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Abstract: Human genetic disorders, such as Down syndrome, have a wide variety of clinical phe-
notypic presentations, and characterizing each nuanced phenotype and subtype can be difficult. In
this study, we examined the electronic health records of 4095 individuals with Down syndrome at
the Children’s Hospital of Philadelphia to create a method to characterize the phenotypic spectrum
digitally. We extracted Human Phenotype Ontology (HPO) terms from quality-filtered patient notes
using a natural language processing (NLP) approach MetaMap. We catalogued the most common
HPO terms related to Down syndrome patients and compared the terms with those from a baseline
population. We characterized the top 100 HPO terms by their frequencies at different ages of clinical
visits and highlighted selected terms that have time-dependent distributions. We also discovered
phenotypic terms that have not been significantly associated with Down syndrome, such as “Propto-
sis”, “Downslanted palpebral fissures”, and “Microtia”. In summary, our study demonstrated that
the clinical phenotypic spectrum of individual with Mendelian diseases can be characterized through
NLP-based digital phenotyping on population-scale electronic health records (EHRs).

Keywords: Down syndrome; phenotype; electronic health records; phenotypic spectrum; longitudi-
nal study; natural language processing; text mining; large-scale

1. Introduction

Human genetic disorders can have a wide variety of clinical phenotypic presenta-
tions. Text mining from electronic health records (EHRs) provides a potential avenue to
systematically characterize the phenotypic spectrum of genetic disorders, when EHRs can
be obtained for a large set of individuals affected with a specific disease. Down syndrome
(DS) is studied here as a case study in stratifying patients affected with the same disease
into phenotypic subtypes, because it is caused by an easily detectable and clearly defined
genotype, yet it has highly heterogeneous clinical presentations. Down syndrome is de-
fined by partial or complete trisomy; 21.95% of cases are represented by free trisomy 21 [1],
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predominantly due to a maternal meiotic nondisjunction [2]. Roughly, the other 5% of cases
are due to a Robertsonian translocation and, more rarely, rea(21q21q) isochromosomes in
chromosome 21 [3,4]. Lastly, only about 1% of all cases are mosaic DS [5].

While it is well-defined in genetic scope, at the same time, DS is a highly heterogeneous
disease, with a wide range of phenotypic variation among affected individuals [6]. DS is the
most common chromosomal disorder [7], and as prime examples of phenotypic subtypes
that act as positive controls, approximately half of the patients with DS also present with
congenital heart disease (CHD) [8–10], half of DS patients possess vision problems, and
three quarters possess some form of hearing loss [10]. Hypotonia [11], apnea [12], and
global developmental delay [13] are also common terms that describe many DS patients
but are unlikely to describe the average healthy individual [14,15]. DS is, thus, a propitious
exemplar for creating an informatics method for discovering the paramount phenotypic
characteristics and comorbidities of diseases and syndromes.

Defining the spectrum of phenotypic features and characteristics in DS provides an
exemplary archetype for performing similar predictions and classifications in other, well-
defined phenotypes, particularly in Mendelian diseases. In order to define this spectrum,
we employ the Human Phenotype Ontology (HPO) [16]. HPO was conceived as an attempt
to capture discrete symptoms and phenotypic features using a hierarchical structure of
phenotypic terms. This enables an approach to phenotyping where computationally
derived phenotypic profiles of human diseases allow terms to be linked to similar terms
in the hierarchy and disease ontologies [17–19], and has already been implemented as the
standard for representing phenotype data by several major databases [20–23]. Natural
language processing (NLP) tools can be used to extract these terms swiftly, reliably, and
accurately from clinical free text and patient notes [24,25]. Digital phenotyping using
this HPO-derived phenotype data has already been used to discover several causal and
candidate genes for disease [18,24,26–30].

We describe a heretofore-unseen large-scale phenotypic dataset of 4095 individuals
with DS and 7845 non-DS “baseline” subjects with various phenotypes. We utilize HPO
terms extracted from DS patient notes on a patient-by-patient basis, extracting the most
meaningful terms that describe DS. We further describe the age-based distribution of terms
for DS individuals. We present our work in the hope of extrapolating this method to other
genetic diseases.

