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ABSTRACT In bacteria, RNAs regulate gene expression and function via several mechanisms. An RNA may pair with complemen-
tary sequences in a target RNA to impact transcription, translation, or degradation of the target. Control of conjugation of
pCF10, a pheromone response plasmid of Enterococcus faecalis, is a well-characterized system that serves as a model for the reg-
ulation of gene expression in bacteria by intercellular signaling. The prgQ operon, whose products mediate conjugation, is nega-
tively regulated by two products of the prgX operon, Anti-Q, a small RNA, and PrgX, the transcriptional repressor of the prgQ
promoter. Here we show that Qs, an RNA from the 5= end of the prgQ operon, represses expression of PrgX by targeting prgX
mRNA for cleavage by RNase III. Our results demonstrate that the prgQ and prgX operons each use RNAs to negatively regulate
gene expression from the opposing operon by different mechanisms. Such reciprocal regulation between two operons using
RNAs has not been previously demonstrated. Furthermore, these results show that Qs is an unusually versatile RNA, serving
three separate functions in the regulation of conjugation. Understanding the potential versatility of RNAs and their various roles
in gene regulatory networks will allow us to better understand how cells regulate complex behavior.

IMPORTANCE Bacteria use RNA to regulate gene expression by a variety of mechanisms. The prgQ and prgX operons of pCF10, a
conjugative plasmid of Enterococcus faecalis, have been shown to negatively regulate one another by a variety of mechanisms.
One of these mechanisms involves Anti-Q, a small RNA from the prgX operon that prevents gene expression from the prgQ
operon. In this work, we find that Qs, an RNA from the prgQ operon, negatively regulates gene expression from the prgX operon.
These findings have a number of implications. (i) The Anti-Q and Qs RNAs act by different mechanisms, highlighting the variety
of ways in which bacteria can regulate gene expression using RNAs. (ii) Reciprocal regulation between operons mediated by
small RNAs has not been previously described, deepening our understanding of how bacteria regulate complex behavior. (iii)
Additional roles for Qs have been described, demonstrating the versatility of this RNA.
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Regulatory RNAs play an integral role in control of gene expres-
sion in bacteria. RNAs that interact with and regulate other

RNAs via direct base pairing are referred to as antisense RNAs and
may be encoded in trans, on a different region of DNA, or in cis, on
the same region of DNA as their targets. Antisense RNAs encoded
in cis are best studied in mobile genetic elements (1) and in toxin-
antitoxin loci, found both on chromosomes and extrachromo-
somal elements (2). These RNAs have complete complementarity
to their targets and generally do not require the RNA chaperone
Hfq for productive interaction (3). RNA sequencing studies have
recently revealed many other cis-encoded antisense RNAs in bac-
terial chromosomes, where their role is beginning to be explored
(4, 5).

In many cases, antisense RNAs control expression of the target
gene by directing degradation of the target message (3, 5). RNase
III is an endoribonuclease that can mediate this regulation by
cleaving double-stranded RNA (6, 7). Homologs have been iden-
tified in all three domains of life and studied well both in eu-

karyotes, where RNase III family members Drosha and Dicer are
involved in small RNA maturation (8), and in eubacteria. In bac-
teria, RNase III has been found to play several roles, including
maturation of tRNA and rRNAs, as well as RNA-directed gene
silencing via degradation of regulatory RNA-mRNA pairs (7). Un-
like RNases such as RNase E, RNase J1, and RNase Y, RNase III can
efficiently process substrate RNAs with 5= triphospate groups (9–
11). This allows RNase III to initiate RNA decay by cleaving its
target and generating a 5= terminus with a monophosphate, which
can then serve as an efficient docking site for other RNases.

pCF10 is a conjugative plasmid of Enterococcus faecalis. Con-
jugation is initiated when cCF10, a peptide pheromone secreted
by plasmid-free E. faecalis cells, is imported by plasmid-bearing
cells (12). Inside the host cell, cCF10 interacts with PrgX, alleviat-
ing its repression of the prgQ promoter (PQ), located on the plas-
mid, causing transcription from PQ to increase 5- to 10-fold.
However, the increase in expression of downstream genes in the
prgQ operon is more than 100-fold (13). This augmentation is the
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result of a cascade of regulatory interactions between the prgQ
operon and the prgX operon, whose products repress conjugation.

