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Pancreatic cancer (PC) is a malignant tumor with poor prognosis. The poor effect of surgery and chemotherapy makes the
research of immunotherapy target molecules significant. Therefore, identifying the new molecular targets of PC is
important for patients. In our study, we systematically analyzed molecular correlates of pancreatic cancer by bioinformatic
analysis. We characterized differentially expressed analysis based on the TCGA pancreatic cancer dataset. Then, univariate
Cox regression was employed to screen out overall survival- (OS-) related DEGs. Based on these genes, we established a
risk signature by the multivariate Cox regression model. The ICGC cohort and GSE62452 cohort were used to validate the
reliability of the risk signature. The impact of T lymphocyte-related genes from risk signature was confirmed in PC. Here,
we observed the correlation between the T lymphocyte-related genes and the expression level of targeted therapy. We
established a five-mRNA (LY6D, ANLN, ZNF488, MYEOV, and SCN11A) prognostic risk signature. Next, we identified
ANLN and MYEOV that were associated with T lymphocyte infiltrations (P < 0:05). High ANLN and MYEOV expression
levels had a poorer prognosis in decreased T lymphocyte subgroup in PC. Correlation analysis between ANLN and
MYEOV and immunomodulators showed that ANLN and MYEOV may have potential value in pancreatic cancer
immunotherapy.

1. Introduction

Pancreatic cancer is a malignant tumor with fewer than 7% of
patients surviving the past 5 years [1]. It has one of the worst
outcomes among all cancers with a median survival of
approximately 6 months [2]. Pancreatic cancer is forecast
to be the second most common cancer in all malignant can-
cers by 2030 [3]. The high mortality is due to extensive
metastasis in the early stages and resistance to therapy. Com-
mon chemotherapy options for pancreatic ductal adenocarci-

noma (PDAC) such as 5-fluorouracil (5FU), nab-paclitaxel,
oxaliplatin, or combination therapy like FOLFIRINOX may
lead to tumor resistance [4]. With the prevalence of chemo-
therapy resistance, immunotherapy may be an emerging
treatment of pancreatic cancer. An important component
of immunotherapy is cytotoxic T lymphocytes, which can kill
cancer cells through antigen-antibody binding, currently
known as immunotherapy such as immunomodulators IL-2
or chimeric antigen receptor (CAR) T cell therapy [5, 6].
However, the effect of recent immune therapy trials was not
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Figure 1: The significantly altered mRNAs in PC samples. (a) Volcano plot revealed the significantly differentially expressed mRNAs between
PC and non-PC controls. (b) The differentially expressed mRNAs from TCGA PC cohort were displayed by heat map. PC: pancreatic cancer.
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Figure 2: Continued.
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ideal such as checkpoint blockade or engineered T cells,
because of the low degree of T cell infiltration in pancreatic
cancer [7]. Therefore, our research aims to find molecules,
related to clinical significance, T lymphocyte infiltrations,
and immune cells of pancreatic cancer patients and explore
mechanisms further to serve as potential immunotherapy
targets.

2. Materials and Methods

2.1. Data Acquisition. RNA-seq count files and clinical infor-
mation of pancreatic cancer (PC) were downloaded from the
TCGA website (https://portal.gdc.cancer.gov/) [8] and ICGC
website (https://daco.icgc.org/) [9]. GSE62452 data was
obtained from the Gene Expression Omnibus (https://www
.ncbi.nlm.nih.gov/geo/) [10]. The inclusion criteria were as
follows: (a) patients with PC; and(b) complete gene expres-
sion profiles and survival information. Finally, 178 PC
patients (training cohort) were selected in this study. 66
and 143 PC patients (validation cohorts) were selected,
respectively. Immunohistochemical (IHC) sections of genes
are publicly available on Human Protein Atlas (https://
www.proteinatlas.org/) [11].

2.2. Construction and Validation of Prognostic Risk Signature.
The “limma” package in R software (version 4.0.2) was used
to read, normalize, and explore the datasets to identify differ-
entially expressed genes (DEGs) [12]. Univariate Cox regres-
sion was performed to screen DEGs significantly associated
with overall survival (OS) in the TCGA pancreatic cancer
dataset. The Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression was used to reduce data size and
select the optimal mRNAs [13]. Multivariable Cox regression
was conducted to establish the prognostic risk signature

based on the results of LASSO regression. The following
formula was used to calculate risk score of each patient: risk
score =∑Ex × C, where C is the coefficient, and Ex is the
relative expression level of each DEG. The median risk score
was used as our cutoff value to divide the PC patients into
high-risk and low-risk groups. In addition, Kaplan-Meier
survival plot was utilized to analyze the overall survival
(OS) difference between the two groups. Second, we evaluate
the performance of our model based on ICGC cohort and
GSE62452 cohort.

