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Abstract: According to the written historical sources, the Gepids were a Germanic tribe that settled in
the Carpathian Basin during the Migration Period. They were allies of the Huns, and an independent
Gepid Kingdom arose after the collapse of the Hun Empire. In this period, the Carpathian Basin was
characterized by so-called row-grave cemeteries. Due to the scarcity of historical and archaeological
data, we have a poor knowledge of the origin and composition of these barbarian populations, and
this is still a subject of debate. To better understand the genetic legacy of migration period societies,
we obtained 46 full mitogenome sequences from three Gepid cemeteries located in Transylvania,
Romania. The studied samples represent the Classical Gepidic period and illustrate the genetic
make-up of this group from the late 5th and early 6th centuries AD, which is characterized by cultural
markers associated with the Gepid culture in Transylvania. The genetic structure of the Gepid people
is explored for the first time, providing new insights into the genetic makeup of this archaic group.
The retrieved genetic data showed mainly the presence of Northwestern European mitochondrial
ancient lineages in the Gepid group and all population genetic analyses reiterated the same genetic
structure, showing that early ancient mitogenomes from Europe were the major contributors to the
Gepid maternal genetic pool.

Keywords: mitogenome; Gepids; ancient DNA; NGS; migration period; population genetics

1. Introduction

The history of the so-called barbarian populations of the Migration Period is a subject
of increasing interest, however, the reconstruction of the population history of these groups
has been limited by the low number of reliable written and archaeological sources. From
the migration period groups, Gepids had a great impact on the history of Central Europe,
yet the investigation of this population so far has been marginal as their legacy is not
claimed by any modern nations in Europe [1].

Gepids were one of the East Germanic groups which settled in the Carpathian Basin.
Written sources first mention them in the second half of the 3rd century CE, and, based
on archaeological data, they originated from the Wielbark Culture, from territory that is
today Poland [1–3]; however, their presence in the Carpathian Basin can be evidenced only
from the 5th century CE, related to the expansion of the Hun Empire they became a part
of [1–5]. After the death of Attila (453 CE) and the collapse of the Hun power center in the
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Carpathian Basin, the Gepids rose and established a kingdom by acquiring territories on
the Great Hungarian Plain, Sirmium, and Transylvania [1–3]. In the 6th century CE, their
tense relationship with the Byzantine Empire and the Langobards of Transdanubia resulted
in many battles. Finally, they were defeated by a Langobard–Avar alliance in 567 CE,
and, consequently, the newly established Avar Khaganate occupied the former territory
of the Gepid Kingdom [1]. From the archaeological point of view, the 5th-century-CE
horizon of the Carpathian Basin is characterized by small grave groups and solitary burials
with heterogeneous cultural backgrounds. The low number of graves was explained by a
populational decrease connected to migration events and the collapse of the power center.
Later, a demographic increase was assumed as the number of the 6th-century-CE findings
is significantly higher. In the Gepid period, so-called row-grave cemeteries appeared
showing analogues with the Merovingian Age burial grounds of Western Europe. Certain
elements (artefact types and burial customs) of these burials were also detected in early
Avar period cemeteries suggesting local populational continuity between the Gepid and
Avar periods [1,3].

In the Transylvanian Basin, the same archaeological tendencies were registered, and
two main types of row-grave cemeteries were distinguished [6]. The first, is usually referred
to as the Mores, ti group, represented by the early phase cemeteries dating to the 6th century
CE. These series contain classic grave goods associated with the Gepid period population
(e.g., bow-brooches with five knobs and chip-carved decoration, eagle-head buckles, spatha,
long seax, and pear-shaped ceramic vessels) [6]. The second category, known as the Band–
Veres, mort group is composed of mainly late row-grave cemeteries dating to the last third of
the 6th century CE and first half of the 7th century CE. The use of these cemeteries extended
into the early Avar period which is reflected in the characteristics of the archaeological
material (e.g., lower number of bow-brooches, higher proportions of weapons, belt-sets,
and pottery; appearance of horse burials). In addition, regional differences were registered
concerning the archaeological material of the Gepid period cemeteries [6]. Unfortunately,
many of these cemeteries are only partially excavated and published, therefore the sample
selection and evaluation of the data is limited.

