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A B S T R A C T

Background: To develop a radiomics signature for predicting overall survival (OS)/progression-free survival
(PFS) in patients with medulloblastoma (MB), and to investigate the incremental prognostic value and bio-
logical pathways of the radiomics patterns.
Methods: A radiomics signature was constructed based on magnetic resonance imaging (MRI) from a training
cohort (n = 83), and evaluated on a testing cohort (n = 83). Key pathways associated with the signature were
identified by RNA-seq (GSE151519). Prognostic value of pathway genes was assessed in a public GSE85218
cohort.
Findings: The radiomics-clinicomolecular signature predicted OS (C-index 0.762) and PFS (C-index 0.697)
better than either the radiomics signature (C-index: OS: 0.649; PFS: 0.593) or the clinicomolecular signature
(C-index: OS: 0.725; PFS: 0.691) alone, with a better calibration and classification accuracy (net reclassifica-
tion improvement: OS: 0.298, P = 0.022; PFS: 0.252, P = 0.026). Nine pathways were significantly correlated
with the radiomics signature. Average expression value of pathway genes achieved significant risk stratifica-
tion in GSE85218 cohort (log-rank P = 0.016).
Interpretation: This study demonstrated radiomics signature, which associated with dysregulated pathways,
was an independent parameter conferring incremental value over clinicomolecular factors in survival predic-
tions for MB patients.
Funding: A full list of funding bodies that contributed to this study can be found in the Acknowledgements
section.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Medulloblastoma (MB) is the most common pediatric cancer of
the central nervous system (CNS), with a 5-year overall survival (OS)
rate of 54% [1,2]. Remarkable progress on MB has revealed this tumor
to consist of at least four molecular subgroups: wingless (WNT), sonic
hedgehog (SHH), Group 3 and Group 4 [3-4]. Notable findings have
been discovered in the aspects of different tumor origins [5], various
genetic profiles [6], differential phenotypes [3,4], diverse clinical
traits [4], distinct prognosis [3,4] and potential therapeutic responses
[2] among the four subgroups. Moreover, the distinction among the
four subgroups has prompted an international consensus on MB
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Research in context

Evidence before this study

The 2016 WHO Classification of Central Nervous System (CNS)
tumors has included the four molecular subgroups, namely
sonic hedgehog (SHH), wingless (WNT), Grade 3 and Group 4
for classification of medulloblastoma (MB). However, a radio-
mics signature associated with the survivals of MB patients has
not yet been developed, and whether radiomics signature is
able to offer incremental prognostic value beyond molecular
subgroups and clinical risk factors has not been investigated.
We searched published literatures on PubMed and Web of Sci-
ence with the following terms: “(radiomics OR radiomic) AND
magnetic resonance AND (survival OR prognosis) AND medul-
loblastoma”, without date restriction or limitation to English
language publications. This search did not identify any previous
publications investigating the prognostic values of radiomics
signatures based on magnetic resonance imaging (MRI) on MB.

Added value of this study

In the current study, a radiomics signature was constructed
based on magnetic resonance imaging (MRI) from a training
cohort (n = 83), and evaluated on a testing cohort (n = 83). By
incorporating radiomics signature and clinicomolecular factors,
the resulted radiomics-clinicomolecular model predicted OS
and PFS better than either the radiomics signature or the clini-
comolecular model alone. Furthermore, a radiogenomics analy-
sis using paired MRI and RNA-seq in a GSE151519 cohort
revealed nine pathways significantly associated with the radio-
mics signature. Average expression value of pathway genes
was demonstrated to have significant prognostic value in an
external GSE85218 cohort.

Implications of all the available evidence

This study demonstrated radiomics signature, which associated
with dysregulated pathways, was an independent parameter
conferring incremental value over clinicomolecular factors in
survival predictions for MB patients.
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categorization [3], which is included in the World Health Organiza-
tion (WHO) classification of CNS tumors [7].