Univariate and multivariate Cox regression analyses were
conducted to whether risk score is an independent risk factor
of OS in PC patients. Covariates included age, gender, race,
stage, T, N, grade, and risk score. The nomogram was formu-
lated to provide visualized risk prediction. The calibration
was generated to assess the consistency between actual and
predicted survival.

2.3. Exploration of Gene-T Lymphocyte Infiltrations
Relationships. We calculated the correlation between the
gene expression level and GZMB/CD8A ratio. Genes were
considered to be related to the T lymphocyte infiltrations
when P < 0:05 and further discussed relationships with
immune cell lines. We obtained gene sets of immune cells
from a previous study [14] (Table S1). We computed
GSVA (gene set variation analysis) scores by R − package
“Genome Set Variance Analysis (GSVA).” The top and
bottom 25% of GSVA score patients were divided in high
and low groups, respectively [15]. By comparing mRNA
levels of selected genes in the two groups, we explored the
gene-T lymphocyte infiltrations relationships.

2.4. The Analysis of Survival Prognosis Based on Gene-T
Lymphocyte Infiltrations. The Kaplan-Meier database
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Figure 2: Construction of the prognostic signature based on the TCGA cohort. (a) The OS of patients in the high-risk group shorter than
those in the low-risk group. (b) The ROC analysis in the TCGA cohort. (c) The low and high score group for the prognostic signature in
PC patients. (d) The survival status and duration of PC patients. (e) Heatmap of the 5 key mRNA expressions in PC. PC: pancreatic cancer.
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(http://kmplot.com/analysis/) can analyze the correlation
between selected genes and specific tumor prognosis from
multiple dimensions [16]. Sources for the databases include
Gene Expression Omnibus (GEO), European Genome-
phenome Archive (EGA), and The Cancer Genome Atlas
(TCGA). Therefore, we used this database to analyze the
impact of T lymphocyte cells on survival rates in pancreatic
cancer. The hazard ratios (HRs) with 95% confidence inter-
vals (CI) and log-rank P values were also calculated.

2.5. Gene Set Enrichment Analysis (GSEA). In this study, we
performed single-gene GSEA to explore the potential roles
of selected genes included in our risk signature in PC. GSEA
generated an initial list on the classification of the genes
according to their correlation with each selected gene expres-

sion by using the Pearson method. GSEA was performed
using GSEA3.0 (http://www.broad.mit.edu/gsea/) [17]. The
phenotype label that we put forth was the expression level
of the selected gene. The nominal P < 0:05 and the FDR <
0:25 were considered statistically significant.

2.6. Exploration of the Association between Genes and
Immunomodulators. The TISIDB database (http://cis.hku.hk/
TISIDB) enables an investigation of the correlations for
selected genes with immunomodulators and chemokines
[18]. In this study, we used the TISIDB database to investigate
correlations with selected genes and immunomodulators.

2.7. Statistical Analysis. Statistical analysis was performed
with R software (version 4.0.2). The “ggplot2” package in R
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Figure 3: Validation of the prognostic signature with the ICGC and GSE62452 validation cohort. (a) Kaplan-Meier curves of OS in the high-
risk and the low-risk groups stratified by the prognostic signature in the ICGC cohort. (b) Kaplan-Meier curves of OS in the high-risk and the
low-risk groups stratified by the prognostic signature in the GSE62452. (c) The ROC analysis in the ICGC cohort. (d) The ROC analysis in the
GSE62452.
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was used to draw the volcano plot and heatmaps. The chi-
square test was used to evaluate the differences of clinico-
pathological parameters between the high-risk and low-risk
groups. Survival curves were generated by the Kaplan-
Meier method. Univariate, LASSO, and multivariate regres-
sion analyses were performed to explore the prognostic risk
model. Time-dependent ROC analysis was used to evaluate
the accuracy of the models. GSVA was performed to com-
pute the immune cell type scores. The results were consid-
ered to be statistically significant for P < 0:05.