Transcription of prgX is initiated at a promoter (PX) within the
prgQ operon, but oriented in the opposite direction (see Fig. S1 in
the supplemental material), making transcription of the two oper-
ons convergent for 223 nucleotides (nt) (14). Each operon en-
codes a small RNA within its 5= terminus, which is antisense to 5=
sequences within the other operon (15, 16). We have previously
demonstrated (17) that Anti-Q, encoded in the prgX operon, neg-
atively regulates gene expression from the prgQ operon by en-
hancing termination within a 5= leader sequence. This mechanism
can function in vitro without host factors beyond RNA polymer-
ase (RNAP) (17). In this work, we find that Qs, an RNA produced
from 380 nt at the 5= end of the prgQ operon, directs the host-
encoded RNase III to cleave X RNA, the prgX message, within the
region of complementarity. This activity can be reconstituted in
vitro.

Our cumulative data demonstrate that Qs RNA has at least
three distinct functions in the regulation of conjugation. It serves
as a leader sequence that can attenuate the expression of down-
stream genes via termination (17); it acts as an mRNA for prgQ,
whose polypeptide product is processed to the inhibitor peptide
iCF10 (18); and it is a regulatory RNA that directs degradation of
X RNA. More strikingly, this work shows that RNAs derived from
the 5= end of each operon reciprocally regulate expression of
downstream genes from the opposing operon via distinct mecha-
nisms. To the best of our knowledge, such reciprocal regulation
using RNAs has not been previously demonstrated.

RESULTS

Cells bearing pCF10 produce X RNA, a 1.4-kb transcript that en-
codes PrgX, as well as other transcripts initiated at the prgX gene,
including a 1.2-kb transcript (16) (see Fig. S2 in the supplemental
material). Upon pheromone induction, X-RNA levels drop dra-
matically and PrgX protein levels drop slightly (16). Recent work
demonstrated that when PQ is not repressed by PrgX, transcrip-
tion from this promoter directly interferes with transcription
from PX in cis; transcripts from PQ also had a trans-acting negative
effect on expression of transcripts from PX (13). We hypothesized
that the Qs RNA negatively regulates the expression of PrgX by
acting on X RNA via a mechanism involving interaction between
complementary sequences on the RNAs.

In order to explore Qs regulation of PrgX and X-RNA expres-
sion, we used a previously developed system in which transcripts
from the prgX and prgQ operons are provided separately from
compatible plasmids (13, 17). Only one operon is transcribed
from each plasmid, the promoter of the opposing operon being
inactivated by point mutations within its �10 region (see Fig. S1
in the supplemental material).

To test whether Qs regulates PrgX expression, we generated
E. faecalis strains bearing the plasmid that transcribes the prgX
operon, pBK2-26, with and without the plasmid that transcribes
Qs, pDM5-25. We then performed Western blotting using a PrgX-
specific antibody on whole-cell lysates from these strains (Fig. 1A).
We found that providing Qs in trans reduced PrgX levels to 77% �
10% (Fig. 1A, compare lane 2 to lane 1), whereas the empty vector
did not (Fig. 1A, lane 3).

In order to test the effect of Qs on X RNA, we prepared RNA
from these strains and analyzed it using Northern blots. We hy-
bridized blots using a probe specific for the prgX open reading

frame (ORF); in the absence of Qs, we detected a single 1.4-kb
band (Fig. 1B, lane 1). This band was the correct size to be a
transcript that initiated at PX and terminated at IRSX, the prgX
terminator. When we provided Qs, this band diminished in inten-
sity, and a second, ~1.2-kb band appeared (lane 2). The empty
vector had no effect (lane 3). A probe specific for 99 nt of the 5=
end of X RNA hybridized to the 1.4-kb band, but not the ~1.2-kb
band (Fig. 1C). To test whether this phenomenon was dependent
on PrgX, we introduced nonsense mutations into the third and
fourth codons of the prgX gene, preventing translation of PrgX
(Fig. 1A, lane 4) and found that this did not alter the effect of Qs
(Fig. 1B, compare lanes 1 to 3 with lanes 4 to 6). Taken together,
these data indicate that Qs causes differential expression of prgX
transcripts, generating a second prgX message that is missing the
5= terminus of full-length X RNA, and that PrgX is dispensable for
this phenomenon.