Recent advances in quantitative image analysis enabled better
characterization of the imaging phenotypes of the tumors, which
may offer complementary information for prognostication of MB
patients. A rapidly emerging field called radiomics converts digitally
encrypted medical images into minable quantitative data [8], and has
been utilized to increase the accuracy in survival prediction of can-
cers. For example, in patients with glioblastoma, several studies have
shown radiomics models improved the prognostic performance over
the established biomarker and clinical risk factors [9]. As for MB,
although two studies attempted to use multi-parametric MRI-based
nomograms or radiomics for predicting molecular subgroups of MB
[10,11], to our best knowledge, a radiomics signature associated with
the survivals of MB patients has not yet been developed, and whether
radiomics signature is able to offer incremental prognostic value
beyond molecular subgroups and clinical risk factors has not been
investigated. Early evidence has revealed the association between
radiomic patterns and underlying signaling pathways in several can-
cers [12,13,14]. However, the biological pathways associated with
the radiomics features that stratify MB patients for prognosis remains
elusive, which becomes one of the barriers preventing radiomics
analysis into clinical translation.
This study leverages radiomics to unravel the potential of preop-
erative multi-parametric MRI, which includes precontrast T1-
weighted imaging (T1), contrast-enhanced T1-weighted imaging
(T1c), T2-weighted imaging (T2), T2-weighted fluid-attenuated
inversion recovery (FLAIR) imaging, and apparent diffusion coeffi-
cient (ADC) maps, for prediction of both OS and progression-free sur-
vival (PFS) in MB patients. Furthermore, we explored the biological
basis of the prognostic radiomics features by revealing key pathways
associated with the radiomics features that confer prognostic signifi-
cance in MB patients.
2. Methods

2.1. Study design

The overall design of our study was illustrated in Fig. 1, including
two parts: radiomics profiling and radiogenomics analysis. Based on
a radiomics cohort with MRI data, we first identified the most prog-
nostic radiomics features and combined them into a radiomics signa-
ture for survival prediction, and then assessed the incremental
prognostic value of the signature beyond existing clinicomolecular
risk factors. Based on a radiogenomics cohort (GSE151519) with both
MRI and RNA-seq, we identified key biological pathways underlying
the radiomics features, where the prognostic value of the genes con-
tained in the pathways was validated in public database on MB
(GSE85218, including RNA-seq and survival data) published by Cav-
alli FMG et al. [15].
2.2. Patients

This study was approved by the Human Scientific Ethics Commit-
tee of the First Affiliated Hospital of Zhengzhou University (No. 2019-
KY-176). Informed consents were obtained from all patients who
provided fresh tumor specimens. For other patients, informed con-
sents were waived by the Committee. During January 2009 to July
2019, 248 pathologically diagnosed primary MB patients were surgi-
cally treated in the Department of Neurosurgery, the First Affiliated
Hospital of Zhengzhou University. Then, 166 of 248 cases were fur-
ther selected by the following criteria: (1) availability of survival
data, (2) availability of preoperative MR images, (3) availability of
multi-parametric MRI, including axial T1, T1c, T2, FLAIR, and ADC
maps, (4) availability of sufficient image quality without significant
artifacts, determined by neuroradiologists and neurosurgeons. The
selection procedure was depicted in Supplementary Figure S1.
Patients were randomly divided to a training data set (n = 83) and a
testing data set (n = 83). Clinical factors, including gender, age, preop-
erative Karnofsky performance status (KPS) scale, extent of resection
(complete resection or incomplete resection) and adjuvant therapies
(postoperative radiation therapy and chemotherapy) were collected
from the medical record system. Extent of resection was evaluated
based on neurosurgeons’ reports and postoperative MRI. We define
complete resection as no residual tumor (gross total resection), and
incomplete resection as any residual tumor reported (near-total
resection or sub-total resection). Follow-up data were acquired by
medical records, telephone follow-up, out-patient clinic, or visiting.
OS was calculated as the time interval between the date of surgery
and the date of death or the end of follow-up. PFS was calculated as
the time interval between the date of surgery and the date of recur-
rence, progression or the end of follow-up. Moreover, in the current
cohort, fresh frozen tissues of 17 MB patients with corresponding
preoperative multi-parametric MRI were acquired for RNA-seq. The
RNA-seq data has been deposited into NCBI Gene Expression Omni-
bus under accession code GSE151519. A radiogenomics analysis were
conducted based on the data of radiomics and transcriptomes of
these patients.



Fig. 1. The overview of the study design, including tumor delineation from multi-parametric MRI, radiomics feature extraction from delineated tumor regions, feature selection for
building an optimal signature, statistical analysis for radiomics model assessment, and radiogenomics analysis for identifying the key pathways.
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2.3. Molecular subgroups affiliation

Formalin-fixed paraffin embedded (FFPE) tissues were available in
all the 166 MB cases and used for detection of molecular subgroups
(WNT, SHH, Group 3, and Group 4) based on a nanoString assay
according to the protocols previously described by Northcott PA et al.
[16]. WNT, SHH, Group 3 and Group 4 subgroups were categorized by
the CodeSet, which consists of 22 genes with 5�6 signature genes in
each subgroup: WNT (DKK2, EMX2, GAD1, TNC, WIF1), SHH (ATOH1,
EYA1, HHIP, PDLIM3, SFRP1), Group 3 (EGFL11, GABRA5, IMPG2,
MAB21L2, NPR3, NRL), Group 4 (EOMES, KCNA1, KHDRBS2, OAS1,
RBM24, UNC5D), and three housekeeping genes (ACTB, GAPDH,
LDHA). The heatmap showing the expression of 22 MB signature
genes was depicted in Supplementary Figure S2.