3. Results

3.1. Differentially Expressed Genes in Cancer Tissues and
Normal Tissues. The detailed workflow of our study is shown
as a chart (Figure S1). RNA-seq from 186 tumor tissue
samples and 36 nontumor samples was downloaded from
TCGA. Volcano plot was used to visualize the altered
mRNA expression pattern of TCGA PC cohort. A total of
234 DEmRNAs were identified across all the datasets
consisting of 168 upregulated and 66 downregulated
DEmRNAs (Figure 1(a)). Among them, MUC2 and STAB2
were the most upregulated and downregulated mRNAs in
Table S2. Heatmap was used to visualize the expression
levels of the significantly differentially expressed mRNAs.
The blue color was assigned to the relatively low
expression, while the red color represented the relatively
high expression (Figure 1(b)).

3.2. The Construction and Validation of Prognostic Signature
Based on the PC Cohorts. The mRNAs that were significantly
associated with OS were identified by univariate analysis

based on TCGA cohort (Table S3). The LASSO
regression identified 8 optimal mRNAs including LY6D,
FAM83A, ANLN, LAMA3, ZNF488, MYEOV, PLAAT2,
and SCN11A (Figure S2). Then, the above eight mRNAs
were further subjected to multivariate Cox regression
analysis. The multivariate analysis showed that LY6D,
ANLN, ZNF488, MYEOV, and SCN11A were the
independent prognostic mRNAs for PC. The risk score for
each patient was calculated with the following formula:
ð0:1041× LY6DÞ+ ð0:2339 × ANLNÞ+ ð0:1388 × ZNF488Þ +
ð0:1260 ×MYEOVÞ + ð−0:2197 × SCN11AÞ. Based on the
median value of the risk scores, 89 and 88 patients were
classified into the high- and low-risk groups, respectively.
The OS was significantly shorter in the high-risk group than
in the low-risk group (P = 1:013e − 06) (Figure 2(a)). Then, a
time-dependent ROC curve was constructed to determine
the predictive accuracy of the prognostic signature. The area
under the curve (AUC) of the prognostic signature for 1-
year OS, 2-year OS, and 3-year OS was 0.764, 0.757, and
0.795, indicating good predictive accuracy (Figure 2(b)).
Figure 2(c) shows the distributions of risk scores, and the
distributions of OS and OS status are demonstrated in
Figure 2(d). The expression pattern of these five prognostic
mRNAs between high-risk and low-risk groups is shown in
Figure 2(e).

To confirm that the prognostic signature that had similar
predictive values in different populations, we then used it to
predict OS in two independent external validation cohorts
using the median risk score as the cutoff.

A total of 143 patients in the ICGC cohort (validation
cohort -1) were classified into a low-risk group (n = 72) and
a high-risk group (n = 71), and the OS of the PC patients in
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Figure 4: The expression distribution of LY6D, ANLN, ZNF488, MYEOV, and SCN11A in tumor tissues and normal tissues. Asterisks
represent levels of significance. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗ P < 0:001.
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Figure 5: Continued.
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the high-risk group was significantly lower than that of the
patients in the low-risk group (P = 3:043e − 02; Figure 3(a)).
The prognostic signature constructed with the ICGC cohort
also showed a favorable predictive ability for the 1-, 2-, and
3-year OS rates, with AUC values of 0.617, 0.641, and
0.659, respectively (Figure 3(c)). In addition, as shown in
Figure 3(b), a total of 66 patients in the GEO cohort
GSE62452 (validation cohort-2) were classified into a low-
risk group (n = 33) and a high-risk group (n = 33), and the
OS of the PC patients in the high-risk group was significantly
lower than that of patients in the low-risk group
(P = 7:629e − 03). The result generated by the GSE62452
cohort also showed a favorable predictive ability for the 1-,
2-, and 3-year OS rates, with AUC values of 0.593.0.722,
and 0.833, respectively (Figure 3(d)).

Furthermore, we analyzed the expression levels of LY6D,
ANLN, ZNF488, MYEOV, and SCN11A in PC tissues. We
found that these five genes are highly expressed in tumor
tissues (Figure 4).

Among the 5 genes in the OS-related prediction model,
the high expression of MYEOV (P = 2:336e − 08), LY6D
(P = 9:737e − 04), ANLN (P = 6:508e − 04), and ZNF488
(P = 1:366e − 04) genes was associated with worse prognosis
in PC in Kaplan–Meier curves according to the median
values of the gene expression (Figures 5(a)–5(d)). In addi-
tion, the high expression of the SCN11A (P = 9:737e − 04)
gene was associated with better prognosis in Kaplan–Meier
curves according to the median values of the gene expression
(Figure 5(e)).