2. Materials and Methods
2.1. Obtaining and Filtering the Clinical Notes

This study was approved by the Institutional Review Board at The Children’s Hospital
of Philadelphia (CHOP) (IRB 18-015712). Only summary statistics are computed from the
ensemble of clinical notes, and no identifiable information is used in this study to support
its conclusions. To retrieve clinical notes on Down syndrome (DS) from the patients of
CHOP, we queried patients from the Epic Clarity database maintained internally and
updated daily at CHOP (with patient notes downloaded on Apr 26, 2021, and demographic
data downloaded July 23, 2021) for ICD-10 code Q90* (Q90.0, Q90.1, Q90.2, Q90.9) and
ICD-9 code 758.0, filtering out similar yet distinct patients with 22q.12 deletion syndrome
(i.e., DiGeorge syndrome, velo-cardio-facial syndrome) possessing ICD-10 codes Q93.81
and D82.1, and ICD-9 codes 279.11 and 758.32. Many patients have incomplete notes that
have less than 3000 characters or notes lacking any discernible formatting such as a medical
record number (MRN), which we found to be a clear demonstration of a properly formatted
note. These low-quality notes were filtered out, retaining notes determined to be of higher
quality after thorough manual examination of thousands of notes. Our method for deriving
the baseline population samples to simulate typical HPO term noise is described in the
Supplemental file.
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2.2. Extracting HPO Terms and Counting Them

Deriving HPO terms from notes was performed in the same way for all individuals.
First, we utilized the NLP tool MetaMap (version 2020 using 2020AA UMLS USAbase) [31]
to extract Unified Medical Language System (UMLS) [32] terms from the notes. We chose
MetaMap as we used it in our previous work [24], and the alternative, MedLEE [33], was
not freely available. After extracting the UMLS terms, we used the UMLS Metathesaurus
file MRCONSO.RRF to translate UMLS CUIs with HPO equivalents to HPO IDs using the
fields SAB and SDUI to match only HPO terms.

For each note, all instances of a term were counted, including duplicates to calculate
the true term frequency. For document frequency, the number of documents where a term
existed was counted. Inverse document frequency was just the number of documents in
the whole corpus divided by this count. Lastly, for patient frequency, which is what was
used for most of the results, we counted the number of patients with at least one copy
of a term once per patient, to be more representative of the phenotypic spectrum of the
patient population.

2.3. Propagation of Terms and Term Filters

As in Ganesan et al. [34], for every HPO term, we propagate all overarching parent
terms by traversing down the HPO tree to its root. Therefore, if we have the term “Zonular
cataract” (HP:0010920), we also add its parent, “Cataract” (HP:0000518), then its parent,
“Abnormality of the lens” (HP:0000517), etc., all the way down the tree until stopping at
our root term, “Phenotypic abnormality” (HP:0000118), which itself is not included because
it is a redundant term that adds no information.

All HPO terms in individuals with Down syndrome are filtered out if they coincide
with HPO terms possessing >5% patient frequency in our baseline cohort, for all figures.

2.4. Generation of Term Age Plots

We also examined the top 100 HPO terms by odds ratio and raw patient frequency
and used the latter to create a top 100 term age distribution plot. The number of patient
visits, or notes, containing an HPO term at all ages was used to generate the heatmap of
the age-distribution plots for the top 100 terms and other select terms’ figures. All age
plots use 3-month bins to obtain a snapshot of the data distribution, again as conducted by
Ganesan et al. [34].

3. Results
3.1. Summarizing the Down Syndrome Data Set and Extraction of Terms

Our cohort at CHOP contains 4095 individuals with the ICD codes for Down syndrome
after filtering for possible misdiagnoses. Initially, there were 784,695 notes with at least one
HPO term in them, but many were false positive terms or derived from low-quality notes.
After filtering by note length and format quality, we pared our set down to 3553 patients
with 87,276 notes (Table 1). Our baseline cohort of 7845 patients consisted of 19,494
unfiltered notes, mainly meant to represent the usual noisy HPO terms that often appear
in patient notes. Unsurprisingly, there are more clinical notes for each individual affected
with DS, in comparison to the baseline cohort.