2.4. MRI acquisition

All MR images were acquired during routine clinical work-up on 3.0
T clinical scanners (Siemens Magnetom Skyra/Trio TIM; GE Discovery
MR750; Philips Ingenia). The brain imaging protocol at our institution
included the following sequences: (a) axial and sagittal T1; (b) axial T2;
(c) axial FLAIR; (d) diffusion-weighted imaging (DWI) and the corre-
sponding ADC maps generated with the software incorporated into the
MRI unit; (e) axial, sagittal, and coronal T1c obtained after intravenous
administration of a 0.1 mmol/kg dose of gadolinium-based contrast
agent (Gadolinium-diethylenetriamine pentaacetic acid [Gd-DTPA],
Bayer Healthcare, Leverkusen, Germany, or Gadoteric Acid Meglumine
Salt Injection, Hengrui Healthcare, Jiangsu, China). Details on MRI
acquisition parameters are available in Supplementarymaterial.

2.5. RNA sequencing

Fresh frozen tissues of 17 MB patients with MRI were used for
RNA-seq. All RNA-seq data were normalized using the fragments per
kilobase transcriptome per million reads (FPKM) method [17]. Details
of the RNA samples preparation and sequencing can be found in
Supplementary material.

2.6. Tumor delineation

First, preprocessing was performed for image standardization.
The preprocessing began with N4ITK-based bias field distortion
correction. Then, all voxels were isotropically resampled into
1 £ 1 £ 1 mm3 using trilinear interpolation. Rigid registration was
performed with a 3D Slicer software on the multi-parameter MR
images for each patient using axial resampled T1c as a template with
mutual information similarity metric, generating the registered
images namely rT1, rT1c, rT2, rFLAIR, and rADC. Histogram matching
was performed to normalize the intensity distribution. Three-dimen-
sional volume of interest (VOI) of tumor contours were manually
delineated slice-by-slice using the ITK-SNAP software by a neuroradi-
ologist (J.Y. with 11 years’ experience) in the axial plane primarily
from rFLAIR images, where rT2 and rT1c were used to cross-check
the extension of the tumor and fine tune the tumor contour. The VOIs
were delineated as the tumor region, including the contrast-enhanc-
ing area, the non-enhancing area, and the necrotic portions of the
tumor. To select robust features against intra-rater and inter-rater
variations, the VOI delineation process was repeated on 30 patients
by the same radiologist (J.Y.) and by another neurosurgeon (Z.Y.Z.
with 11 years’ experience), yielding an intra-rater test data set and
an inter-rater test data set respectively. Within the VOI, fixed bin
number discretization with bin number of 150 was performed.

2.7. Radiomics features extraction

Radiomics features were calculated using the PyRadiomics tool
version 3.0, an open-source python package for radiomics feature
extraction from medical images [18]. Based on the VOI, three groups
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of features were extracted, including shape features, first-order
intensity features, and higher-order texture features. The shape fea-
tures were calculated from the delineated VOI. The intensity features
and texture features were extracted from both the original images
and the transformed images obtained by applying wavelet transform
or Laplacian of Gaussian (LoG) filtering onto the original images. All
extracted features were summarized in Supplementary Table S1.
The detailed calculations of the radiomics features used can be found
in the literature reported by Zwanenburg A et al. [19]. We extracted
5929 features from all five MR sequences in total.

2.8. Radiomics signature construction

A three-stage feature selection approach was performed. First,
features with low repeatability were excluded. The intra-rater and
inter-rater repeatability for each feature was quantified by intraclass
correlation coefficient (ICC) calculated on the intra-rater test data set
and inter-rater test data set respectively. Any feature with ICC < 0.85
were discarded. Univariate concordance index (C-index) for each
remaining feature was calculated to assess their association with OS.
The features with univariate C-index � 0.60 (positive association) or
� 0.40 (negative association) were selected as better prognostic vari-
ables for further analysis. Next, the least absolute shrinkage and
selection operator (LASSO) penalized Cox proportional hazards
regression [20] was used on the training data set to select the optimal
feature subset and build the radiomics signature. LASSO shrunk all
feature coefficients towards zero and set the coefficients of many
irrelevant features exactly to zero. To optimize the model, 10-fold
cross validation with minimum criteria was used, so the final model
gave minimum cross validation error. The remaining non-zero fea-
tures were used to construct the final regression model and were
combined into a radiomics signature. The R package glmnet was used
for LASSO modeling.