Furthermore, the correlation analysis between the risk
group and clinicopathologic features find that high risk score
is closely related to tumor grade (G1 vs G2 P = 0:00082, G1 vs
G3-4 P = 0:00014) and T stage (T2 vs T3-4, P = 0:029), but is

not related to gender, race, age, pathological stage, and N
stage (Figure 6, Figure S3).

3.3. The Prognostic Signature Is an Independent Prognostic
Factor for Pancreatic Patients by Cox Regression Analyses.
To determine whether the prognostic signature for OS is
an independent prognostic factor for PC patients, we per-
formed Cox regression analysis. Univariate Cox regression
analysis showed that stage, grade, T stage, N stage, and
risk score were significantly associated with OS in PC
patients (Figure 7(a)). Multivariate Cox regression analysis
showed that risk score was an independent factor influenc-
ing PC prognosis (Figure 7(b)).

3.4. NomogramModel Construction and Prediction. To estab-
lish a clinically applicable method for predicting the progno-
sis of PC patients, we established a prognostic nomogram to
predict the survival probability at 1, 2, and 3 years based on
the TCGA cohort.

As shown in Figure 7(a), the risk signature and other
clinicopathological parameters such as age, gender, race,
tumor grade, stage, T stage, and N stage were included
in the nomogram model to predict the prognosis of PC.
A nomogram-based score for each patient was obtained
according to the risk score and clinical parameters on
the point scale. The 1-year OS, 2-year OS, or 3-year OS
of each PC patient could be predicted by calculating the
total nomogram score. The calibration curves showed that
the nomogram model we built up exhibited good perfor-
mance for predicting the 1-year OS of PC (Figure 8(b)).

3.5. The Impact of T Lymphocyte-Related Genes in Pancreatic
Cancer. We have confirmed that the expressions of ANLN
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Figure 5: Kaplan-Meier survival curves for the 5 prognostic mRNAs for PC in the TCGA dataset. MYEOV, LY6D, ANLN, and ZNF488 were
unfavorable factors, and SCN11A was confirmed to be favorable prognostic factors for PC. PC: pancreatic cancer.
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(P = 5:98e − 06, correlation score = 0:33108779) and MYEOV
(P = 0:023, correlation score = 0:16896960) were associated
with the GZMB/CD8A ratio (Figure 9). ANLN was observed
to be related to 8 immune cell lines, and MYEOV was related
to 9 immune cell lines (Figures 10 and 11).

To elucidate the underlying mechanisms by which the
ANLN and MYEOV were associated with different T cell
immune infiltrations, we analyzed the effects of somatic cell
copy number alternations (CNAs) of the ANLN and
MYEOV on T immune cell infiltration. The CNAs of the
identified ANLN and MYEOV, including arm-level deletion
and arm-level gain, significantly affected the infiltration level
of CD4+ T cells (Figure 12).

The results showed that the expression of ANLN of PC in
decreased CD4+ memory T cells cohort had poorer OS and
RFS, respectively (OS, log rank P = 3:4e − 05; RFS, log
rank P = 1:5e − 05) (Figures 13(a) and 13(e)), But there
was no significant correlation between the high ANLN and
the prognosis of OS or RFS in the enriched CD4+ memory
T cells (OS, log rank P = 0:32; RFS, log rank P = 0:077),
respectively (Figures 13(b) and 13(f)). For the high MYEOV,
there was only no significant correlation between the high
MYEOV and the prognosis of RFS in the enriched CD4+
memory T cells (RFS, log rank P = 0:2) (Figure 13(h)).

3.6. Underlying Mechanisms of the ANLN and MYEOV in
PC. Interestingly, we found that the expression levels of
ANLN and MYEOV have a significant positive correlation
(Figure S4). Then, we analyzed the expression of the
proteins encoded by the two genes using clinical specimens
from the Human Protein Profiles. ANLN and MYEOV
were moderately positive in the PC tissue relative to their
expression levels in the normal tissue (Figure S5). In
addition, the single-gene GSEA results show that the two
genes have many of the same significantly enriched KEGG
pathways (Figure 14).