Table 1. Population numbers for Down syndrome and baseline patient cohorts. # This details the
number of patients, their notes, and notes after filtering out short and low-quality notes.

Dataset # Patients # Notes (with ≥1 HPO Terms)

DS cases 4095 784,695
DS (filtered) 3553 87,276

Baseline 7845 19,494
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We collected demographic data (Table 2) on ethnicity and sex as well. As a result of
the ICD-9/ICD-10 coded age at CHOP being used to determine diagnosis, it is unclear
what the first diagnosis age was, and much of the date data were coded erroneously and
have thus been omitted. The majority of patients were designated as White (65.6%), but the
DS cohort had some diversity in Black (15.6%), Hispanic (4.2%), and Asian (3.2%) patients.
We also had a nearly 50-50 split for Male and Female patients.

Table 2. Demographics for Down syndrome patient cohort. Gender and ethnicity values are Epic-
coded. Ethnicity values are not mutually exclusive, and each row combined does not add up to the
total number of patients.

Category

Sex
Male 2145

Female 1950

Ethnicity

White 2685
Asian 130

American Indian 9
Native Hawaiian/Pacific Islander 15

Black 635
Hispanic 170

Other 684
Unknown 56

After filtering out 22q deletion patients and using MetaMap to extract UMLS terms
and converting them to HPO terms, retaining duplicate terms to understand HPO term
frequency accurately, we calculated the term frequency, document frequency, inverse
document frequency, and patient frequency of each term (Supplementary Table S1).

3.2. The Phenotypic Spectrum of Down Syndrome

After testing term frequency, document frequency, and TF-IDF (term frequency ×
inverse document frequency) and finding that the raw spectra of terms made little sense,
we sought to utilize patient frequency—the proportion of any cohort, DS or baseline,
possessing at least one instance of an HPO term in any note—to glean the true spectrum
of HPO terms that characterize DS patients (Figure 1). There are several notes that are
copy-pasted email chains that still pass the filters, but by utilizing patient frequency instead
of TF-IDF, we account for this.

We noticed that, before filtering, our HPO terms recapitulate known comorbidities
for DS, such as congenital heart defects, ear and eye problems, respiratory issues, and
sleep disorders at 50% patient frequency or higher (Figure 1b,c). One of the benefits of
applying the filters, despite losing some of the more prominent DS terms from the top 20 at
their appropriate percentages such as “Abnormality anterior eye segment morphology”
(Figure 1b,c), is that more specific, rarer traits surfaced that are more characteristic of
subtypes of Down syndrome.
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Figure 1. Phenotypic spectrum of HPO terms for Down syndrome and baseline patient cohorts. (a) These are the top
20 HPO terms from baseline patients ranked by patient frequency, or the proportion of the cohort possessing at least one
instance of the term in its notes. (b) The top 20 HPO terms in DS patients ranked by patient frequency, after propagation
up to “Phenotypic abnormality” and before filtering on note length and quality. (c) The top 20 HPO terms in DS patients
ranked by patient frequency, after both propagation and filtering.
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3.3. Implications of New Terms Related to Down Syndrome

We found less common phenotypic features of Down syndrome, such as “Proptosis”
(OR = 9.62; p-value = 1.90 × 10–6), a trait that could present in a form of leukemia associated
with DS [35]; “Downslanted palpebral fissures” (OR = 10.51; p-value = 3.48 × 10–6), a term
usually associated with other syndromes, as upslanted fissures are more characteristic of
DS [36]; and examples such as “Hypoplasia of penis” (OR = 9.54; p-value = 2.39 × 10–6)
and “Microtia” (OR = 12.78; p-value = 7.11 × 10–6), which we could not find in the DS-
related literature. We acknowledge that that OR measures should only be used as a rough
reference, given the highly unbalanced number of notes per individual between the DS
case cohort and the baseline cohort (See Supplementary file).