2.9. Statistical analysis

This study adhered to IBSI guidelines for reporting all necessary
details in Supplementary Table S2 to ensure reproducibility.

Validation of radiomics signature: Statistical analysis was per-
formed using R version 3.5.3. P-value < 0.05 was considered signifi-
cant. The differences in clinical, pathological, treatment and survival
were assessed by a Wilcoxon test or Chi-square test. The potential
association of the established radiomics signature with OS and PFS
was first assessed in the training data set and then tested in the test-
ing data set by using Kaplan-Meier analysis. According to a radiomics
signature-based cutoff value determined by using an optimal cutoff
analysis with X-tile software [21], patients were stratified into low-
risk and high-risk subgroups. The cutoff value was estimated on the
training data set and validated on the testing data set. A weighted
log-rank test (the G-rho rank test, rho = 1) was applied to test the sig-
nificant differences in the survival between the high-risk and low-
risk subgroups [22]. The assessment of the radiomics signature as an
independent prognostic factor was performed by integrating clinico-
molecular risk factors such as age, sex (female or male), KPS, molecu-
lar subgroups (WNT, SHH, Group 3 or Group 4), extent of resection
(complete or incomplete), radiation therapy (yes or no) and chemo-
therapy (yes or no) into the multivariate Cox proportional hazard
model. Stratified analysis was performed to assess the potential asso-
ciation of the radiomics signature with the OS and PFS in subgroups
stratified by clinicomolecular risk factors.

Incremental value of the radiomics signature: To demonstrate the
incremental value of the radiomics signature over the clinicomolecu-
lar risk factors for individualized assessment of OS and PFS, both a
clinicomolecular nomogram and a radiomics-clinicomolecular nomo-
gram was constructed in the training data set. The clinicomolecular
nomogram consisted of independent clinicomolecular risk factors
including age, sex, KPS, molecular subgroups, extent of resection,
radiation therapy and chemotherapy. Based on the clinicomolecular
nomogram, the radiomics-clinicomolecular nomogram incorporated
molecular subgroups, clinical risk factors and the radiomics signature
based on Cox analysis.

According to the guideline reported by Steyerberg EW et al. [23],
the incremental value of the radiomics signature to the clinicomolec-
ular risk factors was assessed in terms of discrimination, calibration,
reclassification and clinical usefulness. Specifically, the C-index was
calculated with R package survival and used as a discrimination mea-
sure [24]. Calibration curves were plotted with R package rms to
assess the agreement between the predicted OS/PFS based on pro-
posed nomograms and the observed survival outcomes [25]. The net
reclassification improvement (NRI) was calculated using R package
survIDINRI to evaluate the usefulness improvement added by the
radiomics signature [26]. The Akaike information criterion (AIC) was
computed using R package stats to assess the risk of model overfit-
ting. A decision curve analysis was performed with R package rmda
to confirm the clinical usefulness of the radiomics-clinicomolecular
nomogram [27].

Identification of biological pathways associated with radiomics
signature: Based on the radiogenomics analysis cohort (GSE151519)
with both MRI and RNA-seq data, we further investigated the possi-
ble biological pathways underlying the radiomics features. First, dif-
ferentially expressing genes (DEGs) between the high- and low-risk
groups stratified by the radiomics signature were identified using an
R package DESeq2. Then, significant DEGs with false discovery rate
(FDR)-adjusted P < 0.25 and |log2(Fold Change)| > 0.10 were
enriched to find overrepresented pathways using an R package clus-
terProfiler by querying the following annotated databases: Gene
Ontology (GO) Biological Process, Kyoto Encyclopedia of Genes and
Genomes (KEGG), Pathway Interaction Database (PID), and Reactome.
FDR-adjusted hypergeometric P < 0.05 indicated significant enrich-
ment. Then, a sample-based gene set variation analysis (GSVA) was
performed on each enriched pathway to calculate a patient-specific
GSVA score that quantified the pathway activity [28]. A Pearson cor-
relation was used to assess if the pathway GSVA score was signifi-
cantly associated (FDR-adjusted P value < 0.10) with the radiomics
signature. The significantly correlated pathways were used to anno-
tate the radiomics signature. Finally, the collective prognostic value
of the radiomics-correlated pathways was assessed on a public
cohort (GSE85218) by Cox regression using the average expression
value of the genes contained in all significantly correlated pathways.
Based on a cutoff value of the average expression, the patients in the
public cohort were stratified into two risk groups, where log-rank P
< 0.05 indicated the prognostic significance.

