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A B S T R A C T

The sole clinicopathological characteristic is not enough for the prediction of survival of patients with clear cell
renal cell carcinoma (ccRCC). However, the survival prediction model constructed by machine learning tech-
nology for patients with ccRCC using clinicopathological features is rarely reported yet. In this study, a total of
5878 patients diagnosed as ccRCC from four independent patient cohorts were recruited. The least absolute
shrinkage and selection operator analysis was implemented to identify optimal clinicopathological characteristics
and calculate each coefficient to construct the prognosis model. In addition, weighted gene co-expression network
and gene enrichment analysis associated with risk score were also carried out. Three clinicopathologic features
were selected for the construction of the prognosis risk score model as the prognostic factors of ccRCC, including
tumor size, tumor grade, and tumor stage. In the CPTAC (Clinical Proteomic Tumor Analysis Consortium) cohort,
the General cohort, the SEER (Surveillance, Epidemiology, and End Results) cohort, and the Huashan cohort,
patients with high-risk score had worse clinical outcomes than patients with low-risk score (hazard ratio 5.15,
4.64, 3.96, and 5.15, respectively). Further functional enrichment analysis demonstrated that our machine
learning-based risk score was significantly connected with some cell proliferation-related pathways, consisting of
DNA repair, cell division, and cell cycle. In summary, we developed and validated a machine learning-based
prognosis prediction model, which might contribute to clinical decision-making for patients with ccRCC.
1. Introduction

As a highly aggressive carcinoma, the renal tumor has become one of
the most lethal diseases of urological cancers. In 2022, about 79,000 new
cancer cases and 13,920 cancer deaths related to kidney and renal pelvis
are predicted to be found in America [1]. As the most common solid
lesion in the kidney, renal cell carcinoma (RCC) occupies approximately
90% of all renal malignancies [2].

The Fuhrman grading system is currently recognized as the most
predictive grading system for clear cell renal cell carcinoma (ccRCC) [3],
which has also been proved to be a prognostic factor for ccRCC [4, 5].
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The tumor stage is also one of the important clinical characteristics for
evaluating the clinical outcomes of patients with ccRCC [6]. However,
the decision of the optimal surgical procedure for patients is mainly
based on tumor size [7]. For patients with high-grade ccRCC, the asso-
ciated risk increased by 13% for every 1 cm of tumor enlargement [8].
Intricate relationships could also be found among these clinicopathologic
features in ccRCC. Until now, some transcriptome-based prognostic
markers have also been reported to predict survival outcomes for patients
with ccRCC [9, 10, 11]. However, transcriptome sequencing costs a lot of
manpower and financial resources, so their potential applications in
clinical practices are limited. Therefore, it is still urgent to develop an
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economical and convenient survival prediction model to improve clinical
practicability.

Machine learning is the science that gets the computer to learn
without being explicitly programmed. As a promising technology, ma-
chine learning is becoming widespread in studies among multiple ma-
lignant tumors, including skin cancer [12], breast carcinoma [13], and
neurologic tumors [14]. Machine learning is widely accepted to bring
about dramatic changes in the individualized diagnosis and treatment of
patients [15]. Currently, studies using machine learning to predict the
classification, nuclear grade, and prognosis of RCC have been reported
using data from radiomics [16, 17, 18, 19]. The identification of
mortality-risk-associated missense variants in clear cell renal cell carci-
noma using deep learning has also been well studied [20]. However,
studies using machine learning to predict the prognosis of ccRCC patients
with more accessible data such as clinicopathological characteristics
have not been reported. In our research, we developed and validated a
prognosis risk score model based on the clinicopathologic characteristics
of patients with ccRCC from 4 independent patient cohorts using ma-
chine learning algorithm, which could help to make up for the lack of
current clinical prognosis prediction for patients with ccRCC. The
workflow of this study is shown in Figure 1.
Figure 1. The workfl
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2. Materials and methods

2.1. Patient cohorts and data resources

A total of 5878 patients diagnosed with ccRCC from 4 independent
patient cohorts were recruited for analysis in this study. All included
patients should meet the following inclusion criteria: (a) pathological
evidence to diagnose a single type of primary ccRCC; (b) complete clin-
ical and pathological characteristics, including age, gender, tumor size,
tumor grade, and tumor stage; (c) with access to clinical follow-up in-
formation for more than three years after surgical treatment.