We hypothesized that the ~1.2-kb band was generated by nu-
cleolytic removal of about 200 nt from the 5= terminus of the

FIG 1 Qs negatively regulates expression of PrgX and its message, X RNA.
Western and Northern blots against products of the prgX operon produced by
E. faecalis OG1Sp bearing the following plasmids are shown: pBK2-26 (lane 1),
pBK2-26 plus pDM5-25 (lane 2), pBK2-26 plus pAT18 (lane 3), pBK2-126
(lane 4), pBK2-126 plus pDM5-25 (lane 5), and pBK2-126 plus pAT18 (lane
6). pBK2-26 produces X RNA with a wild-type prgX ORF. pBK2-126 carries
missense mutations in codons 3 and 4 of the prgX ORF. pDM5-25 produces
Qs. pAT18 is the vector control for pDM5-25. (A) A Western blot for PrgX.
The bottom blot shows an unidentified host protein that serves as a loading
control (16). (B and C) Northern blots hybridized to a probe specific for the
prgX ORF (B) or the first 99 nt of X RNA (C). The loading control is an
ethidium bromide stain of 23S rRNA.
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1.4-kb band. In order to test this, we used a coupled 5= and 3= rapid
amplification of cDNA ends (5=-3=RACE) protocol to identify
both termini of single X-RNA transcripts. We also used tobacco
acid pyrophosphatase (TAP) to distinguish 5= termini generated
as a result of de novo RNA synthesis from those derived by RNA
processing.

In the presence of Qs, most of the 5= termini clustered in two
distinct regions (Fig. 2). One contained the prgX transcriptional
start site, a pair of closely spaced G residues (16). These 5= termini
were detected only in the TAP-treated sample (�). The other re-
gion was about 205 nucleotides downstream, within sequences
complementary to Qs. Termini in this region were identified in
TAP-treated and untreated samples (�), indicating that they were
generated as a result of processing, rather than transcript initia-
tion. In the absence of Qs, the most commonly detected 5= termi-
nus was the prgX transcriptional start site, detectable only in the
TAP-treated sample (�). In the sample not treated with TAP (�),
most sequences tested did not contain a bona fide prgX 5=-3= junc-
tion, but rather nonspecifically amplified sequence. The 3= termini
from all samples generally fell within IRSX, though recessed 3=
termini were also detected. Taken together, these data indicate
that the smaller RNA is generated by removal of about 200 nt from
the 5= end of full-length X RNA, rather than the activity of a sec-
ond promoter, and that there is no coordinated processing of the
3= terminus.

Because X RNA is processed in a region that is complementary
to Qs, we hypothesized that RNase III is responsible for the pro-
cessing. E. faecalis V583 has one annotated gene that codes for
RNase III, rnc (EF-3097; NCBI accession # AEO16830). The pre-
dicted protein sequence of this gene is 39% identical to Esche-

richia coli RNase III and is conserved in E. faecalis OG1RF. BLAST
searches of the E. faecalis OG1RF genome using the predicted
protein sequence of EF3097 and the protein sequence of E. coli
RNase III did not produce any other alignments with an E value
below 1.5, suggesting that there is one copy of rnc encoded in the
E. faecalis chromosome. We generated an in-frame deletion of rnc
in E. faecalis OG1RF, generating strain OG1RF�3097. Under the
conditions tested, this strain was not defective for growth in broth
culture (see Fig. S3 in the supplemental material).

To test whether RNase III cleaved X RNA in a Qs-dependent
fashion, we transformed E. faecalis OG1RF�3097 with the
X-RNA-producing plasmid with and without the Qs-producing
plasmid. We also provided RNase III in trans from a plasmid that
transcribed rnc under control of P23 (19), a constitutive promoter.
We found that in the absence of RNase III, Qs did not direct
processing of X RNA (Fig. 3A, lanes 3 and 4). When RNase III
expression was complemented in trans, Qs-directed processing of
X RNA was restored (lanes 5 to 8). X RNA was expressed at sub-
stantially higher levels under these conditions (lanes 5 and 6). The
reason for this is unclear. Additionally, when RNase III was de-
leted, cells bearing the entire pCF10 plasmid no longer produced
processed X RNA (see Fig. S1 in the supplemental material).

We then tested whether RNase III was necessary for Qs to re-
press PrgX expression. We performed Western blotting on lysates
from E. faecalis OG1RF�3097 bearing an X-RNA-producing plas-
mid with a wild-type prgX ORF with and without a Qs-producing
plasmid. We found that in the absence of RNase III, Qs did not
repress PrgX expression (Fig. 3B). In fact, X RNA and PrgX ex-
pression appeared to increase in response to Qs (2.1 � 1.2-fold
and 1.6 � 0.1-fold, respectively). It is possible that in the absence

