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Abstract: 32 

Functional neuroimaging has contributed substantially to understanding brain function but is dominated by 33 

group analyses that index only a fraction of the variation in these data. It is increasingly clear that parsing 34 

the underlying heterogeneity is crucial to understand individual differences and the impact of different task 35 

manipulations. We estimate large-scale (N=7641) normative models of task-evoked activation during the 36 

Emotional Face Matching Task, which enables us to bind heterogeneous datasets to a common reference 37 

and dissect heterogeneity underlying group-level analyses. We apply this model to a heterogenous patient 38 

cohort, to map individual differences between patients with one or more mental health diagnoses relative 39 

to the reference cohort and determine multivariate associations with transdiagnostic symptom domains. For 40 

the face>shapes contrast, patients have a higher frequency of extreme deviations with unique spatial 41 

distributions depending on diagnosis. In contrast, normative models for faces>baseline have greater 42 

predictive value for individuals’ transdiagnostic functioning. 43 
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Introduction:  44 

Task-based functional neuroimaging (functional magnetic resonance imaging; fMRI) has been widely 45 

applied in foundational and clinical neuropsychology to characterise neural processes that underpin a 46 

behaviour or process of interest. The typical approach in such studies is based on comparing mean 47 

differences in the magnitude and location of activation (measured by changes in BOLD signal), which has 48 

helped us to understand how these processes may differ between groups defined by biological and 49 

sociocultural factors, psychopathologies, or therapeutic interventions. The majority of prior research has 50 

reported group-level summary statistics, which inform us of those regions most consistently activated 51 

across participants/groups during task conditions. This method assumes that the neural mechanisms 52 

facilitating the process of interest are consistent across individuals within and between groups. This 53 

assumption enables our understanding to reach only so far as ‘the average brain’ of an ‘average control’, 54 

or ‘average patient’. 55 

 In order to better understand how the brain relates to behaviour it is essential to move our focus 56 

from the group-level to studying individual differences and consider the neural activation of these processes 57 

within the context of multiple sources of heterogeneity. For example: (i) natural variation within the general 58 

population, including potentially heterogenous yet functionally convergent processes, and (ii) heterogeneity 59 

within groups of interest, such as within mental health diagnoses. Furthermore, when comparing between 60 

independent studies, the influence of task design (i.e. small modifications to an original task) and acquisition 61 

parameters should also be considered but are seldom investigated. 62 

One approach that can provide insight into individual differences is normative modelling1,2. The 63 

normative modelling framework provides statistical inference at the level of each subject with respect to an 64 

expected pattern across the population, highlighting variation within populations in terms of the mapping 65 

between biological variables and other measures of interest. This framework has previously been employed 66 

by our group and others to dissect structural variation within large healthy populations3 and clinical 67 

psychiatric populations (e.g. in autism 4-6, schizophrenia and bipolar disorder7), and in relation to dimensions 68 

of psychopathology8. Applying this method to task-based fMRI data we will be able to characterize how 69 

functional activity within each voxel or ROI in the brain differs between individuals, and hence show with 70 

greater nuance the range of task-evoked activation within the general population2. Further, applying this 71 

model to patients with a current diagnosis (mood and anxiety disorders, autism spectrum disorders (ASD) 72 

and/or attention deficit hyperactivity disorder (ADHD)) we will be able to map differences in these individual 73 

participants with respect to the reference cohort. This may reveal unique clusters of deviation patterns, 74 

within and/or across diagnostic categories. 75 

In this study, we use the Emotional Face Matching Task (EFMT) to demonstrate the potential of 76 

the normative modelling method to identify individual differences in task-based fMRI. The EFMT, also 77 

commonly referred to as the ‘Hariri task’, has been used in over 250 fMRI studies since it was most notably 78 

introduced in 20029,10. This task asks participants to match one of two images that are simultaneously 79 
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presented at the bottom of the screen, to a third target image displayed at the top of the screen; participants 80 

match images of facial configurations consistent with the common view of prototypic facial expressions, 81 

most frequently of fear or anger, or similarly positioned geometric shapes. Matching faces, as compared to 82 

matching shapes, evokes explicit and/or implicit emotional face processing, which has previously been 83 

shown to engage the amygdala, fusiform face area, anterior insula cortex, the pregenual and dorsal anterior 84 

cingulate cortex, the dorsomedial and dorsolateral prefrontal cortex, and visual input areas. Previous work 85 

has related activity to biological and demographic variables, and compared between many different clinical 86 

groups and developmental spectrums.  87 

Due to its experimental simplicity and focus on subcortical circuitry relevant to brain disorders, the 88 

EFMT has been implemented in a number of large-scale neuroimaging initiatives including the UK 89 

Biobank11, the Human Connectome Project (HCP)12,13, HCP Development14, the Amsterdam Open MRI 90 

Collection Population Imaging of Psychology (AOMIC PIOP2)15, and the Duke Neurogenetics Study (DNS). 91 

We take advantage of these large open-access/shared datasets to collate a large representative sample of 92 

over 7500 participants from six sites to first (1) build reference normative models that highlight the natural 93 

variation of functional activity evoked by the EFTM [as measured by the task contrasts faces > shapes and 94 

faces>baseline], and (2) determine how the model’s prediction relates to age, sex, and variations in task 95 

design. We then apply these models to over 200 participants with a current mental health condition or who 96 

are neurodivergent from the MIND-Set cohort (Measuring Integrated Novel Dimensions in 97 

neurodevelopmental and stress-related psychiatric disorder)16, to (3) map deviations in patients with a 98 

current diagnosis (mood and anxiety disorders, ASD and/or ADHD) relative from the reference cohort, both 99 

at the group level and at the level of the individual. We show that despite the ostensible simplicity of this 100 

task and robust group effects, there is considerable inter-individual heterogeneity in the nature of the elicited 101 

activation patterns and that such differences are both highly interpretable and predict cross-domain 102 

symptomatology in a naturalistic clinical cohort. 103 

 104 

Results: 105 

Group level comparisons show consistent effects across cohorts  106 

First, we performed a classical group comparison to provide a reference against which to understand the 107 

inter-individual differences in subsequent analyses. To achieve this, we randomly selected 100 random 108 

individuals’ FSL pre-processed data into fixed‐effects general linear models to create group level maps for 109 

the faces>shapes (Fig. 1a) and faces>baseline (Fig. 1b) contrasts (see methods). This also served as a 110 

sanity check to ensure the data was comparable to past literature. Overall, positive task effects (activations) 111 

for faces>shapes were found in the bilateral inferior and middle occipital lobe and the calcarine cortex (V1) 112 

extending anterior-ventrally to the bilateral lingual and fusiform gyrus, and anterior-dorsally to the middle 113 

and inferior temporal gyrus; the bilateral amygdala extending into the hippocampus; the bilateral temporal 114 

pole; a dorsal region of the vmPFC; and the bilateral middle and inferior frontal gyrus. Task-related 115 
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deactivations were found across regions comprising the default mode network, including the anterior and 116 

posterior cingulate cortex and precuneus, the precentral gyrus and supplementary motor area and the 117 

inferior temporal lobe.  118 

 119 

 120 

 121 

Figure 1: Task evoked activation. Two representative groups maps (from HCP Young Adult and UK Biobank), illustrating regions 122 
where participants show greater BOLD signal (z-statistic maps, thresholded at>±2.6) to (a) faces, as compare to shapes 123 
(faces>shapes), and (b) faces, as compared to baseline (faces>baseline). x,y,z = -4,-6,-16. 124 