The European migration period is still underrepresented from the genetic point of view,
restricted to a few data from populations associated with Avars [7–11], Lombards [12–16],
Goths [17] and Huns [10]. So far, there is no genetic data available from the Gepid period.

In this study we reveal the first 46 mitogenomes from three Gepid cemeteries located
in Transylvania, Romania (Figure 1). All cemeteries are composed of burials that contained
grave goods connected to the classic Gepid period population. Our aim was to investigate
the genetic make-up of the Gepid period population in order to reveal their origin, pop-
ulation structure, and relationship with other ancient and modern Eurasian populations.
To do so, we compared the full mtDNA sequences obtained in this study to all available
ancient sequences from the public databases. Phylogenetic and population genetic analysis
of the Gepid maternal lineages indicated Northwestern European affinity.
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Figure 1. Location of the Gepid cemeteries under study. Sample size is indicated next to cemetery
names. The map was generated using QGIS (references: QGIS Development Team QGIS Geographic
Information System. Open Source Geospatial Foundation Project 2020.).

2. Materials and Methods
2.1. Archaeological Background

The late 5th century in the Transylvanian Basin was characterized by the appearance
of row-grave cemeteries, or Reihengräberfelder, which were strongly connected to the
Gepidic expansion [6]. In Transylvania, the archaeological research of the Gepidic period
settlements began in the 1950s and since then, more than 100 sites were identified [18], but
hitherto there is no genetic data available from any of these cemeteries.

Migration Period cemeteries were often systematically robbed in attempt to recover
their rich inventory. Gepid burials were frequently victims of near immediate robbing and
disturbing of the deceased, which narrowed our sampling procedure considerably. Another
problem regarding the Gepid cemeteries is that there are few cemeteries fully excavated
and very limited information is published. In an attempt to carry out a representative
sampling from the Classical Gepidic period, we chose 3 cemeteries which were excavated
in the 21st century, using modern techniques. One of the cemeteries (Vlaha) is fully
excavated and the other two are partially investigated. We collected teeth or petrous
bones for DNA extraction from 50 individuals dated to the Classical Gepidic period from
three row-grave cemeteries from Transylvania. We selected 7 individuals from the Carei–
Bobald cemetery neighboring Northwestern Transylvania, 25 samples from the S, ardu
cemetery and 18 samples from Vlaha/Magyarfenes-Pad cemetery of which 14 mitogenomes
were determined, both located in the North-Western Transylvanian Basin (Table 1). The
selected graves include both females and males and burials with rich and poor grave
goods. The archaeological description of the cemeteries and details of the archaeological
and anthropological context together with the summary of phylogeographic affinity of the
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samples are presented in Table S1 and Appendix A. More details about the anthropological
analyses and demographic structures of the Vlaha/Magyarfenes-Pad and Carei–Bobald
cemeteries can be found in [19].

Table 1. Summary of the studied sample size from each cemetery.

Archaeological Site Century AD No. of Graves No. of Collected Samples No. of Mitogenomes Obtained

Carei–Bobald 6th 24 7 7
S, ardu 5th–6th 49 25 25

Vlaha/Magyarfenes-Pad 6th 308 18 14

2.2. Sample Preparation and DNA Extraction

All methods preceding NGS were performed in the sterile laboratories dedicated for
aDNA work at the Department of Archaeogenetics of the Institute of Hungarian Research
and Department of Genetics, University of Szeged, Hungary.

Sampling was carried out using gloves and facemasks to minimize the risk of con-
tamination with modern human DNA. From each individual, multi-root teeth or petrous
bone was collected for the molecular analyses (Table S2a). Teeth were decontaminated with
bleach and DNA was extracted from the teeth using the soaking method, which preserves
the morphological integrity of teeth [20]. A pre-digestion step was performed in 3 mL
extraction buffer containing 0.5 M EDTA and 100 µg/mL Proteinase K. Samples were
incubated with the pre-digestion buffer for 30 min at 48 ◦C, followed by a 72-h digestion
in extraction buffer containing 0.45 EDTA, 250 µg/mL Proteinase K, and 1% Triton X-100
at 48 ◦C. Then 12 mL of binding buffer containing 5 M GuHCl, 90 mM NaOAc, 40% iso-
propanol, 0.05% Tween-20 was added to the extract and DNA was purified on Qiagen
MinElute columns. Quantity of DNA extracts were measured with Qubit 3.0 Fluorometer
(Invitrogen) using the dsDNA High Sensitivity Assay kit.