2.10. Role of funding source

Funders did not play any part in study design, data collection, data
analyses, interpretation, or writing of the manuscript.

3. Results

3.1. Patient characteristics

According to the selection criteria, a total of 166 patients were
included in the current study. The distribution of molecular sub-
groups of the current cohort was depicted in Supplementary Figure
S2. Between the training and testing data sets, there were no signifi-
cant differences in OS and PFS (Mean OS: training data set, 26.10
months; testing data set, 25.60 months; log-rank P-value, 0.5807.
Mean PFS: training data set, 24.36 months, testing data set, 23.23
months; log-rank P-value, 0.5448). Furthermore, the distribution of
clinical characteristics (subgroup [Chi-square P = 0.4013], extent of
resection [Chi-square P = 0.8669], radiation [Chi-square P = 0.7191],
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chemotherapy [Chi-square P = 0.3523], sex [Chi-square P = 0.0908],
age [Wilcoxon’s P = 0.4795], KPS [Wilcoxon’s P = 0.5966]) was bal-
anced between the training and testing data sets (Supplementary
Table S3).

3.2. Feature selection and radiomics signature construction

Three-stage feature selection method was performed. After the
intra-rater and inter-rater robustness tests, 1197 out of 5929 features
remained (Supplementary Figure S3). After the univariate selection,
113 of 1197 radiomic features were selected for further analysis.
Then, based on the selected features, the LASSO Cox model was built
to fit the training data set. The detailed description of the radiomics
features used in this study can be found in Supplementary material.
Eleven radiomics features f1—f11 with non-zero coefficients were
selected by LASSO, as shown in Supplementary Table S4. The LASSO
feature selection and signature construction were described in Sup-
plementary Figure S4A-B. Finally, a radiomics signature was con-
structed by linearly combining the eleven features weighted by their
coefficients as

Radiomics signature = �0.17755270 � f1 �0.12569200 �
f2 + 0.03630490 � f3 + 0.34856512 � f4�0.01929311 � f5 + 0.42052760
� f6 + 0.12144314 � f7�0.05861710 � f8�0.01884836 � f9�0.19943583
� f10�0.19353807 � f11. The features of f1 to f11 were described in Sup-
plementary Table S4.

The optimum cutoff value generated by the X-tile software was
0.10. Using this cutoff value, patients were divided into a high-risk
Fig. 2. Kaplan-Meier analysis according to the radiomics signature for OS (A) and PFS (B) in
associations of the radiomics signature with both OS and PFS were demonstrated. The numbe
subgroup (radiomics signature � 0.10) and a low-risk subgroup
(radiomics signature < 0.10). The signature value distribution was
shown in Supplementary Figure S4C.

3.3. Validation of the radiomics signature

The association of radiomics signature with both OS (log-rank
P = 0.0031; hazard ratio (HR) = 5.265, 95% confidence interval [CI]:
2.414, 11.48) and PFS (log-rank P = 0.0033; HR = 3.816, CI: 1.813,
8.033) was significant in training data set, as shown in Fig. 2A and 2B,
respectively. The significant association was then demonstrated in
the testing data set for both OS (log-rank P = 0.0086; HR = 4.3558,
95% CI: 1.66, 11.43) and PFS (log-rank P = 0.017; HR = 2.4636, 95% CI:
1.061, 5.722), as shown in Fig. 2C and 2D, respectively. The log-rank P
value revealed significant difference in both OS and PFS distributions
of the low-risk and high-risk subgroups. The radiomics signature was
identified as an independent risk factor by the Cox regression analy-
sis (HR: 4.7372, 95% CI: 2.574, 8.72, P = 2e-04). The Kaplan-Meier
analyses for both OS and PFS in patient subgroups stratified by clini-
comolecular risk factors were shown in the Supplementary Figure
S5 and Supplementary Figure S6, respectively, where significant
associations (log-rank P < 0.05) were found in several subgroups.