 125 

 126 

Fitting reference normative models for emotional face processing  127 

Next, we estimated normative models of EFMT-related BOLD activation for the face>shapes and 128 

faces>baseline contrast using data from 7641 individuals across the lifespan. To achieve this, we split the 129 

data into training (n = 3877) and test splits, stratified by site (n = 3764), then fit a Bayesian Linear 130 

Regression model that predicted the single subject level activation for each voxel of the brain, as a function 131 

of sex, age, and acquisition and task parameters (see methods). Explained variance in the test set was 132 

good, especially in regions that showed activation at the group level (Fig. 1) including the occipital 133 

lobe/visual cortex and the bilateral amygdala (faces>shapes: Fig. 2a; faces>baseline: Fig. 2d). As shown 134 

in Supplementary Fig. 2a and 2c in most voxels the skew and kurtosis was acceptable (i.e. -1 < skew < 1 135 

and kurtosis around zero). For a very small proportion of voxels this was not the case; the most ventral 136 

region of the vmPFC (i.e. the bottom border of the brain) was the most negatively skewed which we interpret 137 

to reflect the varying degrees of signal dropout, more so than biological variation. The few voxels with 138 

positive kurtosis were spatially overlapping with regions that were negatively skewed, which likely reflects 139 

the extended negative tails of the distributions in these voxels.  140 
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 141 

Figure 2: Evaluation and deviation scores from the faces>shapes (left) and faces>baseline (right) normative models. 142 
Explained variance is high in the normative models, irrespective of whether they are built using the face>shapes contrast (a), or the 143 
faces>baseline contrast (x,y,z = -4,-6,-16). (d). Histograms show the relative frequency of the total number of deviations that a 144 
participant has for each model (b,e). Normative Probability Maps illustrate the percentage of participants of the total sample who had 145 
positive (hot colours) or negative deviations (cool colours) > ±2.6 within each voxel, for the faces > shapes (c) and faces>baseline (f) 146 
models. x,y,z = -5,6,-15. 147 

  148 
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Voxel-wise deviations show considerable inter-individual variability  149 

We then used these normative models to quantify the degree of inter-individual variability. To achieve this, 150 

for each participant we created a thresholded normative probability map (NPM; deviation scores >±2.6) 151 

which indicates the difference between the predicted activation and true activation scaled by the prediction 152 

variance, and therefore shows the voxels where that participant had greater or less activation than would 153 

be expected by the normative models. Figures 2b and 2e show the frequency of the total number of 154 

deviations that individuals had from the faces>shapes, and faces>baseline models, respectively. Within 155 

each voxel, we then counted how many participants had positive or negative deviations (>±2.6). The 156 

resulting brain maps illustrate the variability in the magnitude of functional activation per voxel, across the 157 

population for the two task contrasts (Fig. 2c + f). This shows that: (i) there is considerable inter-individual 158 

variability underlying the mean effects and (ii) that the spatial distribution of individual deviations mostly 159 

occurs within the task network. Every voxel of the brain had at least one subject with a deviation >±2.6 (not 160 

shown), although, as illustrated, there were regions including the medial occipital lobe extending to the 161 

bilateral fusiform gyrus and inferior temporal lobe, the bilateral inferior frontal gyrus extending to the 162 

precentral gyrus, and the posterior region of the vmPFC, wherein deviations were more frequently 163 

observed. As there were minimal differences in the evaluation metrics between models built using either 164 

contrast, and as the contrast faces>shapes is most commonly reported in prior literature, we use this as 165 

our primary contrast for our further analysis of the reference model.  166 

 167 

Separable effects of input variables on model predictions  168 

Next, we examine structure coefficients from our models to disentangle the effects of different input 169 

variables. As shown in Figure 3, the direction of the relationship between input variables and the predicted 170 

BOLD activation, and the fraction of the explained variability can be meaningfully separated for 171 

interpretation. Some input variables, namely acquisition parameters, showed overlapping effects (with 172 

sensical direction flips) likely due to their relatively high correlation and limited variability across sites. For 173 

example, the number of target blocks, volumes acquired (not shown), use of multiband sequence (not 174 

shown), and the length of the TR (not shown) all showed a similar relation to predicted activity. 175 

Increased age was related to decreased predicted activity across the peripheral/surface of the 176 

brain, as well as regions surrounding the ventricles, and increased activity in midline regions of the default 177 

mode network, the bilateral insula, the fusiform face area extending to the para-hippocampal gyrus and the 178 

superior temporal gyrus. Predictions were only minimally influenced by sex, and the spatial mapping of this 179 

relationship was broadly overlapping with that of intra-cranial volume (not shown).  180 

We further illustrate the ability of this method to disentangle the influence of task design choices, 181 

on predicted activation. For example, the influence of the matching rule and the stimuli presented. Being 182 

told to match the emotional expression, as compared to matching the faces, related to increased predicted 183 

BOLD activity within subcortical areas including the bilateral putamen, caudate body and medio-dorsal 184 
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thalamus. Attending to the emotional expression also predicted increased activity within the superior frontal 185 

gyrus extending to the supplementary motor area, the posterior medial temporal gyrus the inferior temporal 186 

gyrus, and the medial temporal pole. Conversely, when participants were asked to match faces, the model 187 

predicted greater activation within the bilateral fusiform gyrus, the middle temporal gyrus, the superior 188 

temporal pole, the dorsolateral prefrontal cortex, and a large area of the inferior parietal gyrus extending to 189 

the supramarginal and angular gyrus. Additionally, when stimuli from the Ekman series were used the 190 

model predicted greater activation within the bilateral inferior occipital gyrus and the calcarine cortex (V1), 191 

the bilateral lingual and fusiform gyrus extending to the inferior temporal gyrus, as well as in the medial 192 

cingulate cortex, an anterior region of the vmPFC, the superior medial prefrontal cortex, and subcortical 193 

regions including the ventral posterior thalamus, the posterior putamen, para-hippocampus, hippocampus 194 

and amygdala. Conversely, the use of the Nim-Stim Set stimuli related to greater activity within default 195 

mode regions, including a large area of the ventromedial/medial prefrontal cortex, precuneus, cuneus, as 196 