FIG 2 Qs directs removal of ~200 nt from the 5= terminus of X RNA. The 5= and 3= termini of single X-RNA transcripts were determined using a coupled 5=-3=
RACE protocol. A map of the region is shown, with the full-length X RNA transcript drawn as a thick wavy line. Arrowheads labeled A and B indicate the positions
of oligonucleotides pCF10_8072 and pCF10_7149R, respectively. A partial sequence and proposed structures within X RNA are shown, along with the number
of nucleotides in any gaps. Shaded triangles show the position of given sequences along the X-RNA transcript. The prgX RBS and initiation codon are boxed. The
mapped 5= and 3= termini are indicated by letters that correspond to the RNA sample from which that transcript was derived (see key and text). Numbers next
to these letters identify the corresponding 5= and 3= termini sequenced from single transcripts. Asterisks indicate that 1 to 6 nt of ectopic sequence was inserted
at the junction between the termini. Circled residues were identified as processing points in vitro (Fig. 4).
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of RNase III, formation of a duplex with Qs protects X RNA from
alternate degradation pathways. This conjecture was not explored
further. These data demonstrate that RNase III is necessary for
Qs-directed processing of X RNA and repression of PrgX.

To confirm that RNase III mediates cleavage of X RNA, we
fused a six-histidine tag to the N terminus of E. faecalis RNase III,
similar to a method used to purify S. aureus RNase III (20) and
purified His-tagged RNase III from E. faecalis cell lysates (see
Fig. S4 in the supplemental material). We then tested this prepa-
ration for its ability to cleave both X RNA and Qs in the presence
and absence of the other RNAs in vitro. We found that RNase III
did not cleave X RNA or Qs alone but cleaved both RNAs at several
locations in the presence of the complementary transcript
(Fig. 4A). We found that 5=-labeled cleavage products were about
200 nt or less in length, indicating that cleavage took place within
the region of complementarity between the RNAs. These data in-
dicate that RNase III cleaves X RNA when directed by Qs.

We tested whether RNase III cleaved X RNA in vitro at process-
ing sites identified in vivo. To do this, we used RNase III to cleave
unlabeled X RNA in the presence and absence of Qs and used
primer extension to map the cleavage sites (Fig. 4B). In the ab-
sence of Qs, we could not detect RNase III-mediated cleavage of X
RNA. When Qs was added without RNase III, primer extension
generated numerous new bands within the region of complemen-
tarity, indicating that the reverse transcriptase had difficulty ex-
tending through the RNA duplex. When RNase III was added, two
additional bands appeared, both mapped to 5= termini identified
by in vivo experiments (Fig. 2). These data indicate that RNase III
is responsible for the processing of X RNA observed in vivo.

To better understand how Qs directs processing of X RNA, we

performed a deletion analysis of Qs. We found that the only aspect
of Qs necessary to direct processing of X RNA is any sufficiently
long portion of Qs between positions �1 and �110, which is
entirely complementary to X RNA; however, no particular se-
quences within this region were needed to direct processing,
though processing appears to be directed to the region comple-
mentary to the Qs sequences provided. Qs sequences that are
complementary to X RNA but outside this region do not direct
processing (see Fig. S5 in the supplemental material). We used
sfold (http://sfold.wadsworth.org [21]) to analyze the region of X
RNA processing and identified a possible stem-loop structure
(Fig. 2). To test whether this predicted structure directed process-
ing of X RNA to a precise location, we generated a mutation pre-
dicted to disrupt the stem structure in each RNA (Mut48) and a
compensatory mutation that restored the stem structure in Qs
(Mut49) (Fig. 5A). We transformed E. faecalis OG1Sp with plas-
mids bearing wild-type or mutant X RNA and Qs alleles and as-
sessed processing of X RNA using Northern blots. Consistent with
the deletion analysis, these mutations did not prevent processing
(Fig. 5B). When either Qs or X RNA carried the stem-disrupting
mutation, the processing site was altered (Fig. 5B, compare lane 1
to lanes 2 and 4). This was not corrected if the predicted stem
structure was restored in Qs by further mutation (lane 5). If both
RNAs carried the stem-disrupting mutation, the site of processing
shifted back to its wild-type location (lane 3). We then used a 5=
RACE protocol to identify the processing site when both RNAs
were wild type (lane 1) or both carried the stem-disrupting muta-
tion (lane 3). The primary location of processing was identical in
both cases (Fig. 5A). We conclude that, under the conditions
tested, the predicted stem-loop structure is dispensable for direct-
ing processing to the wild-type location and that the location of
the processing site is instead dependent on complementarity be-
tween the two RNAs. Furthermore, because the Qs alleles that are
missing the prgQ ribosome binding site (RBS) and initiation
codon can direct processing, translation of prgQ is dispensable for
processing (Fig. S5).