3.4. Assessment of the incremental value of the radiomics signature

The clinicomolecular nomogram and radiomics-clinicomolecular
nomogram for individual OS prediction were shown in Fig. 3A and
the training data set, and for OS (C) and PFS (D) in the testing data set. The significant
rs of patients at risk for each time step are shown in the bottom.



Fig. 3. The clinicomolecular nomogram (A) and the radiomics-clinicomolecular nomogram (B) for predicting the 1-, 2-, and 3-year OS outcomes, along with the calibration curves
for assessment of the clinicomolecular nomogram (C) and the radiomics-clinicomolecular nomogram (D).
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3B, respectively. The calibration curves of the clinicomolecular and
radiomics-clinicomolecular nomograms for the probability of 1-, 2-,
or 3-year death were depicted in Fig. 3C and 3D, respectively. Com-
pared with the calibration curve of the clinicomolecular nomogram,
the calibration curve of the radiomics-clinicomolecular nomogram
demonstrated better agreement between the prediction and observa-
tion.

Similarly, we established a clinicomolecular nomogram and a
radiomics-clinicomolecular nomogram for individualized PFS predic-
tion, as shown in Supplementary Figure S7A and S7B, respectively.
The calibration curve of the radiomics-clinicomolecular nomogram
demonstrated better agreement between prediction and observation
than that of the clinicomolecular nomogram, as shown in Supple-
mentary Figure S7C-D.

The C-indices and AIC values were summarized in Table 1 for the
radiomics signature, the clinicomolecular signature and the radio-
mics-clinicomolecular signature in both training and testing data
sets. For OS prediction, the radiomics signature achieved a C-index of
0.677 (95% CI: 0.600, 0.754) in the training data set and 0.649 (95%
CI: 0.567, 0.731) in the testing data set. The clinicomolecular signa-
ture achieved a C-index of 0.769 (95% CI: 0.697, 0.842) in the training
data set and 0.725 (95% CI: 0.642, 0.809) in the testing data set. By
combining the radiomics signature and the clinicomolecular risk
factors, the discriminative performances in terms of C-index
improved to 0.817 (95% CI: 0.759, 0.874) in the training data set and
0.762 (95% CI: 0.688, 0.836) in the testing data set. For PFS prediction,
the C-index of the radiomics signature achieved 0.658 (95% CI: 0.581,
0.735) in the training data set and 0.593 (95% CI: 0.507, 0.679) in the
testing data set. The clinicomolecular signature achieved a C-index of
0.749 (95% CI: 0.678, 0.821) in the training data set and 0.691 (95%
CI: 0.604, 0.779) in the testing data set. After integrating the radio-
mics signature with clinicomolecular risk factors, the C-index
increased to 0.787 (95% CI: 0.720, 0.855) in the training data set and
0.697 (95% CI: 0.612, 0.783) in the testing data set. Among all predic-
tion models, the radiomics-clinicomolecular models achieved the
lowest AIC values, indicating its better reliability against overfitting.
The Kaplan-Meier analysis results of OS and PFS for both the clinico-
molecular model and the radiomics-clinicomolecular model were
shown in Supplementary Figure S8A-H, respectively, where signifi-
cant prognostic associations (log-rank P < 0.05) were found for both
models.

The integration of the radiomics signature with the clinicomolec-
ular risk factors generated a total NRI of 0.298 (95% CI: 0.021, 0.496,
P = 0.022) for OS prediction and a total NRI of 0.252 (95% CI: 0.012,
0.509, P = 0.026) for PFS prediction, implying the improved classifica-
tion performance for both OS and PFS prediction. The decision curves



Table 1
C-indices and AIC values for OS and PFS prediction in both training and testing data sets. CM and R-
CM are short for clinicomolecular and radiomics-clinicomolecular, respectively.

Model C-index AIC

Training data set

OS PFS OS PFS

Radiomics signature 0.677 (0.600 0.754) 0.658 (0.581 0.735) 291.1901 334.4212
CM nomogram 0.769 (0.697 0.842) 0.749 (0.678 0.821) 277.4064 318.3184
R��CM nomogram 0.817 (0.759 0.874) 0.787 (0.720 0.855) 261.6403 305.9829

Testing data set

OS PFS OS PFS

Radiomics signature 0.649 (0.567 0.731) 0.593 (0.507 0.679) 257.0576 310.8909
CM nomogram 0.725 (0.642 0.809) 0.691 (0.604 0.779) 242.5913 296.3209
R-CM nomogram 0.762 (0.688 0.836) 0.697 (0.612 0.783) 239.7708 294.9218
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for both OS and PFS prediction shown in Fig. 4 demonstrated the clin-
ical usefulness of the prediction models, indicating that the radio-
mics-clinicomolecular nomogram achieved a higher overall net
benefit than the clinicomolecular nomogram within most range of
threshold probabilities.
3.5. Identification of biological pathways associated with radiomics
signature