We have 4748 HPO terms that were used to describe Down syndrome patients sorted
by patient frequency (Supplementary Table S2). We have also extracted 1157 HPO terms
compared between DS cases and our baseline cohort that we use to represent mock con-
trols that are sorted by odds based on document frequency and only have p-values that
below the Bonferroni 5% FDR adjusted p-value cutoff (Supplementary Figure S1, Sup-
plementary Table S3). These files contain many more such instances of Down syndrome
terms that are unique to this study, while, at the same time, replicate previous results,
containing mostly heart terms at our very highest OR and p-values such as “Holosys-
tolic murmur” (OR = 256.60; p-value = 0.04), “Left-to-right shunt” (OR = 5.94 × 10–6;
p-value = 8.45 × 10–6), and Myeloproliferative disorder (OR = 159.20; p-value = 4.17 × 10–6).

3.4. Longitudinal Distribution of HPO Terms in Down Syndrome

The longitudinal distribution of HPO terms in DS patients provides a snapshot of the
typical diagnostic ages for terms such as “Delayed speech and language development”,
which cannot be diagnosed until the average child can speak at around 2–4 years of
age [37] (Figures 2 and 3, Supplementary Figure S2). Other terms, such as “Abnormal heart
morphology” or its child terms are diagnosed extremely early on in the patients’ lives,
typically in the first 3–12 months. Lastly, terms such as hypothyroidism or sleep apnea are
diagnosed steadily throughout childhood with no particular favoritism given to a specific
age of diagnosis. Ear abnormalities take some time to diagnose, usually a year or so, but
more often than not, eye problems and hypotonia are diagnosed right away (Figure 3).
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Figure 3. Snapshots of select HPO term age distributions for the Down syndrome cohort. The occurrence of various
HPO terms at each patient visit reflects the longitudinal distribution (age in years) of each feature in Down syndrome,
including (a) Global developmental delay, (b) Delayed speech and language development, (c) Abnormal anterior eye
segment morphology, (d) Hypotonia, (e) Microtia, and (f) Abnormal ear physiology.

4. Discussion

With this study, which is currently among the largest phenotypic studies of Down syn-
drome to date, we have created a basic framework for filtering raw clinical text, extracting
accurate ontological terms from those notes, and analyzing the phenotypic spectrum of a
relatively common genetic syndrome. We have stratified HPO terms by patient frequency,
and a document frequency-based odds ratio, and used the top 100 terms to understand the
time-based distribution of HPO term data by patient visits, as well as the specific minimal
age at which certain terms can be used to describe a patient. We also discovered some
unique terms that have not been previously associated with Down syndrome and may be
specific to this CHOP dataset.

However, this study has several limitations that need to be addressed. First, we need
to obtain more information on the quality of the notes. When obtaining notes for a disorder
such as Down syndrome, patients come into the hospital for all manner of visits, such as
urology, cardiology, oncology, rheumatology, etc. Each department has a vastly different
note format, varying significantly in quality, style, and length, both within and between
departments. Our best attempt at filtering was a simple one meant to deal with the general
lack of understanding about the various types of notes. Collaboration with physicians who
have intimate knowledge of the clinical data specific to their department or cohort will
allow us to obtain the most high-quality notes and create clusters of subgroups for the
relevant phenotype. Due to the low signal-to-noise ratio that still exists largely due to this
factor, we could not create useful clusters of patient subgroups.

Second, the methodology for obtaining our baseline patients could be further im-
proved. We randomly grabbed patients with different reasons for visits to obtain a good
distribution of phenotype, but as a result we had a nearly 5 to 1 ratio of DS notes to baseline
notes for almost double the amount of baseline patients. This is quite unbalanced. It may
be better to use a different, larger cohort as a true control background such as general
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patients coming for allergies and/or diseases that are extremely common and do not affect
the health of the patient very much. Nevertheless, such a control set is still unlikely to
address the issue that generally disease-free individuals may not visit many specialty
departments or clinical geneticists or have as many detailed phenotypic descriptions as
Down syndrome.