2.3. NGS Library Preparation, Sequencing, and Hg Assignment

Library preparation, mitochondrial DNA capture, sequencing, and sequence analysis
was done as described in [21]. Libraries were constructed from partial uracil-DNA glyco-
sylase (UDG)-treated DNA extracts [22] using the double stranded library protocol [23]
with double indexing [24] with the following modifications: the preamplification step was
omitted and after adapter fill-in the libraries were directly double indexed in one PCR-step
using Accuprime Pfx Supermix, containing 10 mg/mL BSA and 200 nM indexing P5 and
P7 primers, in the following cycles: 95 ◦C 5 min, 12 times, 95 ◦C 15 s, 60 ◦C 30 s and 68 ◦C
3 s, followed by 5 min extension at 68 ◦C.

All libraries were purified using MinElute columns and eluted in 20 µL EB buffer
(Qiagen). DNA concentration was measured with Qubit 3.0 Fluorometer using the ds-
DNA High Sensitivity Assay kit and fragment size was determined using the TapeStation
automated electrophoresis system (Agilent).

The endogenous human DNA content of each library was estimated by low coverage
shotgun sequencing (Table S2a). Libraries with similar human DNA concentrations were
combined, then mitogenomes were enriched as described in [25] and sequenced.

The Cutadapt software [DOI:10.14806/ej.17.1.200] was used to trim the adapters from
paired-end reads [26] and the quality of the reads was assessed with FastQC [27]. We con-
ducted the further analysis only with the sequences that were longer than 25 nucleotides.
The reads were mapped to the GRCh37.75 human genome reference sequence which con-
tains the mtDNA revised Cambridge Reference Sequence (rCRS, NC_012920.1) using the
Burrows Wheeler Aligner (BWA) v.0.7.9 software [28] with the BWA mem algorithm in
paired mode and default parameters. The exogenous DNA was removed by applying an
additional filter and we considered only molecules above 90% identity threshold to the
reference genome. The binary alignment map (BAM) files were sorted and indexed using
the Samtools v1.1 [29] and the PCR duplicates were removed using Picard Tools v1.113 [30].
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Ancient DNA damage patterns were assessed using mapDamage 2.0 [31] with the read
quality scores modified to account for post-mortem damage and sequences were visual-
ized in Integrative Genomics Viewer v1.10.0 to identify potential errors during the SNP
calling. Contamination was estimated using the Schmutzi algorithm [32] (Table S2b). Sam-
ple Vlaha1244 was removed from the analysis because of its high contamination, but the
Vlaha1243 sample with 17% contamination was not removed, as its FASTA sequence from
the “contaminating” molecules was assigned to the same Hg, indicating that all transitions
were removed from these aDNA molecules due to UDG overtreatment. Mitochondrial
haplogroups (Hg) were determined using HaploGrep2 (v2.4.0) [33] (Table S3a). The biolog-
ical sex of the individuals was determined by two methods that uses shotgun sequencing
reads, the X/Y ratio [34] and the endogenous DNA assigned to autosomes [35] (Table S2a).
Additionally, we took extra care to exclude low MAPQ and pseudo autosomal regions of X
and Y chromosomes. All details of mitogenome NGS data are reported in Table S2b. In just
a few cases, the two methods did not give the same results.

The raw nucleotide sequence data of the 46 Gepid mitogenomes were deposited to the
European Nucleotide Archive (http://www.ebi.ac.uk/ena, accessed on 21 February 2022)
under the accession number: PRJEB50517.

2.4. Phylogenetic Study and Population Genetic Analyses

For the population genetic analysis, we merged all Gepids samples into one popu-
lation. In order to determine the genetic distances between ancient populations mtDNA
distribution of the studied samples were compared to populations from an archaic database
containing 4324 ancient Eurasian mitogenomes [36], from which we used 92 populations
based on time range and archaeological information (Table S4). The database was aug-
mented with the sequences obtained in this study.

