns out to be false or inac-
curate, it can erode credibility. Every conservation message 
has the potential to contribute positively or negatively to 
the reputation of conservation and even of science more 
broadly, depending largely on the care with which it attempts 
to approximate the truth. In a survey of attitudes on public 
trust in science, Kreps and Kriner (2020, p. 1) noted that 
“careful science communication is critical to maintaining 
public support for science-based policies as the scientific 
consensus shifts over time.” They argued that this risk is 
magnified by the public attention garnered by COVID-19. 
If the disease turns out to have no links with land change, 
then strongly worded headlines about protecting nature for 
the sake of public health are less likely to be taken seriously 
next time around. Examples of such consequences include 
public mistrust in scientific information on climate change 
and vaccines (Rowland et al. 2022) and on nutrition (Nagler 
2013, Garza et al. 2019).

Third, cases in which messaging implies that land change 
is the sole reason for spillover can detract from other impor-
tant spillover risks. Especially on the webpages we sampled, 
it was not rare for messaging to give the impression that 
spillover risk is entirely dependent on land change. This 
could divert attention from other factors that may increase 
zoonotic disease spillover risk, such as the wildlife trade 
(Karesh et al. 2005), wildlife farming (Magouras et al. 2020 
and the references therein), global travel (Baker et al. 2022), 
climate change (Carlson et al. 2022), socioeconomics (Power 
et al. 2022), and transmission to researchers working on 
 zoonotic diseases (National Research Council 2012).

Recommendations
Science communication, whether in peer-reviewed journals 
or the mainstream media, is meant to make scientific knowl-
edge understandable. When it comes to topics as complex as 
the relationship between land change and zoonotic disease 
spillover, we contend that science communicators are more 
likely to succeed at that task when messaging is accurate and 
carefully nuanced. To that end we offer the following recom-
mendations, using the relationship between land change and 
spillover risk as an example:

Messaging should specify context and explanatory vari-
ables such as the relevant ecosystem, scale, pathogen, vector, 
host, form of land change, confounders, and effect measure 
modifiers. The strength of effect linking land change to zoo-
notic spillover risk within that context should also be com-
municated when possible. A message is true only within the 

specific context for which evidence exists and, if that context 
is not stated, then the message is not being communicated 
accurately. When generalization is unavoidable it should, at 
least, be acknowledged that a generalized conclusion is being 
communicated.

Defined and consistent terminology—for example, to 
specify type of land change—can facilitate clearer com-
munication both within science and to the broader public 
(Herrando-Pérez et al. 2014, Fraser et al. 2015, Peacor et al.  
2020). Undefined and inconsistent terminology in some of 
our sampled papers and webpages made them difficult to 
compare with one another—an observation shared by others 
(Gottdenker et al. 2014).

Messaging that describes the mechanisms that under-
lie phenomena is more likely to be accurate, to facilitate 
understanding, and to allow practitioners to identify 
leverage points for intervention. For example, a brief 
explanation of the mechanism underlying the effect of 
land change on spillover risk in a particular context may 
tell the reader more about the conditions under which 
that effect can be expected in future. Although science 
communicators cannot be expected to provide all of the 
relevant detail, we noted a lack of any explanation—or 
even a mention—of the mechanisms linking land change 
to spillover risk in some of the less nuanced messaging 
that we sampled.

Finally, the simple acknowledgement of uncertainty and 
exceptions can be enough to capture nuance, even in pithy 
social media posts.

Having said this, recipients of science communication 
would do well to remember that science communicators are 
human beings too. The motivations behind messaging vary: 
Interest groups might be tempted to cherry-pick science that 
supports their cause, media outlets are rewarded by numbers 
of copies or clicks, and, with the advent of indices such as 
the Altmetric Attention Score, scientists may be motivated 
to extend the reach of their work.

Conclusions
The last time the world experienced anything like COVID-
19 was when the Great Influenza pandemic struck in 1918. 
At that time, it was still common for messaging to rely 
on carrier pigeons and dispatch riders. It predated the 
first radio news program by 2 years, and the first trans-
Atlantic telephone call was still almost a decade away. A 
century later, with the click of a button, a message can 
instantly reach millions. The present article was written 
out of concern for the potential consequences of simplistic 
messaging at that speed and scale—including messaging 
about one of the most significant events of our lifetime. 
It was written in the hopes of encouraging more nuanced 
discourse, both within and beyond the peer-reviewed lit-
erature. If the goal of science communication is to improve 
understanding, it must strike a balance: sufficient simplic-
ity to be grasped by as broad an audience as possible but 
sufficient nuance to capture the complexity of an issue 
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and contribute meaningfully to the discussion around it, 
especially when it goes viral.

Supplemental material
Supplemental data are available at BIOSCI online.
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