Conclusion This is the first report of two opposing operons
that each use a small RNA to reciprocally regulate downstream
gene expression from the other operon. Notably, each RNA acts
via a different mechanism; Qs, derived from the 5= terminus of the
prgQ operon, directs posttranscriptional processing of X RNA of
the prgX operon by the host factor RNase III. Previous work dem-
onstrated that Anti-Q, an RNA derived from the 5= terminus of
the prgX operon, negatively regulates transcription readthrough
from the prgQ operon without the assistance of host-encoded pro-
teins (16, 17, 22). These regulatory effects are embedded within a
larger network of interactions between the prgQ and prgX oper-
ons, which will be discussed below.

The results of experiments presented in this work suggest a
model for Qs regulation of X RNA presented in Fig. 6A. X RNA is
transcribed from the prgX operon. When not interacting with Qs,
X RNA does not present any suitable target sites for RNase III. Qs
is transcribed from the opposite strand of DNA as X RNA. The 5=
region of Qs interacts with complementary sequences in the 5=
region of X RNA, forming a duplex over 100 bp in length. This
double-stranded heteroduplex is cleaved in multiple locations by
RNase III; the cleavage sites closest to the 3= region of X RNA
generate the new 5= termini detected in vivo. Processed X RNA
may serve as a substrate for subsequent degradation, as discussed
below.

FIG 3 RNase III is necessary for Qs-directed cleavage of X RNA in vivo. (A)
RNA was prepared from the indicated strains of E. faecalis with pBK2-126,
producing X RNA, with (�) or without (–) Qs from pDM5-25. The rnc gene
encoding RNase III is either present on the chromosome (wild type [WT]),
deleted from the chromosome (knockout [K.O]), or deleted from the chro-
mosome and provided from pCJ9:His-EF3097 (in trans). This RNA was ana-
lyzed by Northern blotting using a probe specific for the prgX open reading
frame. Lanes 7 and 8 are identical to lanes 5 and 6 except the film was exposed
for a shorter duration to allow better visualization of the bands. The loading
control is an ethidium bromide stain of 23S rRNA. (B) Western blotting was
performed on total cellular protein from E. faecalis OG1RF�3097 bearing
pBK2-26 providing X RNA with a wild-type prgX ORF with and without
pDM5-25, providing Qs. The bottom blot shows an unidentified host protein
that serves as a loading control.

Johnson et al.

4 ® mbio.asm.org September/October 2011 Volume 2 Issue 5 e00189-11

http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00189-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00189-11/-/DCSupplemental
http://sfold.wadsworth.org
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00189-11/-/DCSupplemental
mbio.asm.org


These findings also reveal that Qs plays at least three roles in the
regulation of conjugation, acting as an attenuating leader se-
quence, an mRNA, and a regulatory RNA that can act in trans.
Such versatility is uncommon, though RNAIII of Staphylococ-
cus aureus, pel of Streptococcus pyogenes, and SgrS of E. coli are all
bifunctional, acting as regulatory RNAs and mRNAs (23–25).

Transcription of the prgQ and prgX operons is convergent for
223 nt. One consequence of this arrangement is that when PQ is
derepressed, transcription of the prgQ operon represses transcrip-
tion from PX via transcriptional interference (13). Another conse-
quence is that RNAs transcribed within the overlapping region are
perfectly complementary to transcripts from the other operon,
giving rise to at least two antisense regulatory interactions. These
interactions allow one operon to become dominant at the expense
of the other; pheromone-sensitive repression of the prgQ pro-
moter by PrgX ultimately determines the relative levels of tran-
scription of the two operons. Our current model of regulation

between the prgQ and prgX operons is depicted in Fig. 6B. In the
absence of cCF10, the products of the prgX operon are dominant
and prevent conjugation (broken lines). Transcription from PQ is
repressed by PrgX. Repression is leaky, allowing transcription of
the prgQ gene. Our previous report showed that the Anti-Q small
RNA (sRNA) attenuates the expression of downstream conjuga-
tion genes by interacting with nascent prgQ transcripts to favor
formation of a factor-independent terminator within these tran-
scripts. This terminated transcript is Qs, which encodes iCF10, an
inhibitory peptide that interacts with PrgX to maintain repression
(18, 26). Plasmid-free E. faecalis cells secrete the pheromone
cCF10. When this is imported into the host cell, products of the
prgQ operon become dominant (solid black lines). cCF10 inter-
acts with PrgX, alleviating repression of PQ. The increase in tran-
scription from PQ directly represses transcription from PX, reduc-
ing expression of products of the prgX operon. Additionally,
substantially more Qs is produced, which directs processing of X