In our MB cohort with both data of RNA-seq and MRI (GSE151519,
7 male and 10 female, age range: 2.0�26.0 years, median age: 9.0
years), 559 DEGs were identified to be differentially expressed
between the high- and low-risk groups stratified by the radiomics
signature, as shown by a volcano plot in Fig. 5A. The enrichment anal-
ysis based on the DEGs identified the key biological pathways, as
shown in Fig. 5B. A complete list of all enriched pathways was pro-
vided in Supplementary Table S5. The radiomics signature was
found to be significantly associated with up regulation of genes
involved in WNT signaling, P53 pathway, PI3K/AKT pathway, inter-
leukin-2 pathway, and membrane protein activities, as shown in
Fig. 5C. The collective prognostic performance of the average expres-
sion value of genes contained in the nine pathways was evaluated in
the GSE85218 cohort (From all 763 patients, 612 patients with avail-
able survival data were included while the other 151 patients with-
out available survival data were excluded; for the included 612
patients: 392 male and 207 female and 13 unavailable, age range:
0.24�56.8 years, median age: 8.0 years, survival range: 0.16�300
Fig. 4. Decision curve analysis (DCA) for radiomics-clinicomolecular (R-CM) nomogram and
sents the threshold probability and the y-axis measures the net benefit.
months, mean survival: 59.61 months). The results of Kaplan-Meier
analysis (Fig. 5D) showed that patients in the public cohort can be
stratified into two risk groups in terms of OS (log-rank P = 0.016;
HR = 0.6322, 95% CI: 0.3789, 1.055) with a cutoff value of 5.83. To fur-
ther reveal the radiomics-pathway-prognosis relevance, the feature
maps of 11 radiomics features of two representative patients in the
low- and high-risk groups were presented respectively in Fig. 5E. The
delineated tumor was overlapped in red on the MR images. Radio-
mics feature maps of the selected 11 features were presented. The
figures from left to right were: rT1, rT1c, rT2, rFLAIR, rADC image
overlapped with the tumor contour, f1—f11 features (as defined in
Supplementary Table S4). The feature maps as a visualization tool
can reveal the intratumoral variations of the imaging patterns
between the high- and low-risk patients, showing the association of
the radiomics signature with patient prognosis. Detailed description
of the meanings of the 11 features can be found in Supplementary
material.
4. Discussion

Current risk stratification for patients with MB is based on clinical
factors (age, extent of resection, etc.) or molecular subgroups [3]. In
this study, we utilized maching-learninng approaches to develop and
validate a radiomics signature for prediction of OS and PFS from pre-
operative MRI (T1, T1c, T2, FLAIR and ADC) and a radiomics-clinico-
molecular prognostic nomogram for assessing the added value of the
radiomics signature over existing risk factors in MB patients.
clinicomolecular (CM) nomogram to estimate the OS (A) and PFS (B). The x-axis repre-



Fig. 5. A summary of the radiogenomics analysis results showing the radiomics-transcriptomics-prognosis association in MB. (A) Volcano plot of the differentially expressed genes
(DEGs) between risk groups stratified by the radiomics signature. The vertical line is at |log2Fold Change| = 0.10 while the horizontal line at false discovery rate (FDR) = 0.25. The red
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Moreover, paired data of radiomics and transcriptomes of MB were
investigated for revealing possible signaling pathways associated
with radiomic patterns.

In recent years, an increasing number of reports have demon-
strated that radiomics analysis on MRI may have the potential to dif-
ferentiate diagnostic ambiguity, to monitor response to adjuvant
therapies, to characterize the genotypes of CNS tumors, and to
improve prognostic models [8,9,29]. Typically, gliomas are one of the
most studied tumors. On the one hand, studies have revealed that
machine learning based radiomics are able to predict molecular
markers such as IDH mutations [30] and molecular subtypes in glio-
mas [31]. On the other hand, advancement has also been achieved in
survival prediction of gliomas by radiomics [9]. As for MB, Dasgupta
A et al. [10] have used 19 conventional MRI features in 111 patients
with MB for prediction of molecular subgroups, and Iv M et al. [11]
developed and validated a machine-learning radiomic method that
identifies MRI features predictive of molecular subgroups of MB. To
our knowledge, the relationships between radiomic features and the
survivals of MB patients has not been investigated.