For building the median joining (MJ) networks [37], the selected sequences were
aligned using MAFFT version 7 [38,39] with progressive G-INS-1 setting and converted to
Nexus format using MEGA [40]. Phylogeographic connections were inferred from the geo-
graphic origin of the closest matching samples from the database (Figure S1, summarized
in Table S1). The phylogenetic analysis was preferably done with ancient DNA data, except
for haplogroups for which ancient data were not available, where we used modern data.

We used three independent methods for measuring the genetic similarity of Gepids to
other ancient populations. In the first approach, we reduced the Hgs number to major Hgs,
which decreased our population dataset to 45 dimensions, which is enough for showing the
main correlations. The major Hgs frequencies were calculated and the principal component
analysis (PCA) was performed using the “prcomp” function in R 3.6.3 [41].

In the second approach, we applied the traditional sequence-based method calculating
pair-wise population differentiation values (Fst) with Arlequin 3.5.2.2 [42] from the whole
mtDNA sequences, as described in [25]. For the Fst values calculation, a previously
published database was used [36]. Multidimensional scaling (MDS) was applied on the
matrix of linearized Slatkin Fst values [43] and visualized in a two-dimensional space using
the cmdscale function implemented in R 4.1.2 [41].

Our third approach was measuring the so called shared haplogroup distance (SHD)
values, as the presence of identical terminal sub-Hgs between populations testifies shared
ancestry or past admixture events [44]. Pair-wise SHD distances were calculated between
all the 93 ancient populations using the frequencies of the sub-Hgs, as described in [25].

3. Results
3.1. Sequencing Results and Haplogroup Assignment

Here we report 46 new mitogenome sequences (Table S3a) which were retrieved using
the NGS method combined with mitogenome enrichment. Mitogenome DNA could not be
obtained from 4 samples. The mitochondrial coverage was 0.2–2208×, with average cover-
age 375× (Table S2b). We obtained 38 mitogenomes above 5× coverage and 8 mitogenomes
with less than 5× coverage (Table S2b). The lowest coverage sample, Vlaha0450, had 10.7%

http://www.ebi.ac.uk/ena
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of the mitogenome covered 5× but Haplogrep could unambiguously assign the Hg of this
sample, with all Hg defining SNP-s identified (Table S3). Contamination was negligible
(0–2%) in most of the samples, significant 17% contamination was indicated just in one
sample. The 46 samples belong to 36 Hgs and 37 different haplotypes (Table S3a). We
found a few identical haplotypes within cemeteries, which may indicate a potential direct
maternal relationship of these individuals (Table S3b).

3.1.1. Haplogroup Composition and Phylogenetic Analysis

Gepid sequences cover almost the entire range of Western Eurasian Major-Hgs with
the following frequencies: H 38%, HV 5%, I 8%, J 4%, N 3%, T 20% (T1 5% and T2 15%),
U 11% (U3 3%, U 4 5% and U5 3%), and V 5% (Figure 2).
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Phylogenetic relations were illustrated for each Hg using MJ Networks (Figure S1).
The phylogenetic trees confirmed that the Transylvanian Gepid population belonged to
western Eurasian lineages, most of them characteristic for Northwestern European regions.
For example the following Hg-s cluster to the same node: The H1a Hg of S, ardu03 and
S, ardu05 and a 7–9th century AD Anglo-Saxon individual (Network 3); the J1c2c1 Hg of
S, ardu26 and two 16th century AD samples excavated in Finland (Network 17); the T2f1a1
Hg of Sardu29 and several modern individuals from Denmark (Network 25); the T2b Hg of
Carei111and a Langobard from Italy (Network 24); and the H1ba Hg of Carei35per2 and an
Early Bronze Age sample from Germany (Network 4), indicating close maternal relation of
at the Gepid samples to these Northwestern European individuals.

A few lineages indicated Near Eastern affinity, such as individual S, ardu18 (H13a2b),
Carei35per1, (N1a1a1a*3) Vlaha0574, and Vlaha1216 (T1) and Vlaha0637 (T1a), which had
the closest parallels from Bronze Age Anatolia and Late Chalcolithic Turkey. This Near
Eastern affinity is most likely explained as the legacy of early European farmers [45,46].

The only lineage indicating east Eurasian affinity is the H6a1b Hg of the Carei34
individual (Figure S1, Network 7), which probably arrived with eastern immigrants of the
Migration Period.