FIG 4 RNase III mediates Qs-directed cleavage of X RNA in vitro. (A) Full-length Qs and a 550-nt 5= fragment of X RNA were transcribed in vitro. One RNA
was 5= labeled with 32P and incubated with or without the unlabeled antisense RNA and with or without increasing levels of RNase III. The amount of RNase III
is indicated above the gels by 0 or by the height of the white triangle above the gel. The products were electrophoresed on a denaturing 6% polyacrylamide-urea
gel and examined using a phosphorimager. Products digested in the overlapping region between the RNAs are indicated by the bracket to the right of the gel. The
far left lane is a size standard with the length in nucleotides indicated. (B) Primer extension reaction done on an unlabeled 5= X-RNA fragment incubated with
and without Qs and with and without RNase III. The DNA oligonucleotide was 5= labeled with 32P and used to prime a reverse transcription reaction. The
products were electrophoresed on a denaturing 10% polyacrylamide-urea gel and examined using a phosphorimager. A chain termination ladder is shown in the
left gel. The ladder is from the same gel as the extensions, but with contrast and brightness adjusted to visualize the bands.
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RNA, decreasing PrgX expression. The increase in transcription
from PQ eventually titrates Anti-Q levels, allowing transcription
to extend past the transcription terminator IRS1, into genes func-
tionally involved in conjugation. This regulatory pathway allows
sensitive detection of the pheromone signal and a robust switch-
like response to changes in the ratio of cCF10 to iCF10 (13, 27).

Unlike trans-encoded antisense RNAs, cis-encoded antisense
regulatory RNAs have extended regions of complementarity to
their targets. Despite this, it is often the case that only specific
regions interact to mediate the regulatory effects (28–31). Com-
plementarity within these regions is essential, but dispensable for
the rest of the RNA, which generally serves a structural role, posi-
tioning the interacting motifs for optimal pairing. Under the con-
ditions tested, Qs does not require any particular sequence or
structure in order to target X RNA for processing. Instead, any
sufficiently large portion of the 5= end of Qs can direct processing
within complementary sequences within X RNA. Such general
requirements would allow this mechanism to function without
constraining evolution of the prgQ peptide-coding region, which
is within the portion of Qs that directs processing. Additionally,

this mechanism may allow processed or incompletely transcribed
Qs RNA to contribute to the regulation of X RNA. Recent model-
ing suggests that collision of RNA polymerases from the conver-
gent prgQ and prgX promoters produces truncated RNA frag-
ments (13). Indeed, pCF10 produces prgQ fragments, detectable
by Northern blotting, that are shorter than Qs (15, 22). We note
that under the conditions tested, X RNA and Qs were provided in
trans at a high gene copy number. Within the context of pCF10,
the gene copy number is lower and the RNAs are transcribed from
the same DNA molecule. These differences may mask subtle but
biologically meaningful contributions of RNA structure or the in
cis configuration to Qs-directed processing of X RNA.

RNase III mediates the effects of many antisense RNAs, both
encoded in cis, such as the R plasmid hok-sok system (32), and
encoded in trans, such as RNAIII-spa (20). RNase III is able to
cleave double-stranded RNA helices greater than 20 bp, although
some nucleotide combinations act as “antideterminants” to pre-

FIG 5 A predicted stem-loop structure is not necessary to direct processing of
X RNA. (A) The sequence and a predicted structure of Qs and X RNA in the
region of processing. The RNA is indicated below each diagram. Mutations
tested are shown. The black arrowheads indicate the location of 5= termini of
processed X RNA identified by 5= RACE with the number showing how many
times each terminus was identified when both Qs and X RNA were wild type
(WT) or when both carried mutation 48 (Mut48). (B) RNA was prepared from
E. faecalis OG1Sp carrying plasmids that produce the X RNA and Qs alleles
indicated below and then analyzed by Northern blotting using a probe specific
for the prgX open reading frame. Lane 1, WT X RNA and WT Qs; lane 2, WT
X RNA and Mut48 Qs; lane 3, Mut 48 X RNA and Mut48 Qs; lane 4, Mut48 X
RNA and WT Qs; lane 5, WT X RNA and Mut49 Qs. The bottom gel was
stained with ethidium bromide to show 23S rRNA.