After eliminating the participants unqualified, 314 patients, who
were diagnosed with ccRCC in Shanghai General Hospital from January
2012 to December 2018were included in the General cohort. The records
of 137 patients from Huashan hospital, who underwent surgery surgical
from October 2012 to March 2015 were also retrospectively reviewed
and defined as the Huashan cohort. Additionally, in this study another 98
patients from the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) [21] and 5329 patients from the Surveillance, Epidemiology,
and End Results (SEER) program [22] met the inclusion criteria were also
recruited.
ow of this study.



Figure 2. Construction of the machine learning-based prognosis model in the CPTAC cohort. (A–B) the tenfold cross-validated error and respective coefficients at
varying levels of penalization plotted against the log (lambda) sequence for the least absolute shrinkage and selection operator analysis, respectively. (C) Correlation
analysis of the tumor size and tumor grade for ccRCC patients, bar plot on the top and the right represent the proportion of tumor size and grade, respectively. (D)
Correlation analysis of the tumor size and tumor stage for ccRCC patients, bar plot on the top and the right represent the proportion of tumor size and stage,
respectively. CPTAC, Clinical Proteomic Tumor Analysis Consortium; ccRCC, clear cell renal cell carcinoma.
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2.2. Construction of the prognosis model

In this study, the least absolute shrinkage and selection operator
(LASSO) via glmnet package in R [23] was carried out to identify optimal
clinicopathological characteristics and calculate each coefficient to
construct the prognostic model in the CPTAC cohort. The lambda value
was set as 1000 to ensure the robustness of the LASSO model. The alpha
value was set as 1, and other hyperparameters were set as default values.
Then, the machine learning-based risk score is calculated by accumu-
lating the product of the selected eigenvalue values and their respective
coefficients.

2.3. Weighted gene co-expression network and gene enrichment analysis

Normalized transcriptomic data of ccRCC patients were acquired
from the CPTAC cohort [21]. Genes with less than 70% transcriptome
value were excluded from the total sample for further analysis. We
conducted weighted gene co-expression network analysis (WGCNA)
based on valid 17067 genes by WGCNA package in R [24] to construct
co-expression gene networks in ccRCC. When the soft-thresholding
3

power of β value was defined as 6, which was recommended by the
function of pickSoftThreshold, 17067 genes were hierarchically clustered
into 26 gene modules. Correlation analysis between gene modules and
the clinicopathologic feature was further performed to identify the
optimal gene module with the highest correlation with the machine
learning-based risk score. Subsequently, gene enrichment analysis was
carried out to explore the potential biological mechanisms in which the
risk score might be involved via Metascape [25].

2.4. Statistical analysis

In this study, the software of R 3.6.2 was used for data analyses and
visualization. Kaplan–Meier (KM) curve analysis with hazard ratio (HR)
and 95% confidence interval (CI) were implemented to compare different
overall survival (OS) and disease-free survival (DFS) outcomes through
the log-rank test. The cut-off value for identifying high or low risk was set
as the median value in each patient cohort. The evaluation of the ma-
chine learning-based prognosis prediction model was performed using
receiver operating characteristic curve (ROC) analysis with the area
under curve (AUC) value of the 3-year survival prediction.



Figure 3. Survival analysis of the machine learning-based prognosis model in multiple patient cohorts. (A. B. D) Kaplan-Meier curve analysis of disease-free survival
comparation in the CPTAC cohort, the General cohort, and the Huashan cohort, respectively. (C) Kaplan-Meier curve analysis of overall survival comparation in the
SEER cohort. CPTAC, Clinical Proteomic Tumor Analysis Consortium; SEER, Surveillance, Epidemiology, and End Results.