well as the supramarginal gyrus which extended medially to the anterior and posterior insula, which in turn 197 

extended laterally to the superior and medial temporal gyri. 198 

 199 

 200 

 201 

Figure 3: The relationship between input variables and the predicted BOLD activation for faces>shapes. Maps show the 202 
correlation coefficients (rho) thresholded by their respective coefficients of determination (rho2>0.3) of selected model input variables. 203 
This can be interpreted as showing how predicted BOLD activation for the faces>shapes contrast relates to the input variables of the 204 
normative models. Positive correlations (warm colours) indicate greater activation for higher values of the input variable and negative 205 
correlations (cool colours) greater activation for lower values of the input variable (note that some variables are dummy coded, e.g. 206 
target stimuli, instructions) x,y,z = -4,-6,-16. 207 
 208 
 209 
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A   traditional   case-control   comparison   identifies   few   differences   between   patients   and 210 

controls 211 

We then performed a voxel-wise case-control comparison on the raw data in order to test for group level 212 

differences between a heterogeneous patient cohort and matched controls from the naturalistic MIND-Set 213 

sample. As evidenced in Table 1 (see Diagnoses), the naturalistic MIND-Set sample has many patients 214 

with co-occurring and heterogenous mental health diagnosis, with or without neurodivergence, and is 215 

therefore representative of diverse clinical populations. This analysis revealed very few differences between 216 

the patient cohort, and unaffected controls for faces>shapes and faces>baseline (Fig. 4a and b – bottom 217 

rows). More specifically, comparing patients’ task activation (Fig. 4a – top row) to controls (Fig. 4a – middle 218 

row) for the faces>shapes contrast showed patients had greater activation in the left temporal medial gyrus 219 

and bilateral posterior cingulate cortex, as well as in small regions of the supplementary motor area, and 220 

the genus of the anterior cingulate cortex (Fig. 4a – bottom row). There were negligible differences between 221 

patients and controls for the faces>baseline contrast (Fig. 4b – bottom row).   222 

 223 

224 
Figure 4: General linear model results comparing patients to controls for the faces>shapes and faces>baseline contrasts. 225 
Maps show regions activated (warm colours) and deactivated (cool colours) for faces>shapes (a) and faces>baseline (b), for 226 
patients (top row) and unaffected controls (middle row) from the MIND Set cohort. (c) Regions where patients have more activation 227 
than controls (bottom row) (z-statistic maps, thresholded at  > ±2.6). x,y,z = -14,-13,-9. 228 
 229 

 230 

Application of normative model to a naturalistic clinical sample 231 

Next, we aimed to relate the deviations from these normative models to psychopathology.  To achieve this, 232 

we evaluated the patient cohort with respect to the normative models estimated from the large reference 233 

cohort. For the faces>shapes and faces>baseline models, the explained variance of the clinical test data 234 

was quite low. This was expected given that this cohort is quite homogenous with respect to the covariates 235 
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included in the model (i.e., all subjects were scanned on the same scanner, using the same experimental 236 

paradigm and had an age range considerably narrower than the reference cohort). This suggests that the 237 

variance in BOLD signal was driven more by individual differences, as opposed to the variables included in 238 

the model. The skew and kurtosis of the models were centred around zero. See Supplementary Figure 4a-239 

f for histograms of these evaluation metrics, and their respective illustration on the brain. 240 

 241 

Frequency of deviations differentiates patients from unaffected controls  242 

Next, we compared the frequency of extreme deviations (NPMs thesholded at > ±2.6), at the level of each 243 

individual, between patients from the MIND-Set cohort and unaffected controls. For each model type 244 

(faces>shapes: Fig. 5b,c; faces>baseline: Fig. 5e,f). MIND-Set patients had a greater frequency of 245 

deviations relative to the reference cohort for the faces>shapes contrast (Mann-Whitney U test = 358986.5, 246 

p = 1.55-8 ; Fig. 5b). These deviations were most frequently identified in the lateral ventral prefrontal cortex, 247 

and the bilateral medial and inferior temporal lobe (Fig. 5a). In contrast, for the faces>baseline contrast 248 

individuals from the reference cohort had a greater frequency of deviations relative to MIND-Set patients 249 

(Mann-Whitney U test = 509017.0, p = 0.0007; Fig. 5e). For this contrast, these deviations are, however, 250 

strongly localised within the most ventral region of the vmPFC (Fig. 5d) which is well-known to be 251 

problematic area for signal distortion artefacts in fMRI, therefore we do not interpret this difference as being 252 

biologically meaningful. 253 

 254 

Associations of patterns of deviation with cross-diagnostic symptom domains 255 

We then aimed to determine whether multivariate patterns of deviation from the reference models were 256 

associated with cross-diagnostic symptomatology. To achieve this, we input whole-brain (unthresholded) 257 

deviation maps and factor loadings for negative valence, cognitive function, social processes and 258 

arousal/inhibition domains from prior work17 to an established penalised canonical correlation analysis 259 

(CCA) framework that enforces sparsity (sparce CCA, SCCA; functional domain loading scores were 260 

available for 217 patients)18,19. Significant out of sample associations (10 fold 70% - 30% training- test split) 261 

were detected both for faces>shapes and faces>baseline contrasts (mean r of test splits 0.133 and 0.211 262 

respectively, both p < 0.001 by permutation test; Fig. 6b, e) but with distinct patterns of effects both in terms 263 

of symptom domains and associated brain regions. More specifically, for the faces>shapes contrast, 264 

decreased functioning predominantly in the negative valence and arousal/inhibition domains (Fig. 6a) was 265 

associated with a pattern of deviations including the right insula, the bilateral medial prefrontal cortex and 266 

pre- and post- central gyri, the bilateral inferior temporal gyrus, lingual gyrus, bilateral hippocampus and 267 

the right thalamus, as well as the regions in the medial and left lateral cerebellum (Fig. 6c). By comparison, 268 

for the faces>baseline contrast factor loadings for cognitive functioning and arousal/inhibition (Fig. 6d) were 269 

most strongly related to a pattern comprising bilateral insula, the anterior-to-medial cingulate cortex 270 

extending to the dorsal medial prefrontal cortex, the pre- and post- central gyri, the right middle frontal and 271 

bilateral inferior frontal gyrus, and the bilateral hippocampus, caudate, putamen and amygdala, and the 272 
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medial and left lateral cerebellum (Fig. 6f). The SCCA was repeated to relate participant’s diagnoses with 273 

their whole-brain (unthresholded) deviation maps. In contrast to the cross-diagnostic symptom domains, 274 

there was no association between diagnostic labels and deviation scores. Mean canonical correlations were 275 

small (mean r of test splits <0.09 for both faces>shapes and faces>baseline models), and this was not 276 