The present study revealed that radiomic signatures from MRI has
independent and incremental prognostic value with respect to the
putative molecular and clinical parameters for individualized survival
prediction in patients with MB. Previous studies have reported the
heterogeneity within the four molecular subgroups of MB. For exam-
ple, Cavalli FMG et al. [15] identified 12 clinical and biological rele-
vant subtypes within the frame of the four molecular subgroups of
MB by integrative clustering. It is reasonable to infer that the existing
molecular grouping still has room to be refined, and radiomics may
identify radiographic phenotypes that could offer distinct and com-
plementary prognostic information beyond molecular subgroups.
Two intensity features and nine texture features were selected for
constituting the signature, while no shape features were selected.
This result emphasized the prognostic value of intensity/texture het-
erogeneity within tumor for MB. The feature maps in Fig. 5E indicate
that the selected features can capture subtle risk-relevant intratu-
moral heterogeneity at the radiological level and thus are associated
with patient prognosis. Detailed description of the meanings of the
eleven features can be found in Supplementary material. Note that
by incorporating the radiomics signature into the clinicomolecular
model, the C-index in the testing data set for PFS prediction increased
slightly by 0.06, less than that for OS prediction of 0.37 (Table 1).

One of the major obstacles lies in radiomic research is the obscu-
rity associated with the underlying biological explanations of radio-
mic features. In the current study, a radiogenomic analysis of MB
based on integrative analysis of radiomic and transcriptomic profiles
indicated that a high-risk radiomic phenotype is significantly associ-
ated with several dysregulated signaling pathways, most of which
were demonstrated to play important parts in the carcinogenesis or
progression of MB. For example, WNT signaling cascade is well
known in MB as it is the dominating pathway of WNT subgroup [3-
5], while PI3K/AKT pathway was found to have cross-talk with WNT
pathway in MB pathophysiology [32]. Moreover, PI3K/AKT pathway
was also revealed to be activated in MB cell proliferation [33] and
related to poor prognosis in Group 3 and 4 subgroups [34]. In addi-
tion, as upstream molecules of PI3K/AKT pathway, transmembrane
receptor tyrosine kinases such as ERBB4 were identified as key pro-
teins in the aberrant signaling specific to Group 4 MB [35], and EphB2
was revealed to play a pivotal role in MB cell invasion [36]. As for p53
regulation pathway, IL2 pathway and TNF pathway, these signaling
and green dots represent DEGs found to be upregulated and downregulated, respectively.
Encyclopedia of Genes and Genomes (KEGG, green), Pathway Interaction Database (PID, blue
of enriched pathways significantly correlated with the radiomics signature. (D) Kaplan-Meie
signature-correlated pathways for OS prediction in the public GSE85218 cohort. (E) MR imag
fied into the high-risk group (top two rows, OS = 2 months, Radiomics signature score = 0
score = �1.1124).
pathways are canonical pathways in carcinogenesis and significantly
related to SHH, Group 3 and Group 4 subgroups of MB [34]. Further-
more, the mean expression of the pathway genes was found to be sig-
nificantly associated with overall survival, as assessed in a public
GSE85218 cohort [15], demonstrating that the radiomics-associated
pathway genes may be involved in key biological processes that con-
tribute to MB prognosis.

Admittedly, this study has limitations. First, the relative higher
proportion of Group 3 (44%) in our cohort (n = 166) compared to that
(27%) reported by the international meta-analysis (n = 550) [3] may
be explained by the relatively limited sample size of this study. Fur-
ther investigations with larger sample size from multiple institutions
are necessary to substantiate our findings. Second, this study lacks
volumetric MRI data, which could introduce significant interpolation
when 5 mm thick slices were resampled to 1 mm thickness. Third,
despite our study included the most common five MR sequences,
incorporating advanced MRI sequences such as magnetic resonance
spectroscopy (MRS), and dynamic susceptibility contrast (DSC) perfu-
sion may provide more information and boost prognostication per-
formance. Fourth, the sample size of fresh tumor sepcimens used for
RNA-sequencing (n = 17) was limited, and larger sample size for
radiogenomic analysis was needed in future studies.

In conclusion, the current study demonstrated proof-of-concept
results for integrating radiomics into nomograms comprising of
molecular subgroups and clinical factors for improving prognostica-
tion performance of MB patients. Notably, we revealed that the radio-
mic features, which are associated with distinct biological pathways,
could bring considerably incremental values to the existing clinico-
molecular factors for survival prediction in MB patients.
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