Our NLP pipeline is also generally simple. We only use MetaMap and, while we
tested other tools and found it to be the best in terms of performance, we could create our
own ensemble method, as a combination of MetaMap’s results and several other tools,
for averaging the extracted terms. There are several instances where MetaMap annotated
UMLS terms that were not in the notes at all, which were then translated into HPO terms.
These became largely background noise but could be affecting the signal-to-noise ratio of
the phenotypic information data on DS.

In the future, we would like to improve upon this pipeline and use a secondary
validation site to validate these results and see if we can simultaneously increase the signal-
to-noise ratio. We will also seek collaboration with other physicians and genetic counselors
at CHOP to assist us in interpreting the notes of this and future phenotypes to ensure that
we can further raise the quality and create a reproducible and fast pipeline for analyzing
the phenotypic data of common diseases. After creating this pipeline, we would like to
further subtype and group patients in order to better predict comorbidities and future
diseases or phenotypes that may befall a patient, to ensure that preventative medicine can
be used to combat them.

5. Conclusions

Our analysis profiled the spectrum of phenotypic features in patients with DS in the
form of the HPO standardized terminology. We demonstrated that an NLP-based ap-
proach for extracting HPO terms has value for characterizing DS as a disease with subtypes
and provided a quantitative measure of the HPO terms to facilitate future construction
of phenotype-based patient sub-classification models, which will allow for clinical de-
cision support and learning health systems. We hope that other researchers can utilize
our methodology to characterize other common diseases with phenotypic subtypes and
understand the time-based distribution of the phenotypic feature data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12081159/s1. Supplementary file: Methods and Results. Supplementary Table S1:
Describes the contingency table used for the Fisher’s exact test and odds ratio calculations. Supple-
mentary Table S2: Contains all 4748 HPO terms from the filtered DS patient notes sorted by patient
frequency, with term, document, patient frequency data, and TF-IDF. HPO Terms sorted by patient
frequency. TC is term count, DC is document count, PC is patient count, IDF is inverse document
frequency, TF-IDF is term frequency times inverse document frequency, and PF is patient frequency,
by which the table is sorted. Supplementary Table S3: Contains 1157 HPO terms from DS and mock
controls combined sorted by odds ratio, calculated using document frequency. Contains OR and
p-values for HPO terms filtered on Bonferroni corrected FDR cutoff of 5%. Supplementary Figure S1:
The top 20 HPO terms, ranked by odds ratio of patient occurrence between DS cases and mock
controls, an expansion of Figure 1. Supplementary Figure S2: An expanded version of Figure 2 for all
age values.
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Syndrome: Parental Origin, Recombination, and Maternal Age. Genet. Test. Mol. Biomark. 2012, 16, 70–73. [CrossRef]
3. Morris, J.K.; Alberman, E.; Mutton, D.; Jacobs, P. Cytogenetic and Epidemiological Findings in Down Syndrome: England and

Wales 1989–2009. Am. J. Med. Genet. A 2012, 158A, 1151–1157. [CrossRef]
4. Antonarakis, S.E. 10 Years ofGenomics, Chromosome 21, and Down Syndrome. Genomics 1998, 51, 1–16. [CrossRef]
5. Devlin, L.; Morrison, P.J. Mosaic Down’s Syndrome Prevalence in a Complete Population Study. Arch. Dis. Child. 2004, 89,

1177–1178. [CrossRef]
6. Lana-Elola, E.; Watson-Scales, S.D.; Fisher, E.M.C.; Tybulewicz, V.L.J. Down Syndrome: Searching for the Genetic Culprits. Dis.