statistically significant as determined by 1000-fold permutation testing.  277 

 278 

 279 

 280 

Figure 5: Testing the faces>shapes (left) and faces>baseline normative models with the MIND-Set cohort. Normative 281 
Probability Maps illustrate the percentage of participants of the clinical sample who had positive (hot colours) or negative deviations 282 
(cool colours) > ±2.6 within each voxel, for the faces>shapes (a) and faces>baseline (d) models. Histograms and box plots show the 283 
relative frequency and mean number of the total deviations that a participant has for faces>shapes (b,c) and faces>baseline (e,f) 284 
models. Positive: x,y,z = 9,-16,-16, Negative: x.y,z = 5,-29,-24. 285 
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 286 
Figure 6: Sparse canonical correlation analyses (SCCA) between functional domains, and deviation scores from 287 
faces>shapes or faces>baseline normative models. Weights per factor to latent variable of psycho-social functioning (a,d). 288 
Canonical correlation between 4 functional domains and whole-brain deviation scores from (b) faces>shapes and (e) faces>baseline 289 
normative models (regularisation 10%). Mean voxel-wise weights to latent variable of deviation scores from (c) faces>shapes 290 
normative models and from (f) faces>baseline. All results are statistically significant with 1000-fold permutation tests    ( *** = p<0.001). 291 
x,y,z, = [-42,-17,8,33], [29,4,-21,-46,-71], [47,22,-3,-28]. 292 
 293 
 294 
 295 
Spatial extent of deviations highlights similarities across, and differences between diagnoses 296 

Finally, we were interested in mapping the spatial distribution of the deviations within the clinical sample, 297 

and whether this varied according to the participant’s mental health diagnosis or neurodivergence (note 298 

that subjects can be in multiple categories; Sup Fig. 5). For each diagnosis, the pattern of deviations was 299 

highly heterogeneous, providing further support for high degree of inter-individual heterogeneity we have 300 

reported previously for mental disorders4,5,7, and underlining the need to move beyond case-control 301 

comparisons at the level of diagnostic groups.  302 

 303 

  304 
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Discussion: 305 

In this study we made use of six large publicly available datasets of participants completing the fMRI EFMT 306 

to build a reference normative model of functional activation underlying emotional face processing. We 307 

collated data from over 7500 participants and show that our voxel-wise models can explain up to 50% of 308 

variance in observed BOLD signal, with the remaining unexplained variance representative of individual 309 

differences in functional activation (deviation scores). We unpacked the variance explained by the models, 310 

to show how the predicted activation related to the models’ input variables, namely demographics, 311 

variations in task design, and acquisition parameters. Lastly, we tested our reference model with data from 312 

a sample of patients with heterogenous and frequently co-occurring psychiatric conditions (mood and 313 

anxiety disorders, and neurodevelopmental conditions). Our analyses show that: (i) there is considerable 314 

inter-individual variation superimposed on the group effects customarily reported in fMRI studies, (ii) that 315 

such variation is predictive of psychiatric symptom domains in a cross-diagnostic fashion and (iii) while an 316 

overall effect of diagnosis was evident, this was highly individualised in that the overlap of deviations 317 

amongst individuals with the same diagnosis was low. This implies that there are brain regions wherein 318 

patients more frequently have deviations irrespective of the type of diagnoses, and other regions wherein 319 

the frequency of deviations appears specific to the mental-health condition or neurodivergent diagnosis.  320 

 321 

A key feature of the normative modelling framework in the context of multi-site fMRI data is that it allows us 322 

to aggregate data across multiple samples by binding them to a common reference model. This provides 323 

multiple benefits: it removes site effects from the data without requiring the data to be harmonized20, which 324 

avoids the introduction of certain biases due to harmonisation21 and allows meaningful comparisons to be 325 

drawn across studies. For example, this allows aggregation of different studies to better understand 326 

variation across cohorts or across the lifespan and to understand the effect of different task parameters on 327 

functional activity across cohorts. Moreover, by placing each individual within the same reference model 328 

this provides the ability to quantify, compare and ultimately parse heterogeneity across studies.  329 

 330 

Traditional group-level task contrasts, as shown in Fig. 1, inform us of the region’s most consistently 331 

activated across participants/groups during task conditions. Their interpretation has relied heavily on the 332 

assumption of spatial homogeneity of activation between subjects; an assumption that the deviation scores 333 

from our reference model show to be largely untrue (Fig. 2). We show that such group effects reflect a small 334 

proportion of the variation amongst individuals and using the normative modelling framework we map the 335 

underlying heterogeneity, separating variation in the intensity and spatial extent of task-evoked functional 336 

activation between-subjects attributable to known factors such as site effects, demographics, acquisition 337 

parameters, and differences in EFMT paradigm design. More importantly, we show that residual differences 338 

in the neuronal effects elicited by the task are highly meaningful in that they were predictive of psychiatric 339 
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symptomatology and can be used to understand inter-individual differences in functional anatomy and its 340 

relation to clinical variables. In our test reference population, while every voxel of the brain had at least one 341 

participant with a large deviation, some regions considered active during the faces condition (as compared 342 

to shapes), such as the medial occipital lobe, fusiform gyrus and inferior temporal lobe, were also regions 343 

in which positive deviations were frequently observed. 344 

When building our reference models, we chose to include and control for multiple variables that we 345 

reasoned may influence the BOLD signal observed. These included demographic factors such as age and 346 

sex, and task design choices that could influence the BOLD signal generated, as well as acquisition 347 

parameters that could influence the BOLD signal recorded. Some effects, such as that of age and task 348 

instructions were relatively strong and interpretable, for example, increased age predicted decreased 349 

activity in surface areas of the brain and regions surrounding the ventricles likely reflecting decreased signal 350 

due to age-related atrophy, and instructing participants to match emotional expressions, as opposed to 351 

matching faces, increased the predicted activity in the thalamus which may reflect increased engagement 352 

of regions associated with affective processing. On the other hand, other variables explained relatively little 353 

variance in the predictions (e.g. sex). In our sample many predictor variables were collinear across sites 354 

which limited our ability to detect systematic differences resulting for example from differences in the task 355 

paradigm. In this work we decided to keep all variables in the model and used structure coefficients to 356 

identify the importance of different variables, which are relatively insensitive to collinearity. This follows prior 357 

work to identify specific effects of input variables on model predictions, for example the influence of specific 358 

adversity types on predicted morphometric changes (Holz et al., in prep). However future researchers may 359 

consider reducing the dimensionality of their inputs prior to model construction. Future studies with larger 360 

numbers of more diverse samples (e.g. more variations on the basic task design), as is possible in 361 

consortium such as ENIGMA, will allow for more fine grained analyses of the effect of task parameters on 362 

inter-individual variation within the population.  363 

 364 

We demonstrated that distinct patterns of deviations, derived from each model type (faces>shapes or 365 

faces>baseline), were associated with unique profiles of functioning across four transdiagnostic domains. 366 