FIG 6 Qs-directed processing of X RNA is part of a regulatory circuit. (A) A
model of how Qs directs cleavage of X RNA as described in the text. A map of
the prgQ or prgX region of pCF10 is shown as a thin black line with features.
RNA is indicated by thick black lines that are labeled X RNA or Qs. Scissors
represent RNase III, while “ppp” and “p” indicate that an RNA has a 5= triphos-
phate or monophosphate group, respectively, at the 5= terminus. (B) A model
for mechanisms of reciprocal regulation between the prgQ and prgX operons,
which control the pheromone response, as described in the text. The presence
or absence of pheromone is shown. prgQ and prgX indicate transcription ini-
tiated at the respective promoters, RNAs are indicated by wavy lines, inhibitory
relationships are indicated by thick black lines with a bar at the end, broken
lines indicate regulatory mechanisms employed by the prgX operon, and solid
black lines indicate regulatory mechanisms employed by the prgQ operon. The
PrgX protein is indicated.
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vent cleavage at certain sites (33). These features are apparent for
E. faecalis RNase III from analysis of our in vitro-reconstituted
system (Fig. 4). The labeled RNAs show a laddering pattern that
suggests cleavage occurs at several distinct locations along the du-
plex, with RNase III recognizing the entire duplex but being
guided to certain sites by the sequences within the duplex. In vivo
results, however, suggest that a complete duplex between comple-
mentary sequences of Qs and X RNA may not form. Qs RNA from
positions �120 to �223 is complementary to X RNA from posi-
tions �1 to �103 but does not direct RNase III cleavage. These
complementary RNA regions are both highly structured. It is pos-
sible that kissing loops within this region of X RNA and comple-
mentary structures within Qs interact, imposing torsional con-
straints on the RNAs that prevent formation of a full duplex and
RNase III target sites within this region.

RNase III cleavage of X RNA is upstream of the prgX ribosome
binding site and open reading frame and is not coordinated with
processing of the 3= terminus, leaving processed X RNA with all of
the components necessary for PrgX translation. Preliminary find-
ings suggest that translation is suppressed from processed X RNA
(C. M. Johnson and G. M. Dunny, unpublished data). It is also
possible that processing initiates decay of X RNA. The 5= terminus
of unprocessed X RNA has a triphosphate group and extensive
secondary structure, both of which protect RNA from degrada-
tion (34). RNase III cleavage generates a 5= monophosphate and
may allow X RNA to serve as a substrate for docking and activation
of other RNases, such as RNase J1. RNase III cleavage has been
shown to initiate decay of several mRNAs in E. coli (35, 36). We are
currently investigating subsequent steps in X RNA degradation
and possible roles for processed X RNA in the regulation of pCF10
conjugation.

MATERIALS AND METHODS
Strains, plasmids, and reagents. E. coli was cultured in LB broth and
plated on LB plates with 1.5% agar. Antibiotics were used at the following
concentrations for E. coli: erythromycin, 200 �g/ml; chloramphenicol,
20 �g/ml. E. faecalis was cultured in M9-YEG(37) or THB (Todd-Hewitt
Broth-Difco) broth and plated on THB plates with 1.5% agar. Antibiotics
were used at the following concentrations for E. faecalis: erythromycin,
10 �g/ml; chloramphenicol, 20 �g/ml; spectinomycin, 1,000 �g/ml.
Strains and plasmids are listed in Table S1. Oligonucleotides used in this
study are listed in Table S2. X RNA was provided from plasmids with a
chloramphenicol resistance marker and a pCI305 replicon. Qs was pro-
vided from plasmids with an erythromycin resistance marker and a
pAM�1 replicon. pCI305 and pAM�1 have copy numbers of 11 � 4 and
61 � 25 plasmids/chromosome, respectively, in E. faecalis (D. A. Manias
and G. M. Dunny, unpublished observations).

Cloning. Mutations were introduced into plasmids using standard
molecular biology techniques, as summarized in Table S3. The construc-
tion of the expression vector pCJ9 is shown in Fig. S6.

E. faecalis OG1RF�3097 was generated by using a previously described
allelic exchange system (37) to replace the EF3097 open reading frame in
strain OG1RF with the sequence ATGAAACAAGGTGAAATAAAAAAA
AGTATTCCTCAGTAA. The sequence of the mutation was verified by
Sanger sequencing reactions primed with EF3097_UpSeq and
EF3097_DnSeq.

Northern blots. E. faecalis strains were cultured and RNA was pre-
pared using a Qiagen RNeasy kit with modified enzyme lysis procedure as
previously described (17, 38). One microgram of RNA was electropho-
resed on a denaturing 1% agarose gel in morpholinepropanesulfonic acid
buffer, transferred to a nylon membrane, cross-linked, and hybridized
with digoxigenin-labeled probes as previously described (16, 17).