Phylogenetic trees also revealed that many of the lineages had been present in the
Carpathian Basin and the surrounding region from the Neolithic to the Middle Ages, which
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may indicate a potential population continuity of the 6th century population with earlier
medieval groups in Transylvania, but a larger dataset is needed to prove this assumption.

3.1.2. Kinship in the Gepid Cemeteries

We detected several identical haplotypes within all three cemeteries, which suggest
possible direct maternal kinship between distant or neighboring burials.

In the Vlaha/Magyarfenes–Pad cemetery we found 3 pairs of individuals with the
same haplotype. All individuals came from an isolated group of burials in the northern
part of the cemetery, which suggest a horizon of family burials in that area. We found rare
subclades in these individuals, Vlaha1285 and Vlaha1293 belonging to H1ay*2 (Figure S1,
Network 3), Vlaha1276 and Vlaha1288 belonging to H5a1g1a (Figure S1, Network 6), and
Vlaha0547 and Vlaha1276 belonging to the T1 haplogroup (Figure S1, Network 22). The low
frequency of these haplogroups makes it more likely that these individuals could be related.

In the S, ardu cemetery, we found a group of four individuals (Sardu08, 15, 76, and
77) with the same haplotype, belonging to the T2b5 subclade (Figure S1, Network 24),
two individuals (Sardu03 and 05) belonging to the H1a subclade (Figure S1, Network 3)
and other two individuals (Sardu80 and 89) belonging to the HV9 + 152 subclade (Figure S1,
Network 13). The graves are positioned close to each other, suggesting that the burial place
was used by a small community of related individuals.

In Carei–Bobald cemetery, from the 7 investigated individuals we found two identical
haplotypes (Carei40 and 41), from neighboring graves, belonging to the T2b4 subclade
(Figure S1, Network 24), which were also very likely related.

3.1.3. Population Genetic Analysis

We merged all 5–6th century Gepid lineages into a single population and measured
their genetic distances from all ancient populations available in the public databases.
We compared our data to published mitochondrial data [36] from 92 ancient Eurasian
populations (Table S4). PCA obtained from the major Hg frequencies places the Gepid
population among Europeans (Figure 3). On Figure 3 our ancient samples map closest
to Neolithic Europeans (EU_N), Central European Copper Age (HU_CA) and Bell Baker
populations (BellBHu_CA), Poland Iron Age (Pol_IA) and Iceland Medieval (Ice_M).

To further confirm the genetic relationships of Gepids, an MDS plot was drawn from
the linearized Slatkin Fst Values of the same populations, but for better resolution of the
European side, 14 Asian populations were left out (Figure 4, Tables S4 and S5a). The MDS
plot also shows a clear grouping of Gepids with European populations, as they are closely
clustered together in the left part of the figure with European Neolithic, Copper Age, and
Iron Age groups, similar to the PCA plot results.

The SHD approach gave similar results, as the Gepids shared most identical Hg-s with
ancient samples from Neolithic–Iron Age Europe (Table S5b).

Fst and SHD analysis gave comparable results (Table S5c), as both indicated closest
links to Anatolian Bronze Age (An_BA), the Balkan Neolithic (Balk_N) and Copper–Bronze
Age (Balk_CBA) populations, Mediterranean Copper–Bronze Age (Mdt_CBA), Bell Baker
groups from Germany (BellBGB_CA) and Great Britain (BellBG_CA), Near East Iran–
Turan Copper Age (IrTur_CA), Near East Copper Age–Bronze Age (NE_CBA), Globular
Amphora culture (GlobA_CA), Bronze Age Hungary (Hu_BA) and 10th century commoner
population from Hungary (ConqC_M). Latter findings suggest that the overall mtDNA
composition of the Gepid group from Transylvania may not differ significantly from other
ancient groups of the Carpathian Basin.
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4. Discussion

Using NGS technology combined with target enrichment, we described the maternal
lineages associated with the Gepid culture in Transylvania. The genetic structure of a Gepid
group is explored for the first time, providing new insights into the genetic structures of
this archaic people.