The distinct patterns of effects, in terms of the implicated symptom domains and associated brain regions, 367 

make sense in the context of relevant existing literature. For example, negative affect, impulsivity and 368 

emotional liability have previously been related to functional activity within the bilateral insula, motor cortex 369 

and hippocampus22, and cognitive functioning has been linked to activity within the medial prefrontal cortex, 370 

anterior-to-medial cingulate cortex, superior frontal gyrus. This not only validates the interpretability of 371 

findings from these normative modelling analyse, but also illustrates the potential for future researchers to 372 

use individualised deviation maps to better understand the neural processes that underly cognitive and 373 

affective functioning, within and across diagnostic boundaries. Furthermore, approaching dysfunction 374 

through the normative modelling framework and transdiagnostic functional domains appears to more 375 
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closely relate to underlying biology. This reflects practitioners implementation of clinical care and the use 376 

of overlapping treatments for differing disorders, which often does not fit a binary classification paradigm. 377 

Using this modelling approach may also better allow for the quantification of neurodivergence, not as being 378 

‘disordered’ but rather as varying phenotypic expressions along a characterised spectrum. 379 

It should be noted, however, that within any one voxel of the brain, only ~20% of the clinical sample 380 

(be that in the total sample, or within disorders) had large deviations. This suggests that the exact location 381 

of deviations is very variable between individuals, and could explain why many prior studies have not found 382 

significant differences when performing traditional case-control analyses. In this study, we aimed to 383 

estimate the degree to which the deviations from the normative models were associated with cross-384 

diagnostic symptomatology, but other approaches may also be useful, as outlined in Rutherford, et al. 23. 385 

For example, clustering algorithms could be applied to derive a stratification of individuals4,5 or to identify 386 

heterogenous yet convergent functional processes (many-to-one functional mappings)24, and supervised 387 

learning methods may be useful to assess the degree to which specific clinical variables can be predicted 388 

from the patterns of deviation we report.  389 

 390 

Interestingly, the normative models of functional activation built using the faces>shapes have a different 391 

pattern of association with symptomatology relative to the faces>baseline contrast. This suggests that the 392 

two contrasts carry complementary information about psychopathology. The frequency of deviation scores 393 

was significantly greater in the clinical cohort, compared to the reference cohort, when using the 394 

faces>shapes contrast, and the weights attributed to each of these deviations (at a voxel-level) in the SCCA 395 

were associated with different symptom domains. Neither contrast was significantly predictive of diagnosis. 396 

By comparison, the relationship between the frequency of deviation scores and domains of function was 397 

stronger when using models built using the faces>baseline contrast, which was further supported by the 398 

stronger canonical correlation between factor loadings for functional domains and deviations from the 399 

faces>baseline models. Taken together, this could be interpreted to suggest that widespread deviations, 400 

best captured by the faces>shapes contrast, are indicative of global alterations in functioning which are 401 

broadly linked to different clinical diagnoses. By comparison, fewer but more focal deviations and/or the 402 

ability to detect abnormal baselines of activation25,26, best revealed using the faces>baseline, have greater 403 

relation to specific functional domains. Future researchers should carefully consider the task contrast used 404 

to construct their normative models. 405 

 406 

Concerns for the within-subject reliability of task-based fMRI data27 are not to be dismissed in the context 407 

of our models which are currently built on cross-sectional data. While we acknowledge the limitations 408 

imposed due to the limits of test-retest reliability of task fMRI, our results nevertheless provide encouraging 409 

evidence for the use of task fMRI readouts as individualised biomarkers as we show by their ability to predict 410 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2023. ; https://doi.org/10.1101/2023.03.27.534351doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534351
http://creativecommons.org/licenses/by-nc-nd/4.0/


clinical variables in the context of SCCA. While we were not able to assess test-retest reliability directly 411 

within the context of normative models due to a lack of test-retest data for the EFMT, one great strength of 412 

the normative modelling approach is the shift from looking only at mean activity, to estimating the underlying 413 

variance. This can implicitly down-weight regions or individuals that are less reliable. Indeed, it could be 414 

expected that repeated sampling would fall within the same variance distribution, and as such our broad 415 

understanding of brain function remains quite stable. The normative modelling framework is also ideally 416 

positioned to directly test the reproducibility of fMRI within subjects. In follow-on work to the present 417 

manuscript, we are currently developing an extension to explicitly include test-retest variability in the model 418 

by testing reference models with repeat scans from participants, and compare individuals’ deviation scores 419 

between the two tests, whilst explicitly quantifying within subject variance, such that it provides a lower 420 

bound on the size of deviation that can be considered meaningful (Bučková et. al., in prep). Alternatively, 421 

where multiple repeats are available, hierarchical models can be used to accommodate dependencies 422 

between subjects20 which would provide more precise estimates of individual deviations. The application of 423 

the normative modelling method to fMRI can easily be generalised to other tasks (e.g. the monetary 424 

incentive delay incentive processing task or n-back work memory task) and need not stop at predicting 425 

functional activation. With the right data sets, this method could use fMRI data to predict many other 426 

variables including psychophysiological responses or subjective ratings of affect. 427 

 428 

With this work, we show the potential for the normative modelling framework to be applied to large task-429 

based fMRI data sets to bind heterogeneous datasets to a common reference model and enable meaningful 430 

comparisons between them. Using this approach, we illustrate the heterogeneous intensity and spatial 431 

location of task-evoked activation within the general population2 using the EFMT in a sample of over 7500 432 

participants. Further, we applied this model to patients with a current diagnosis (mood and anxiety 433 

disorders, ASD and/or ADHD) and demonstrate the transdiagnostic clinical relevance and further potential 434 

for deviation scores derived from this method. The potential of this method is clear; normative modelling of 435 

task-based functional activation can facilitate a better understanding of individual differences in complex 436 

brain-behaviour relationships, and further our understanding of how these differences relate to mental 437 

health and neurodivergence.  438 

  439 
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Methods: 440 

Data sets: We collated a large reference sample from 6 independent sites for whom high quality fMRI 441 

data for the EFMT are available: AOMIC PIOP2, Duke Neurogenetics Study, HCP Development, HCP 442 

Young Adult (1200 release), UK Biobank, and the MIND-Set cohort which also includes a clinical 443 

population. For sample details per site see Table 1. 444 

 445 

fMRI task paradigms: All sites collected a variant of the EFMT9. Although specific parameters varied, the 446 

overall design was consistent: in each face trial participants were presented with three images of human 447 

faces in a triangular formation. Participants were instructed to identify which of two faces/expressions 448 

presented at the bottom of the screen matched the one presented at the top of the screen by pushing a 449 

button with the index finger of their left or right hand. Multiple face trials were presented in one face block, 450 

and the task included multiple face blocks (see Table 1 for the number of trials per block, and number of 451 

blocks per site). As a somatomotor control, participants also completed shape trials, wherein they were 452 

presented with three geometric shapes (circles and ovals) and asked to indicate which of the two shapes 453 

presented at the bottom of the screen matched the one at the top. Multiple shape trials were concatenated 454 

to form one shape block, which were interspersed between face blocks. 455 

Two paradigms (HCP Young Adult and HCP Development) included an inter-trial interval (white 456 

fixation cross on black screen), and three sites (HCP Young Adult, HCP Development and AOMIC PIOP2) 457 

had an instruction trial that preceded the start of each block. Tasks varied in their duration from 150 to 290 458 

seconds, which indirectly corresponded to the acquisition of between 135 and 336 functional volumes. 459 