Model. Mech. 2011, 4, 586–595. [CrossRef]
7. Benhaourech, S.; Drighil, A.; Hammiri, A.E. Congenital Heart Disease and Down Syndrome: Various Aspects of a Confirmed

Association. Cardiovasc. J. Afr. 2016, 27, 287–290. [CrossRef] [PubMed]
8. Freeman, S.B.; Taft, L.F.; Dooley, K.J.; Allran, K.; Sherman, S.L.; Hassold, T.J.; Khoury, M.J.; Saker, D.M. Population-Based Study of

Congenital Heart Defects in Down Syndrome. Am. J. Med. Genet. 1998, 80, 213–217. [CrossRef]
9. So, S.A.; Urbano, R.C.; Hodapp, R.M. Hospitalizations of Infants and Young Children with Down Syndrome: Evidence from

Inpatient Person-Records from a Statewide Administrative Database. J. Intellect. Disabil. Res. 2007, 51, 1030–1038. [CrossRef]
[PubMed]

10. Bull, M.J. Committee on Genetics Health Supervision for Children with Down Syndrome. Pediatrics 2011, 128, 393–406. [CrossRef]
11. Dey, A.; Bhowmik, K.; Chatterjee, A.; Chakrabarty, P.B.; Sinha, S.; Mukhopadhyay, K. Down Syndrome Related Muscle Hypotonia:

Association with COL6A3 Functional SNP rs2270669. Front. Genet. 2013, 4, 57. [CrossRef]
12. Simpson, R.; Oyekan, A.A.; Ehsan, Z.; Ingram, D.G. Obstructive Sleep Apnea in Patients with Down Syndrome: Current

Perspectives. Nat. Sci. Sleep 2018, 10, 287–293. [CrossRef]
13. Malak, R.; Kostiukow, A.; Krawczyk-Wasielewska, A.; Mojs, E.; Samborski, W. Delays in Motor Development in Children with

Down Syndrome. Med. Sci. Monit. 2015, 21, 1904–1910. [CrossRef] [PubMed]
14. Madhok, S.S.; Shabbir, N. Hypotonia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020.
15. Punjabi, N.M. The Epidemiology of Adult Obstructive Sleep Apnea. Proc. Am. Thorac. Soc. 2008, 5, 136–143. [CrossRef]
16. Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.;

Brower, A.M.; et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [CrossRef]
17. Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging Knowledge across Phenotype-Gene Relationships.

Nucleic Acids Res. 2019, 47, D1038–D1043. [CrossRef] [PubMed]
18. Bragin, E.; Chatzimichali, E.A.; Wright, C.F.; Hurles, M.E.; Firth, H.V.; Bevan, A.P.; Swaminathan, G.J. DECIPHER: Database for

the Interpretation of Phenotype-Linked Plausibly Pathogenic Sequence and Copy-Number Variation. Nucleic Acids Res. 2014, 42,
D993–D1000. [CrossRef]

19. Weinreich, S.S.; Mangon, R.; Sikkens, J.J.; Teeuw, M.E.; Cornel, M.C. Orphanet: A European Database for Rare Diseases. Ned.
Tijdschr. Geneeskd. 2008, 152, 518–519. [PubMed]

20. Louden, D.N. MedGen: NCBI’s Portal to Information on Medical Conditions with a Genetic Component. Med. Ref. Serv. Q. 2020,
39, 183–191. [CrossRef] [PubMed]

21. Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public Archive of
Relationships among Sequence Variation and Human Phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [CrossRef]