3.7. Effectiveness Predicting of Targeted Immunomodulators
with ANLN andMYEOV. Immunomodulators can be further
classified into immunoinhibitors, immunostimulators and
major histocompatibility complex (MHC) molecules.

Figure 15(a) shows correlations between ANLN expres-
sion levels and immunoinhibitors. The immunoinhibitors
displaying the greatest correlations included ADORA2A
(Spearman: ρ = −0:511, P < 2:2e − 16), BTLA (Spearman:
ρ = −0:342, P = 3:33e − 06), CD160 (Spearman: ρ = −0:457,
P = 1:78e − 10), and KDR (Spearman: ρ = −0:329, P = 7:93
e − 06) (Figure 15(b)). Figure 15(c) shows correlations
between ANLN expression and immunostimulators, and
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Figure 10: ANLN expression in 8 immune cell lines in two GSVA score groups.
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Figure 13: Continued.
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the immunostimulators displaying the greatest correlations
included CD48 (Spearman: ρ = −0:388, P = 1:06e − 07),
KLRK1 (Spearman: ρ = −0:39, P = 8:85e − 08), CXCL12
(Spearman: ρ = −0:373, P = 3:41e − 07), and NT5E (Spear-
man: ρ = 0:583, P = <2:2e − 16) (Figure 15(d)). Figure 15(e)
shows correlations between ANLN expression and MHC
molecules, and the MHC molecules displaying the greatest
correlations included HLA-DOA (Spearman: ρ = −0:259,
P = 0:000473), HLA-DPB1 (Spearman: ρ = −0:355, P =1:25e
− 06), TAP1 (Spearman: ρ = 0:294, P = 6:91e − 05), and
TAP2 (Spearman: ρ = 0:293, P = 7:3e − 05) (Figure 15(f)).
The greatest correlations between immunomodulators and

MYEOV were displayed in Figure S6. Therefore, ANLN and
MYEOV may be involved regulating the above immune
molecules.

4. Discussion

The high fatality rate of pancreatic cancer is inextricably
related to its own immunosuppressive microenvironment
and the obvious reduction of T cell infiltration rate in the
tumor [7]. Researchers have discovered that antitumor
immunotherapy may be a breakthrough in tumor therapy
by targeting to enhance the host’s own immunity to tumors.
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Figure 13: Comparison of Kaplan-Meier survival curves of the high and low expression of ANLN and MYEOV in PC based on immune cells
subgroups.
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Figure 15: Spearman’s correlation of ANLN with immunomodulators. (A) Relations between the immunoinhibitors and ANLN expression.
(B) Top 4 immunoinhibitors displaying the greatest Spearman’s correlation with ANLN expression. (C) Relations between
immunostimulators and ANLN expression. (D) Top 4 immunostimulators displaying the greatest Spearman’s correlation with ANLN
expression. (E) Relations between MHC molecules and ANLN expression. (F) Top 4 MHC molecules displaying the greatest Spearman’s
correlation with ANLN expression. MHC: major histocompatibility complex.
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T cells are important components of immunotherapy
against tumors. When T cells encounter specific tumor anti-
gens, the single chain variable fragments (scFv) in the anti-
gen recognition region will bind to tumor antigens and then
directly activate T cells and stimulate the secretion of cyto-
kines, which can attack and kill tumor cells. Chimeric anti-
gen receptor-modified T cell (CAR-T) therapy is based on
this mechanism and has been achieved good results [19].
T cells are the key effectors of the tumor immune response.
Tumors that grow in an immunodeficient environment
have strong immunogenicity, and solid tumors lacking T
cell infiltration usually have poor prognostic significance
[20]. Therefore, enhancing the recognition and killing of
tumor cells by T cells is a breakthrough in immunotherapy.
However, the antigens found in solid tumors so far are all
tumor-associated antigens. Such antigens will also be
expressed in other normal tissues, which will put a great
risk in targeted therapy, called “off-target effect” [21].
Therefore, it is particularly important to choose suitable
tumor-associated antigens while continuously exploring
the specific antigen of pancreatic cancer. At present, the
effective molecules confirmed by researchers are B7-H3,
HER2, and so on [22, 23]. In this paper, machine learning
is used to screen specific molecules that are highly different
from ordinary tissues and to explore new molecules that are
significantly related to patient clinical characteristics, prog-
nosis, and T lymphocyte infiltration to find ideal immuno-
therapy targets. Our results consistently demonstrate that
the five-mRNA risk signature is very robust for predicting
clinical outcome of PC. And our risk signature is validated
with two patient cohorts from different sources, which
strongly demonstrates its robustness for predicting progno-
sis of PC. In addition, we have constructed a nomogram
model, which is built up based on the five-mRNA risk
signature.