The retrieved genetic data showed mainly the presence of Northwestern European
mitochondrial ancient lineages in the Gepid group, in line with the historically known
ancient European geographic origin of these Germanic people. Regarding this, it is inter-
esting to mention the affinities of the analyzed group with the population of the Wielbark
culture described in [17], whose data were included in the present analysis under the name
of the Poland Iron Age (Pol_IA) and the Langobards (Lang_M), Germanic groups with
available mitogenome data. In Figures 3 and 4 these groups map not very far from our
Gepids, as their Fst and SHD values indicate close distances (Table S5), though some of the
values were not significant, probably due to sample size. These results are in agreement
with the possible Wielbark origin of the Gepidic people, that they could have arrived to
Transylvania from the northern region of East-Central Europe, today North and Central
Poland [4].

The most frequent macrohaplogroup was H, followed by T, U, I, and HV. We detected
just a single Asian lineage, indicating that the studied population did not significantly
admix with immigrants from Asia. The Central-Northern European ancestry is dominant
in the Gepid group and it is closest to Bronze Age populations from nearby regions. Due
to the lack of genetic data from other periods in Transylvania we could not assess the
relation with other local ancient individuals, but their affinity to the local population of the
Carpathian Basin seems significant.

Each population genetic analysis reiterated the same genetic structure, showing that
early ancient mitogenomes from Europe were the major contributors to the Gepid maternal
genetic pool. Population genetic results also imply that the Gepid maternal ancestry may
have derived mostly from local residents. This seems to contradict historical data, which
describe the Gepids as Germanic immigrants from Northern Europe, however, these data do
not exclude the possibility that many of the individuals could be immigrants from Northern
Europe, as a comparable European maternal gene pool was present in both regions.

The resolution provided by the mitochondrial genomes presented in this study cannot
provide a full perspective of the demographic events. In order to depict with better
resolution the migration and admixture events, we need to study these groups at the whole
genome level, preferably with other contemporary samples from Transylvania and the
surrounding regions.
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Appendix A. Archaeological Background of the Studied Cemeteries

1. Carei–Bobald (Satu Mare County)

A more detailed description of the Carei–Bobald settlement and cemetery is given
in [13]. The archaeological site is located in the Northwestern region of Romania, near
the border with Hungary. The Gepid settlement of Carei geographically marks the north-
eastern limit of the block of Gepidic settlements from the Tisza Plain, lying on the territory
of the earlier border between the Germanic populaces and the Sarmatians, on Germanic
territory. The Gepid settlement and cemetery from Carei, termed site Bobald I, was partially
investigated due to an infrastructure project taken place in that area. The terrace’s water
side was often inhabited by populaces starting with the Stone Age until the medieval date
abandonment of the place of Bobald. The excavations revealed 18 Gepid features, 10 Bronze
Age features, 16 features of Celtic date—of which 2 pottery firing workshops, 24 Gepid
period burials and 27 features from 16–17th century.

From the Gepidic cemetery, 24 inhumations were investigated and recovered. Anthro-
pological investigations could be carried out for 19 individuals who had a good preserva-
tion of the skeletal material. Sex of the individuals, age and pathological changes were
determined (Table S1) [19].

Graves are oriented W-E, with little variation. Both their orientation and parallel row
position include them in the 6th century A.D. row-grave burial horizon.

Based on the discoveries, Carei–Bobald settlement and cemetery features and burials
have become the reference point for the Tisza Plain area, by the northern border of the
block of Gepid finds [13,38]. Undoubtedly, the cemetery and settlement are contemporary,
common pieces including ware finds and the bone combs. So far, it may be concluded that the
settlement and cemetery of Carei–Bobald have parallels rather in the Tisza Plain phenomena
and seem not to endure past the Avar conquest (A.D. 567/68) of the eastern Carpathian Basin.
Carei–Bobald burial ground functioned more or less in parallel with those from the Tisza
Plain, in the last third of the 5th century and first two thirds of the 6th century AD.

2. S, ardu (Cluj County)

The site is located in central-western part of Romania, in the historical province of
Transylvania. The archaeological research at S, ardu was carried out in 2021 in the frame
of the rescue excavations for the construction site of the future highway A3, section 3A2
(Nădăs, elu–Mihăies, ti). In total, 49 graves were unearthed, belonging to a larger cemetery.
The extension of the cemetery could be delimited in three directions (North, South and
West), the only uncertain edge remaining the eastern one. The graves were arranged
roughly in rows oriented N–S with certain groups consisting of 2–4 graves.