https://github.com/WGLab/Down-Syndrome-Analysis
https://github.com/WGLab/Down-Syndrome-Analysis
http://doi.org/10.1038/s41572-019-0143-7
http://doi.org/10.1089/gtmb.2011.0066
http://doi.org/10.1002/ajmg.a.35248
http://doi.org/10.1006/geno.1998.5335
http://doi.org/10.1136/adc.2003.031765
http://doi.org/10.1242/dmm.008078
http://doi.org/10.5830/CVJA-2016-019
http://www.ncbi.nlm.nih.gov/pubmed/27805241
http://doi.org/10.1002/(SICI)1096-8628(19981116)80:3&lt;213::AID-AJMG6&gt;3.0.CO;2-8
http://doi.org/10.1111/j.1365-2788.2007.01013.x
http://www.ncbi.nlm.nih.gov/pubmed/17991010
http://doi.org/10.1542/peds.2011-1605
http://doi.org/10.3389/fgene.2013.00057
http://doi.org/10.2147/NSS.S154723
http://doi.org/10.12659/MSM.893377
http://www.ncbi.nlm.nih.gov/pubmed/26132100
http://doi.org/10.1513/pats.200709-155MG
http://doi.org/10.1093/nar/gkaa1043
http://doi.org/10.1093/nar/gky1151
http://www.ncbi.nlm.nih.gov/pubmed/30445645
http://doi.org/10.1093/nar/gkt937
http://www.ncbi.nlm.nih.gov/pubmed/18389888
http://doi.org/10.1080/02763869.2020.1726152
http://www.ncbi.nlm.nih.gov/pubmed/32329672
http://doi.org/10.1093/nar/gkt1113


Genes 2021, 12, 1159 11 of 11

22. Rubinstein, W.S.; Maglott, D.R.; Lee, J.M.; Kattman, B.L.; Malheiro, A.J.; Ovetsky, M.; Hem, V.; Gorelenkov, V.; Song, G.; Wallin,
C.; et al. The NIH Genetic Testing Registry: A New, Centralized Database of Genetic Tests to Enable Access to Comprehensive
Information and Improve Transparency. Nucleic Acids Res. 2013, 41, D925–D935. [CrossRef]

23. Knoppers, B.M. International Ethics Harmonization and the Global Alliance for Genomics and Health. Genome Med. 2014, 6, 13.
[CrossRef]

24. Son, J.H.; Xie, G.; Yuan, C.; Ena, L.; Li, Z.; Goldstein, A.; Huang, L.; Wang, L.; Shen, F.; Liu, H.; et al. Deep Phenotyping on
Electronic Health Records Facilitates Genetic Diagnosis by Clinical Exomes. Am. J. Hum. Genet. 2018, 103, 58–73. [CrossRef]
[PubMed]

25. Liu, C.; Peres Kury, F.S.; Li, Z.; Ta, C.; Wang, K.; Weng, C. Doc2Hpo: A Web Application for Efficient and Accurate HPO Concept
Curation. Nucleic Acids Res. 2019, 47, W566–W570. [CrossRef] [PubMed]

26. Zhao, M.; Havrilla, J.M.; Fang, L.; Chen, Y.; Peng, J.; Liu, C.; Wu, C.; Sarmady, M.; Botas, P.; Isla, J.; et al. Phen2Gene: Rapid
Phenotype-Driven Gene Prioritization for Rare Diseases. NAR Genom. Bioinform. 2020, 2, lqaa032. [CrossRef]

27. Havrilla, J.M.; Liu, C.; Dong, X.; Weng, C.; Wang, K. PhenCards: A Data Resource Linking Human Phenotype Information to
Biomedical Knowledge. Genome Med. 2021, 13, 91. [CrossRef] [PubMed]

28. Zemojtel, T.; Köhler, S.; Mackenroth, L.; Jäger, M.; Hecht, J.; Krawitz, P.; Graul-Neumann, L.; Doelken, S.; Ehmke, N.; Spielmann,
M.; et al. Effective Diagnosis of Genetic Disease by Computational Phenotype Analysis of the Disease-Associated Genome. Sci.
Transl. Med. 2014, 6, 252ra123. [CrossRef]

29. Wright, C.F.; Fitzgerald, T.W.; Jones, W.D.; Clayton, S.; McRae, J.F.; van Kogelenberg, M.; King, D.A.; Ambridge, K.; Barrett, D.M.;
Bayzetinova, T.; et al. Genetic Diagnosis of Developmental Disorders in the DDD Study: A Scalable Analysis of Genome-Wide
Research Data. Lancet 2015, 385, 1305–1314. [CrossRef]