 460 

fMRI data acquisition: 461 

Site specific acquisition parameters per site are detailed in Table 1, and in the following site specific 462 

protocols: AOMIC PIOP215, HCP Young Adult13, HCP Development28, UKBiobank29, Duke Neurogenetics 463 

Study (https://www.haririlab.com/methods/amygdala.html) and MIND-Set30.  464 

 465 

fMRI pre-processing: Data pre-processing was harmonised across all sites; a FSL-based pipeline31 was 466 

consistently applied to decrease the likelihood of introducing variance due to pre-processing differences. 467 

Since the HCP young adult, HCP development and UKB Biobank data were already processed relatively 468 

consistently, we reused the processing pipelines provided by the respective consortia (for HCP sites we 469 

used the minimal processing pipeline)29,32, with additional steps taken as necessary (e.g. matching 470 

smoothing kernels across studies). At a within-subject level, all functional data underwent gradient 471 

unwarping, motion correction, fieldmap‐based EPI distortion correction (where fieldmaps were available), 472 

boundary‐based registration of EPI to structural T1‐weighted scan, denoising for secondary head motion‐473 

related artifacts using automatic noise selection, as implemented in ICA‐AROMA33, non‐linear registration 474 

into MNI152 space, and grand‐mean intensity normalization. All data were spatially smoothed using a 5 475 

mm FWHM Gaussian kernel. 476 
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 477 

Quality control: Participants were excluded if their mean relative RMS was greater than 0.5mm. Additional 478 

quality control was performed for signal coverage in the prefrontal cortex for the UK Biobank sample (see 479 

supplementary methods).  480 

 481 

fMRI general linear modelling (GLM) – single subject: We matched the methodological approach used 482 

to estimate the parameters within a GLM-based analysis, given evidence to suggest this analytic step can 483 

significantly contribute to the variability of reported results between sites34. Therefore, for each site, the 484 

linear model parameter were estimated using the FSL software package version 6.03 (HCP Young Adult, 485 

HCP Development, MIND-Set, Duke Neurogenetics Study; http://fsl.fmrib.ox.ac.uk/) or as downloadable 486 

form UK Biobank29. Two regressors were constructed from the faces and shapes blocks which were then 487 

convolved with a canonical double‐gamma haemodynamic response function and combined with the 488 

temporal derivatives of each main regressor. These were treated as nuisance regressors and served to 489 

accommodate slight variations in slice timing or in the haemodynamic response. Data were pre‐whitened 490 

using a version of FSL‐FILM customized to accommodate surface data, the model and data were high‐491 

pass filtered (200s cut-off). Fixed‐effects GLMs were estimated using FSL‐FLAME 1: first for independent 492 

runs, then when necessary combining two runs into a single model for each participant (HCP Young Adult). 493 

and the AOMIC, DNS and MIND-Set maps were transformed into standard space using FNIRT35. We 494 

created summary group level maps per site (for a random sample of 100 participants), as a sanity check to 495 

ensure the data was otherwise comparable to past literature, and performed a case-control comparison 496 

between patients with a current diagnosis (mood and anxiety disorders, ASD and/or ADHD) and unaffected 497 

controls in the MIND-Set cohort.  498 

 499 

Normative models: The z-statistic maps from the contrast face>shapes (5mm smoothed in standard 500 

space), for each subject, were used as response variables for the normative models. That is, we specified 501 

a functional relationship between a vector of covariates and responses. We created normative models of 502 

EFMT-related BOLD activation maps, as a function of sex, age, acquisition and task parameters (task 503 

duration (s), number of target blocks, instructions given to participants, the task stimuli), by training a 504 

Bayesian Linear Regression (BLR) model to predict BOLD signal for the faces>shapes contrast. 505 

Generalisability was assessed by using a half-split train-test sample (train: n = 3877, test: n = 3764). In 506 

preliminary analyses, we compared a warped model which can model non-Gaussianity with a vanilla 507 

Gaussian BLR model. Since the fit was comparable across most metrics and regions, we focus on the 508 

simpler Gaussian model below. We included dummy coded site-related variables as additional covariates 509 

of no-interest. We also created models to predict BOLD signal for the faces condition alone (i.e. 510 

face>baseline contrast). This was performed in the Predictive Clinical Neuroscience toolkit (PCNtoolkit) 511 

software v0.26 (https://pcntoolkit.readthedocs.io/en/latest) implemented in python 3.8.  512 

 513 
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Quantifying voxel-wise deviations from the reference normative model: To estimate a pattern of 514 

regional deviations from typical brain function for each participant, we derived a normative probability map 515 

(NPM) that quantifies the voxel-wise deviation from the normative model. The subject-specific Z-score 516 

indicates the difference between the predicted activation and true activation scaled by the prediction 517 

variance. We thresholded participant’s NPM at Z = ±2.6 (i.e. p < .005)7 using fslmaths and summed the 518 

number of significantly deviating voxels for each participant, and then across the total sample. 519 

 520 

Effects of input variables on model predictions: In order to probe the magnitude of the influence of task 521 

design parameters on the predicted BOLD signal, we illustrated the structure coefficients (correlation 522 

coefficients) of each task parameter-related variable (task duration (s), number of target blocks, instructions 523 

given to participants, the task stimuli), as well as for age, sex and ICV. This approach is preferable to 524 

regression coefficients when variables are collinear36. 525 

 526 

Clinical application: We tested the normative models we created using the reference data, with a 527 

heterogeneous patient sample from the MIND-Set cohort (n = 236, mean age = 37. 1±13.27; 41.94% 528 

female). This is a naturalistic and highly co-morbid sample derived from out-patients of the psychiatry 529 

department of Radboud University Medical Centre. This included 150 patients diagnosed with a current 530 

mood disorder (unipolar or bipolar depressive disorder), 12 with generalised anxiety disorder, 22 with social 531 

phobia, 14 with panic disorder, 71 with attention-deficit-hyperactive-disorder, and 55 autistic individuals 532 