S. Chen et al. Heliyon 8 (2022) e10578
3. Results

3.1. Construction of the machine learning-based prognosis risk score model
for patients with ccRCC

Basic clinical characteristics of 5878 patients from the General cohort,
HuashanCohort, CPTAC cohort, and SEER cohortwere shown in Table S1.
Four clinicopathological characteristics, including age, tumor size, tumor
grade, and tumor stage, were used for LASSO analysis in the CPTAC
cohort. As illustrated in Figure 2A, the left vertical line was equal to the
minimum ten-fold cross-validation error arrived at 3, which means that 3
features were screened out as the most important prognostic factors for
ccRCC patients, including tumor size, tumor grade, and tumor stage. The
4

regression coefficients for each selected features were also acquired from
Figure 2B (coefficients tumor size ¼ 0.073198238, coefficients tumor grade ¼
0.008798867, coefficients tumor stage ¼ 0.723105654). Then, the machine
learning-based risk score was calculated by accumulating the product of
the selected feature values and their respective coefficients. Correlation
analysis revealed that tumor size had a positive correlation with tumor
grade (Figure 2C) and tumor stage (Figure 2D).

3.2. Evaluation of the machine learning-based prognosis risk score model
in clinical practice

To evaluate the machine learning-based prognosis model for pa-
tients with ccRCC, we performed a KM curve survival analysis in the



Figure 4. Evaluation of the machine learning-based prognosis prediction model through receiver operating characteristic curve analysis. (A) Comparing the area
under curve value of 3-year disease-free survival prediction among the prognostic model and major clinicopathologic features in the CPTAC cohort. (B) Comparing the
area under curve value of 3-year disease-free survival prediction among the prognostic model and major clinicopathologic features in the General cohort. (C)
Comparing the area under curve value of 3-year overall survival prediction among the prognostic model and major clinicopathologic features in the SEER cohort. (D)
Comparing the area under curve value of 3-year disease-free survival prediction among the prognostic model and major clinicopathologic features in the Huashan
cohort. The P-value was acquired by comparing the AUCs between risk score and other indicators. AUC, area under curve; CPTAC, Clinical Proteomic Tumor Analysis
Consortium; SEER, Surveillance, Epidemiology, and End Results.
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CPTAC cohort. As shown in Figure 3A, compared with patients with
lower risk scores, patients with higher risk scores have significantly
worse clinical survival outcomes (HR ¼ 5.15, 95% CI: 1.66–15.96, p ¼
0.018). External validation in General cohort (HR ¼ 4.64, 95% CI:
2.15–10.02, p ¼ 0.0007, Figure 3B), SEER cohort (HR ¼ 3.96, 95% CI:
3.14–5.00, p < 0.0001, Figure 3C), and Huashan cohort (HR ¼ 6.02,
95% CI: 1.50–24.15, p ¼ 0.055, Figure 3D) also shows that patients
with higher risk scores have a significantly worse prognosis. Further cox
regression analysis indicated that our machine learning-based risk
score could be used as an independent prognostic factor for patients
with ccRCC patients in the SEER cohort and the General cohort
(Table S2).
5

3.3. Comparation of the machine learning-based risk score and traditional
clinicopathologic features

We further explore whether the prediction performance had been
improved in the risk score compared with traditional clinicopathologic fea-
tures byusingROCcurve analysis in eachpatient cohort. The results indicated
that therisk scoreachievedAUCvaluesof84.3%,82.2%,73.4%,and74,1%in
the CPTAC cohort (Figure 4A), the General cohort (Figure 4B), the SEER
cohort (Figure4C), and theHuashancohort (Figure4D), respectively. The risk
score displayed slightly higher accuracy than some traditional clinicopatho-
logic features (Table S3), even though without significant difference, which
might be due to the limited sample size in each patient cohort.



Figure 5. Weighted gene co-expression network analysis in the CPTAC cohort. (A) The estimation of soft threshold power for weighted gene co-expression network
analysis. (B) Topological overlap matrix showing the gene network using a heatmap plot. (C) The merged dendrogram with different colors revealing the different
modules identified by network analysis. (D) The relationship between gene modules and clinical characteristics. (E) Correction analysis of the selected gene modules
and the risk score.
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Figure 6. Potential mechanism analysis from co-expressed genes associated with the risk score. (A) Visualization of the expressions of the co-expressed genes in the
black module. (B) Visualization of the expressions of the co-expressed genes in the brown module. (C) Potentially enriched pathways of the co-expressed genes
associated with the risk score in the black and brown modules.
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3.4. Association of the risk score and transcriptomic pathway

We carried out WGCNA and identified 26 independent modules in
ccRCC patients (Figure 5A-C). The relationship between gene modules
7

and clinicopathologic features was shown in Figure 5D. The black
module and the brownmodule were found to perform higher correlations
to the risk score (Figure 5E). Further enrichment analysis based on 2352
genes in the black module (Figure 6A) and brown module (Figure 6B)
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indicated that several cell proliferation-related pathways were statisti-
cally enriched. The top four enriched pathways associated with the risk
score included cell cycle, mitotic cell cycle, cell division, and DNA repair
(Figure 6C).