The funerary rite is exclusively inhumation in graves oriented W–E. Almost all burials
were reopened in a short period of time after the moment of the funeral and therefore most
of the bones and grave-goods were discovered in secondary position. Because of the high
degree of grave disturbing, the burials contained only few, and many times fragmentary
grave-goods. At a first examination, the objects as well as the burial customs indicate that

http://www.ebi.ac.uk/ena
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the cemetery was in use during the Gepidic Age (the second half of the 5th century–first
two thirds of the 6th century AD).

The anthropological material is rather poorly preserved and fragmentary, first of all
due to the high degree of grave reopening, but also as a result of the unfavorable soil
characteristics. Because it is a recent excavation, the anthropological examination of the
skeletal remains has not been executed yet.

3. Vlaha/Magyarfenes-Pad (Cluj County)

The archaeological site Vlaha/Magyarfenes-Pad is located North-West of Transylvania,
on a collateral valley of the Somes, ul Mic River, near Cluj-Napoca (Kolozsvár) city, located
on the site of the former Roman city, Napoca.

Archaeological excavations took place between 2004–2007 due to the National High-
way Archaeological Research Program that preceded the construction of Transylvania
Highway and were led by I. Stanciu from the Institute of Archeology and Art History, Cluj
Branch of the Romanian Academy. An area of 1.1 ha was completely investigated, being
identified, and researched a total of 1340 archaeological structures, of which 308 graves
from the Gepid period. On the same place there were settlements from the Late Bronze Age
and Early Iron Age II (Ha B2), with dwellings and other various archaeological features,
they frequently intersected by burials intervening much later.

Vlaha necropolis belongs to the eastern area of necropolises “with tombs arranged in
parallel rows”, respectively graves oriented W–E (Reihengräberfelder), whose appearance—in
Transylvania at least—can be fixed for the time being at the crossroads between the 5th and 6th
centuries AD. The best Transylvanian parallel for the Vlaha cemetery is supported by the more
well-known necropolis from Mores, ti, which ceased with the intervention of the Avars inside
the Carpathian basin. The components of the funerary inventories, as long as they have been
preserved, allow the dating of the Vlaha cemetery during the first two thirds of the sixth century,
without the possibility of extending this chronological positioning in one direction or another.

It is important to specify that the necropolis was fully researched (308 graves in total),
possibly only a few of the graves could not be observed. The horizontal distribution of
the graves indicates a core of the necropolis, on a ca. 49 × 34 m rectangular surface (out
of the total surface of ca. 96 × 34 m), with its long axis-oriented NNV–SSE, where most
of the graves were concentrated in at least 10 parallel rows, having an orientation in W–E
direction. In the north-eastern half of the cemetery, several groups of graves, probably
made up of family criteria, exceed the perimeter of this regular plan.

In the case of necropolises of this kind the graves robbery is a common occurrence,
but in Vlaha one, the phenomenon registered a special magnitude, because around 95%
of the graves were looted. Usually, from the initial funerary inventory were found only
clay vessels (often broken from antiquity or even incomplete), horn composite combs, iron
artifacts or their remains, beads in women’s graves. Of course, in relation to the economic
and social position of the deceased, in the case of many of the graves, the inventory must
have been a common one. Sometimes, in the upper part of the filling soil, pottery fragments
of the vessels were found, which were initially deposited with the deceased. In some cases,
fragments of the same vessel were found in different graves, which suggest that more
graves were robbed at the same time. The robberies predilection was towards bronze or
precious metal pieces, as indicated by traces of bronze patina kept on pelvis or hands bones
(but such traces were seldom caught). It would be assumed that, at least in those graves
where shield umbo, arrows or spearheads were discovered, there should have been other
weapons present (spatha, sax, knives). It is noteworthy that the inventory of few graves
that have not been looted is poor, except burials number 0450 from which a pair of bow
fibulae (gilded silver) was found.

The graves (and robbery pits) were identified at a shallow depth, at the base of the soil
layer or just be-low it, which meant the chance of a detailed documentation. Due to the
specificity of the soil on the spot, it was sometimes possible indicated the filling imprint of
the coffins, along with the remains of rotten wood. Unfortunately, due to the wet and acidic
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soil, in general, the skeletons were poorly preserved, in some cases (especially children’s
graves) they were completely decomposed or just fragile traces of them were seen.
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