(see Table 1 for full details and note that subjects can be in multiple diagnostic categories). The clinical 533 

relevance of our models can also be tested in the context of transdiagnostic symptom domains; a 534 

conceptualisation of mental functioning that transcends diagnostic boundaries and allows for nuanced 535 

brain-behaviour interpretations. As such, for 217 (of our 236) patients for whom all required data was 536 

available, we repeated a previously validated factor analysis method (performed in SPSS v24.0, oblique 537 

rotation)17 to obtain individual factor loadings on 4 functional domains: (1) negative valence, (2) cognitive 538 

function, (3) social processes and (4) arousal/inhibition. 539 

 540 

Quantifying patients’ voxel-wise deviations from the reference normative model: As for the reference 541 

cohort, we generated NPMs to estimate the pattern of regional deviations from typical brain function for 542 

each participant, and summed across the sample. We then used a Mann-Whitney U test to compare the 543 

frequency of deviations (>±2.6) between the reference controls and patients from the MIND-Set cohort.  544 

 545 

Relating deviations to transdiagnostic functional domains: In order to map the association of the 546 

deviation scores with cross-diagnostic symptomatology, we performed sparse canonical correlation 547 

analyses (SCCA) to relate participant’s scores in the four aforementioned functional domains or their 548 

diagnoses, to their whole-brain (unthresholded) deviation maps using an established penalised CCA 549 

framework that enforces sparsity18,19. Specifically, we applied variable shrinkage by adding an l1-norm 550 
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penalty term to stabilise the CCA estimation and ensure the weights for the deviation scores were more 551 

interpretable. We follow the formulation outlined in Witten, et al. 18, where we refer to for details. In brief, 552 

given two data matrices 𝑿 and 𝒀 with dimensions 𝑛 × 𝑝  and 𝑛 × 𝑞 respectively (here, these are the cross-553 

diagnostic factor loadings and whole-brain deviations), and two weight vectors 𝒖 and 𝒗 this involves 554 

maximising the quantity 𝜌 = 𝒖𝑻𝑿𝑇𝒀𝒗 subject to the constraints ‖𝒖‖2
2 ≤ 1, ‖𝒗‖2

2 ≤ 1, ‖𝒖‖1 ≤ 𝑐1 and ‖𝑣‖1 ≤555 

𝑐2, where the penalties 𝑝(𝒖) and 𝑝(𝒗) are the standard L1-norm. We set the regularisation parameters for 556 

each view heuristically (𝑐1 = 0.9𝑝 corresponding to light regularisation for the factor scores, 𝑐1 = 0.1𝑞, 557 

corresponding to heavy regularisation for the deviation maps such that no more than 10% of voxels were 558 

selected). While it is possible that better performance would be obtained by optimising the regularisation 559 

parameters across a grid, we did not pursue that here due to the moderate sample size for the clinical 560 

dataset. We assessed generalisability of SCCA by splitting the data in to 70% training data and 30% test 561 

10 times. Finally, we wrapped the entire procedure in a permutation test where we randomly permuted the 562 

rows of one of the matrices 1000 times to compute an empirical null distribution for significance testing. 563 

 564 

Spatial patterns of deviations by primary and co-occurring diagnoses: We illustrated the spatial 565 

heterogeneity in deviations between different diagnoses (note that subjects can be in multiple categories), 566 

and further, compared patients with a single diagnoses to those with two, three, or more than three 567 

diagnoses, to determine whether and if so, how the location of deviations related to the number of co-568 

occurring diagnoses a patient has.   569 

 570 

Data availability: 571 

Scripts for running the analysis and visualizations are available on GitHub (https://github.com/predictive-572 

clinical-neuroscience/EFMT_Norm_Models). 573 
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Table 1: Sample details, functional scan acquisition parameters and Emotional Face Matching Task parameters for data included in the normative models.  583 

Note: Underline indicates that this parameter was input as a variable in the normative models. *NOS (Not otherwise specified). 584 

Sample details 
Functional scan acquisition 

parameters 
Emotional Face Matching Task parameters 
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Human Connectome 
Project Young Adult 

1044 
561 F 

(53.7%) 
28.76±3.70 

[22-37] 
3T Siemens 

Skyra 
33.1/720 

8 
 

52 

Match faces: 
Decide which of two 
faces presented on 
the bottom of the 
screen match the 
face at the top of the 
screen. Angry and 

fearful faces:  
Nim-Stim 

Face 
Stimulus 

Set 

6/3/18 2 3 1 

21 

156 NA 

176 

Human Connectome 
Project Development 

201 
110 F 

(54.7%) 
13.86±3.83 

[8-21] 
3T Siemens 

Prisma 
37/800 178 

UK Biobank 5000 
2487 F 
(49.7%) 

63.99±7.45 
[46- 82] 

3T Siemens 
Skyra 

39/735 

Match faces:  
Indicate which face 
[or shape] on the 
bottom row matches 
the face on the top 
row. 

NA/5/NA NA NA NA 253 8 366 

Amsterdam Open MRI 
Collection Population 

Imaging of Psychology  
200 

114 F 
(57.0%) 

22.16±1.79 
[18.25–
26.25] 

3T Phillips 
Achieva 
dStream 

28/2000 

NA 

76.1 

Match expression: 
Match the emotional 
expression of the 
target face as 
quickly as possible. 

6/4/24 

when 
selected 
or up to 

4.8s 

10 
5s – 

Reaction 
Time 

~25 290 5 135 

Duke Neurogenetics 
Study 

1246 
707 F 

(56.7%) 
20.22±1.21 

[18.09-23.07] 
3T GE 
MR750 

30/2000 NA 

Match faces:  
Decide which of two 
faces presented on 
the bottom of the 
screen match the 
face at the top of the 
screen. 

Angry, 
fearful, 

surprised, 
neutral faces: 
Ekman and 

Friesen, 1976 

4 2 

Faces: 
2–6 

(mean= 
4) 

Shapes: 
2 

Faces:  
48 

Shapes: 
36 

390 NA 195 

MIND-Set 

Reference: 
37/309 

 
Clinical 
Test: 

36/309 

21 F 
(56.7%) 

 
21 F 

(58.3%) 

38.0±16.11 
[20-74] 

 
37.1±16.50 

[20-70] 

3T Siemens 
Magentom 

Prisma 
34/1000 6 60 

Match expression: 
Indicate which one 
of the bottom two 
faces matched the 
top face in terms of 
emotional 
expression. 