4. Discussion

It has been known for many years that the grade of ccRCC is associ-
ated with the prognosis of patients. However, the use of tumor grade
alone to predict prognosis has significant drawbacks. For example, many
studies have found no significant difference in prognosis between two
adjacent grades [26]. Therefore, we cannot solely rely on the grade of
ccRCC to predict the prognosis of patients.

In recent years, machine learning has made great progress in the
fields of medicine. Machine learning technology is used by some scholars
for predicting the tumor grade of RCC with imaging data [27, 28].
However, the use of machine learning technology based on clinico-
pathological data to predict the prognosis of patients with ccRCC is rarely
reported now.

In this study, we screened several clinicopathological characteristics,
and finally developed the survival prediction model based on tumor
stage, tumor grade, and tumor size via using machine learning algorithm.
The machine learning-based prognostic model exhibited consummate
performance in differentiating patients with high survival risk, which
could also be used as an independent prognostic factor for patients with
ccRCC. Functional enrichment analysis also indicated that our machine
learning-based risk score was significantly associated with some biolog-
ical processes, including cell cycle, cell division, and DNA repair, which
have been shown to be related to the occurrence and development of
ccRCC [29, 30].

The size of the tumor is an essential factor in assessing the patient's
prognosis, which is also the most intuitive and easy-to-measure attribute
of the tumor. The size of RCC can not only be used to stage the tumor, but
it can also predict the prognosis of the patients. As the tumor grows, the
prognosis of the patient becomes worse. Some scholars have proposed
using 3.0 cm as a cutting point. Patients with RCC within 3.0 cm have a
better prognosis, but when it is greater than 3.0 cm, the prognosis will
worsen [31]. In addition, the size of the tumor is also related to the
synchronous and asynchronous metastasis of RCC, but when the primary
tumor is less than 3.0 cm, the risk of metastasis is negligible [32]. Studies
have also found that tumor size is related to malignant potential. As the
tumor size increases, the degree of malignancy increases [33].

Of all the clinicopathologic data, the stage of RCC is the strongest
predictor of patients outcome [6]. The TNM staging system for RCC is the
most commonly used and important clinical grading system for the
prognosis of patients. It has been modified many times, and the latest
version is AJCC in 2017 [34]. With the increasingly refined classification
of RCC, its guiding role in the treatment of RCC patients is becoming
increasingly sophisticated. The use of the tumor stage alone for prog-
nostic analysis is also inadequate. The TNM staging of RCC only takes
into account the size of the tumor and does not consider whether the
tumor is necrotic or not. In this study, our risk score based on machine
learning performed well in predicting the 3-year survival status of ccRCC
patients, which could act as new prognostic features with cost neutrality.

Our model not only shows a good role in predicting prognosis but also
has convenient and practical value. In clinical practice, clinicians can
only evaluate the prognosis of patients according to the size, grade, and
stage of the tumor by using our prognosis model, without sequencing and
radiomics analysis of the tumor. This model also has a certain guiding
significance for clinical decision-making and individualized treatment.
As the survival curves showed, patients with higher risk scores had
significantly worse clinical survival outcomes compared to patients with
lower risk scores, which suggested that patients with higher risk scores
may need the timely intervention of extra treatments except for surgery.

Although our prediction model is perfectly constructed, there are still
some limitations in our present scenario. Firstly, despite a large number
8

of patients included in this study, there was a large difference in the
number of patients between the cohorts, which would inevitably cause
deviation. In addition, our research is a retrospective study and will be
affected by unknown confounding factors. To verify our model more
accurately, further prospective research needs to be carried out.

5. Conclusions

Through retrospective analysis of multicenter clinical data, we
developed and validated a prediction model based on machine learning
algorithm, which may contribute to clinical decision-making for patients
with ccRCC. Further functional enrichment analysis demonstrated that
our machine learning-based risk score was significantly connected with
some cell proliferation-related pathways, consisting of DNA repair, cell
division, and cell cycle.
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