30. Soden, S.E.; Saunders, C.J.; Willig, L.K.; Farrow, E.G.; Smith, L.D.; Petrikin, J.E.; LePichon, J.-B.; Miller, N.A.; Thiffault, I.; Dinwid-
die, D.L.; et al. Effectiveness of Exome and Genome Sequencing Guided by Acuity of Illness for Diagnosis of Neurodevelopmental
Disorders. Sci. Transl. Med. 2014, 6, 265ra168. [CrossRef]

31. Aronson, A.R. Effective Mapping of Biomedical Text to the UMLS Metathesaurus: The MetaMap Program. In Proceedings of the
AMIA Symposium, Washington, DC, USA, 3–7 November 2001; pp. 17–21.

32. Bodenreider, O. The Unified Medical Language System (UMLS): Integrating Biomedical Terminology. Nucleic Acids Res. 2004, 32,
D267–D270. [CrossRef]

33. Friedman, C.; Shagina, L.; Lussier, Y.; Hripcsak, G. Automated Encoding of Clinical Documents Based on Natural Language
Processing. J. Am. Med. Inform. Assoc. 2004, 11, 392–402. [CrossRef]

34. Ganesan, S.; Galer, P.D.; Helbig, K.L.; McKeown, S.E.; O’Brien, M.; Gonzalez, A.K.; Felmeister, A.S.; Khankhanian, P.; Ellis, C.A.;
Helbig, I. A Longitudinal Footprint of Genetic Epilepsies Using Automated Electronic Medical Record Interpretation. Genet. Med.
2020, 22, 2060–2070. [CrossRef] [PubMed]

35. Olson, J.L.; May, M.J.; Stork, L.; Kadan, N.; Bateman, J.B. Acute Megakaryoblastic Leukemia in Down Syndrome: Orbital
Infiltration. Am. J. Ophthalmol. 2000, 130, 128–130. [CrossRef]

36. Devlin, L.; Morrison, P.J. Accuracy of the Clinical Diagnosis of Down Syndrome. Ulster Med. J. 2004, 73, 4–12. [PubMed]
37. Sunderajan, T.; Kanhere, S.V. Speech and Language Delay in Children: Prevalence and Risk Factors. J. Family Med. Prim. Care

2019, 8, 1642–1646. [PubMed]

http://doi.org/10.1093/nar/gks1173
http://doi.org/10.1186/gm530
http://doi.org/10.1016/j.ajhg.2018.05.010
http://www.ncbi.nlm.nih.gov/pubmed/29961570
http://doi.org/10.1093/nar/gkz386
http://www.ncbi.nlm.nih.gov/pubmed/31106327
http://doi.org/10.1093/nargab/lqaa032
http://doi.org/10.1186/s13073-021-00909-8
http://www.ncbi.nlm.nih.gov/pubmed/34034817
http://doi.org/10.1126/scitranslmed.3009262
http://doi.org/10.1016/S0140-6736(14)61705-0
http://doi.org/10.1126/scitranslmed.3010076
http://doi.org/10.1093/nar/gkh061
http://doi.org/10.1197/jamia.M1552
http://doi.org/10.1038/s41436-020-0923-1
http://www.ncbi.nlm.nih.gov/pubmed/32773773
http://doi.org/10.1016/S0002-9394(00)00459-1
http://www.ncbi.nlm.nih.gov/pubmed/15244118
http://www.ncbi.nlm.nih.gov/pubmed/31198730

	Introduction 
	Materials and Methods 
	Obtaining and Filtering the Clinical Notes 
	Extracting HPO Terms and Counting Them 
	Propagation of Terms and Term Filters 
	Generation of Term Age Plots 

	Results 
	Summarizing the Down Syndrome Data Set and Extraction of Terms 
	The Phenotypic Spectrum of Down Syndrome 
	Implications of New Terms Related to Down Syndrome 
	Longitudinal Distribution of HPO Terms in Down Syndrome 

	Discussion 
	Conclusions 
	References