Angry and 
fearful faces:  

Nim-Stim 
Face 

Stimulus 
Set 

6/2/12 5 NA NA 30 150 NA 150 

Additional details of 
clinical samples: 

Sample 
size  

Sex 

Age 
(mean+ S.D) 

[range] 
Current diagnoses 

Number of Diagnoses 
(% of total sample) 

MIND-Set 236/309 
99 F 

(41.9%) 
37.1±13.27 

[20-74] 

150 Mood Disorder 
71 Attention deficit  

hyperactivity disorder (ADHD) 
55 Autism spectrum disorder (ASD) 

22 Social Phobia  
14 Panic Disorder 

12 Generalised Anxiety Disorder 
7 Anxiety disorder NOS*  

6 Obsessive Compulsive Disorder 
5 Post Traumatic Stress Disorder 

4 Specific Phobia 
2 Agoraphobia 

1: 66 (27.9%) 
2: 65 (27.5%) 
3: 39 (16.5%) 
>3: 8 (3.38%) 
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SUPPLEMENTARY MATERIALS 585 

SUPPLEMENTARY METHODS – Sample Details: 586 

Supplementary Figure 1: Age and sex distributions of 587 
(a) the total reference sample, (b) the total clinical test 588 
sample (MIND-Set) (c) the faces>shapes train (left) and 589 
test (right) split, and the (d) the faces>baseline train (left) 590 
and test (right) split.   591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

SUPPLEMENTARY METHODS – Signal coverage of the prefrontal cortex (PFC): 602 

Due to air-tissue inhomogeneities which can diminish the acquired BOLD signal to such a degree that no 603 

activations are visible, a notorious effect within the ventral PFC, we performed targeted quality control for 604 

this extended region. Binary ROI masks were created for the dorsal ventro-medial PFC (d-vmPFC), ventral 605 

vmPFC (v-vmPFC), lateral vmPFC (l-vmPFC) and the dorso-medial PFC (dmPFC), as defined by the AAL2 606 

atlas regions 25, 27, 33 and 1 respectively (see Supplementary Figure 1C). The percentage of voxels with 607 

an absolute value greater than 0 for the contrast faces > shapes within each ROI was determined (i.e. 608 

where any signal was present regardless of its relative direction; see Supplementary Figure 1A,B). While 609 

most sites had good coverage, the coverage within the ventral and lateral vmPFC regions were particularly 610 

variable for the UK Biobank data. We therefore performed this step only on data from the UK Biobank site; 611 

this selectivity was made possible by the large number of participants we had access to, and our need to 612 

include but a fraction of the total available sample. We ranked participants in descending order of the 613 

percent of their v-vmPFC, l-vmPFC, d-vmPFC, and dmPFC covered, respectively, and selected the first 614 

5000 participants. We also collected the percentage covered value for a bilateral amygdala ROI mask, but 615 

made no exclusion/inclusions on this basis as coverage was very high across all participants and all sites.  616 

 617 
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Supplementary Table 1: Motion QC 618 

Site Full sample size Included Excluded 

AOMIC 217 217 0 

DNS 1263 1246 17 

HCP Young Adult 1044 1044 0 

HCP Development 256 256 0 

UK Biobank 26167 5000 N/A 

MIND-Set 393 389 4 

 619 

Supplementary Table 2: vmPFC QC 620 

ROI Site Sample size (n) 
Mean percentage of 

ROI covered 
Standard deviation 

Bilateral 
Amygdala 

AOMIC 217 100 0 

DNS 1246 100 0 

HCP Development 256 99.94936 0.162845 

HCP Young Adult 1044 99.98188 0.098589 

MIND Set 389 99.99966 0.006707 

UK Biobank 26120 99.47363 2.399575 

dmPFC 

AOMIC 217 99.10345 0.830591 

DNS 1246 99.61285 0.411399 

HCP Development 256 94.6524 2.460686 

HCP Young Adult 1044 96.85686 3.318827 

MIND Set 389 99.069 1.785034 

UK Biobank 26120 99.0493 1.405906 

Dorsal 
vmPFC 

AOMIC 217 85.08059 12.23881 

DNS 1246 94.68589 4.406996 

HCP Development 256 72.90154 16.11571 

HCP Young Adult 1044 98.58104 2.192929 

MIND Set 389 99.75218 0.886996 

UK Biobank 26120 94.50698 8.107753 

Lateral 
vmPFC 

AOMIC 217 98.90096 1.063159 

DNS 1246 99.82392 0.33135 

HCP Development 256 99.14376 1.003451 

HCP Young Adult 1044 99.46709 0.978404 

MIND Set 389 98.23297 1.745961 

UK Biobank 26120 89.56122 4.919904 

Ventral 
vmPFC 

AOMIC 217 96.06479 3.960334 

DNS 1246 99.45099 0.964661 

HCP Development 256 95.999 4.42593 

HCP Young Adult 1044 99.63665 0.85699 

MIND Set 389 98.83508 2.868568 

UK Biobank 26120 61.17452 15.9091 

 621 
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 622 

Supplementary Figure 2: vmPFC QC metrics. (a) Mean percentage of each ROI with signal greater than 0, used for quality control. 623 
Error bars show +/- standard deviation (b) Stacked histograms (raw participant count) of the percentage of each ROI covered, coloured 624 
by site. 625 

 626 

SUPPLEMENTARY RESULTS – Evaluation of reference normative models: 627 

 628 

 629 

Supplementary Figure 3: Evaluation of the faces>shapes (left) and faces>baseline (right) reference normative models.  630 
Histograms show the skew (a,c), and kurtosis (b,d) of the normative models, and their respective illustration on the brain (x,y,z= 4,-6,-631 
15).  632 
 633 
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SUPPLEMENTARY RESULTS – Evaluation of normative models when applied to MIND-Set cohort: 634 

 635 

 636 
Supplementary Figure 4: Evaluation of the faces>shapes (left) and faces>baseline normative models when applied to MIND-637 
Set cohort. Histograms show the explained variance (a,d), skew (b,e), and kurtosis (c,f) of the clinical data, as tested on reference 638 
normative models of EFMT related BOLD activation, and their respective illustration on the brain (x,y,z= 4,-6,-15).  639 
 640 

 641 

 642 
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SUPPLEMENTARY RESULTS – Location of deviations for diagnoses: 643 

 644 
 645 

Supplementary Figure 5: Heterogeneous location of deviations in predicted BOLD signal for different types of 646 
neurodivergence, and mental health diagnoses. Maps illustrate the percentage of participants with a neurodivergence or mental 647 
health condition who had positive (left; hot colours) or negative deviations (right; cool colours) > ±2.6 within each voxel [minimum = 648 
%5 of sample, or 1 participant where 5% was a participant count less than 1, maximum = 20% of disorder sample size]. x,y,z, = 5, -649 
28, -6. 650 
  651 
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 652 

SUPPLEMENTARY RESULTS – Location of deviations for increasing levels of co-occurring 653 

diagnoses: 654 

 655 

 656 

Supplementary Figure 6: Heterogeneous location of deviations in predicted BOLD signal for increasing levels of co-657 
occurring diagnoses. Maps illustrate the percentage of participants with a neurodivergence or mental health condition who had 658 
positive (left; hot colours) or negative deviations (right; cool colours) > ±2.6 within each voxel [minimum = %5 of sample, or 1 participant 659 
where 5% was a participant count less than 1, maximum = 20% of sample size].  660 
 661 
 662 

  663 
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