The proprotein encoded by GZMB (granzyme B) is
secreted by natural killer (NK) cells and cytotoxic T lym-
phocytes (CTL) [24]. CD8A encodes a glycoprotein on
the surface of most CTL [25]. The GZMB/CD8A ratio
can reflect the degree of immune cytotoxicity and cyto-
toxic T lymphocyte infiltration, which can be used to pre-
dict the response of tumor genes to immune cells [26].
Therefore, GZMB/CD8A ratio-related genes are promising
new targets for immunotherapy. We have confirmed that
the expressions of ANLN and MYEOV were positively
correlated with GZMB/CD8A ratio, which revealed that
high expressions of those genes with high T lymphocyte
cell infiltration in PC. And the high expressions of ANLN
and MYEOV were also related to the poorer prognoses of
these patients; so, we speculated that immunotherapy may
be more effective in such patients and can significantly
improve the prognosis.

Type 17T helper (Th-17) cells induce immune responses
by secreting IL-17, IL-21, and tumor necrosis factor-α (TNF-
α) [27]. Type 2T helper (Th-2) cells can secrete cytokines
such as IL-4, IL-5, IL-9, IL-10, and IL-13, stimulate the pro-
liferation of B lymphocytes, and participate in humoral
immune responses [28]. γδT cells can directly recognize
malignant cells and exert antitumor activity by producing

various chemokines and cytokines (such as TNF-α and
IFN-γ). IFN-γ can directly inhibit tumor growth, stimulate
macrophages, and block angiogenesis [29]. CD56+ natural
killer (NK) cells can express Fc receptors and mediate
antibody-dependent cell-mediated cytotoxicity (ADCC) by
binding to the Fc part of cancer cells Ig G, thereby inducing
activation signals and killing target cells [30, 31]. Further-
more, the results from TISIDB database showed that ANLN
and MYEOV had the greatest correlation with immunoinhi-
bitors (such as ADORA2A, CD160, BTLA, and KDR),
immunostimulators (such as NT5E, KLRK1, CXCL12, and
CD48), and MHC molecules (such as HLA-DPB1, TAP1,
HLA-DOA, and TAP2). The above results further indicated
that ANLN and MYEOV are related to antitumor immune
cells in the body, revealing their potential value in pancreatic
cancer immunotherapy.

Our study also revealed that the CNAs of ANLN and
MYEOV significantly affected the CD4+ T cell infiltration
level in PC by deleting and gaining aim level, providing
insight into the TIME. Therefore, we further analyzed the
effects of ANLN and MYEOV level on the OS and RFS of
the CD4+T cell low infiltration group and high infiltration
group, respectively. The degree of CD4+T cell infiltration
affected the RFS and OS outcomes with different ANLN
expression levels and the RFS outcome with different
MYEOV expression levels in PC patients, suggesting that
enriched CD4+ T cell infiltration could improve patient
prognosis (we have confirmed that the high expression of
these two genes leading poor prognosis previously). In addi-
tion, we found that the expression levels of the two genes
were significantly positively correlated. GSEA analysis
revealed that the molecular pathways of ANLN and MYEOV
were similar. Therefore, we speculated that these two genes
may have parallel effect on the progression of pancreatic
tumors.

It is necessary to point out some limitations of current
research. First, the prognostic power of the five-mRNA
signature was evaluated in only two external datasets. Large
scale independent research is necessary to further verify the
validity of this signature. Second, our own independent
cohort does not provide information on other clinical
features such as chemoresistance, radioresistance, and intra-
tumoral heterogeneity. Therefore, we cannot analyze the
correlation between this five-mRNA signature and the above
clinical features. Further research and more detailed clinical
data are needed to explore. Similarly, for ANLN and
MYEOV, we need more external data and experiments to
prove that they are related to the prognosis and immune
microenvironment of pancreatic cancer.

5. Conclusions

We established a five-gene signature for the prognosis of
PC by the public databases. Then, we screened ANLN
and MYEOV related to prognosis and the immune micro-
environment in pancreatic cancer. ANLN and MYEOV are
involved in the progress of pancreatic cancer and are
expected to become new markers and therapeutic targets
in the future.
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