Digoxigenin-UTP body-labeled RNA probes were prepared as previ-

ously described (17). Templates for the probes used in this study were
generated with the following primer sets: for the prgX ORF probe,
pCF10_7002_T7 and pCF10_7983R; for the probe specific for the 5= ter-
minus of X RNA, pCF10_8298F_SP6 and pCF10_8395R; for the Qs
probe, pCF10_8599R_T7 and pCF10_8177F; for the Qs from positions
�34 to �120 (Qs �34 to �120) probe, pCF10_8286R_SP6 and
pCF10_8211_BsaI; for the Qs �121 to �223 probe, Qa_RNA_F_SP6 and
Qa_RNA_R.

5=-3= RACE. RNA was prepared as described above for Northern blots.
The coupled 5=-3= mapping protocol was performed essentially as previ-
ously described (4), except that RNA was treated with a Turbo-DNA free
kit (Ambion). Tobacco acid pyrophosphatase (TAP) treatment allows
processed RNAs to be discerned from unprocessed RNAs because the 5=
termini of unprocessed bacterial RNAs carry a triphosphate group, pre-
venting them from serving as a substrate for T4 RNA ligase. RNAs that
have been processed by a RNase or treated with TAP do not carry this
group, allowing their 5= termini to be ligated to other nucleic acids by T4
RNA ligase. Transcription initiation sites are those 5= termini that are
present in TAP-treated samples and absent from TAP-untreated samples
(14). Briefly, RNA was divided into aliquots to be treated with TAP to
remove 5= triphosphate groups or mock treated and then circularized with
T4 RNA ligase. cDNA was generated by reverse transcription using Super-
script III primed with oligonucleotide pCF10_8072 and then PCR ampli-
fied using oligonucleotides pCF10_8072 and pCF10_7149R. The reaction
products were ligated into pGEM-T Easy (Promega), which was used to
transform E. coli DH5�. Vector insertions were PCR amplified from in-
dividual colonies and the prgX 5=-3= junctions were sequenced.

5= RACE. RNA was prepared as described above for Northern blots.
The 5= termini of processed RNAs were determined as previously de-
scribed (14) except no TAP-treated samples were prepared. The oligonu-
cleotide ligated to 5= termini was RNA_oligo. The reverse transcription
(RT) reaction was primed with pCF10_7922, and the PCR was primed
with pCF10_8072 and P1. PCR products were ligated into pGEM-T Easy,
which was used to transform E. coli DH5�. Vector insertions were PCR
amplified from individual colonies, and the prgX 5= termini were se-
quenced.

RNase III digest. RNAs used for in vitro experiments were transcribed
from PCR templates with T7 promoters using T7 RNA polymerase as
previously described (17). Qs was prepared using primers
pCF10_8177_T7 and Qs_RNA_R. The X-RNA 5= fragment was prepared
using primers Old_Anti-Q_RNA_T7 and pCF10_7845. In vitro-
transcribed RNAs were dephosphorylated using calf intestinal alkaline
phosphatase and then 5= labeled using [�-32P]ATP and polynucleotide
kinase as previously described (39). Qs and X RNAs were independently
incubated at 60°C for 10 minutes in a dry heat block, which was then
turned off, and the RNAs were allowed to cool to 37°C. The labeled
(0.5 pmol) and unlabeled (2.5 pmol) RNA were mixed in 10 �l TMN
(TMN contains 20 mM Tris-acetate [pH 7.5], 10 mM magnesium acetate,
100 mM sodium chloride, and 1 mM dithiothreitol) and incubated at
37°C for 5 minutes. This was mixed with 12 or 30 ng of RNase III in TMN
and incubated at 37° for 1 min. The reactions were stopped with phenol-
chloroform. RNA was ethanol precipitated from the aqueous phase, re-
suspended in 20 �l of gel loading dye II (Ambion), electrophoresed on a
6% denaturing urea-polyacrylamide gel, and examined using a phospho-
rimager.

Primer extension. Oligonucleotide pCF10_8137 was 5= labeled using
[�-32P]ATP and polynucleotide kinase (New England Biolabs) following
the manufacturer’s instructions. Primer extension reactions were per-
formed using avian myeloblastosis virus (AMV) reverse transcriptase as
described previously (40).

SDS-PAGE and Western blotting. SDS-PAGE and Western blotting
of PrgX were performed using a polyclonal antibody as previously de-
scribed (16).
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