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Calcific aortic valve disease (CAVD) represents a slowly progressive pathologic process associated with major morbidity and
mortality. The process is characterized by multiple steps: inflammation, fibrosis, and calcification. Numerous studies focalized on
its physiopathology highlighting different “actors” for the multiple “acts.” This paper focuses on the role of the tumor necrosis
factor superfamily (TNFSF) members in the pathogenesis of CAVD. In particular, we discuss the clinical and experimental studies
providing evidence of the involvement of tumor necrosis factor-alpha (TNF-𝛼), receptor activator of nuclear factor-kappa B (NF-
𝜅B) ligand (RANKL), its membrane receptor RANK and its decoy receptor osteoprotegerin (OPG), and TNF-related apoptosis-
inducing ligand (TRAIL) in valvular calcification.

1. Introduction

Calcific aortic valve disease (CAVD) represents a slowly
progressive pathologic process extending from mild thick-
ening of the aortic valve without obstruction of blood flow,
named aortic valve sclerosis, to a severe calcification of
valvular leaflets, reduction of valve motion, and obstruction
of blood flow, named aortic stenosis (AS) [1]. AS is the
most common among heart valve diseases (43.1%) [2]; its
prevalence is around 2%, and it increases with age [3–5].
Degenerative etiology is predominant (81.9%) [2]; however,
CAVD can no longer be considered a passive process in
which the valve degenerates with age in association with
calcium accumulation. Instead, CAVD appears to be an
actively regulated process including chronic inflammation,
lipoprotein deposition, renin-angiotensin system involve-
ment, extracellularmatrix (ECM) remodeling, and activation
of specific osteogenic signaling pathways and apoptosis,
which determine the activation and differentiation of the resi-
dent fibroblasts or quiescent valvular interstitial cells (qVICs)

into myofibroblasts (activated VICs, aVICs) and osteoblast-
like cells (osteoblastic VICs, obVICs)with consequentmicro-
and macrocalcification [6–8] (Figure 1).

Inflammation is a prominent feature of aortic valve
calcification, and it is present in both early and advanced
aortic valvular lesions [9, 10]. Histological and immuno-
histochemical studies showed that early valvular lesions are
characterized by a subendothelial thickening of the aortic
side of the leaflet with presence of intra- and extracellular
lipids and microscopic calcification, as well as interruption
of the basement membrane with accumulation of lipids and
calcium also in the fibrosa [10]. These lesions are probably
consequent to the disruption of the endothelial continuity
due to an elevated shear stress, which allows circulating
lipids, including low-density lipoprotein (LDL) and lipopro-
tein (a), to enter the valvular interstitial tissue [11] where
they undergo oxidative modification [12]. These oxidized
lipoproteins (oxLDL) are highly cytotoxic and capable of
stimulating inflammatory activity andmineralization. Valvu-
lar endothelial dysfunction or injury also leads to increased
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Figure 1: Mechanisms involved in calcific aortic valve disease. An endothelial injury or dysfunction causes increased expression of adhesion
molecules, such as VCAM-1, ICAM-1, and E-selectin. Inflammatory cells such as T lymphocytes and monocytes are recruited, and they
release cytokines and proteolytic enzymes, which stimulates the activation and differentiation of resident fibroblasts or quiescent valvular
interstitial cells (qVICs) intomyofibroblasts (activated VICs, aVICs) and osteoblastic VICs (obVICs) with consequent calcification. VICs also
undergo apoptosis, and the formation of apoptotic vesicles contributes to calcification. Circulating lipids also enter the valvular interstitial
tissue and undergo oxidative modification; the oxidized lipoproteins (oxLDL) are highly cytotoxic and stimulate inflammatory activity and
mineralization.

expression of adhesion molecules VCAM-1, ICAM-1, and E-
selectin and recruitment of inflammatory cells [13]. Normal
aortic valves present scattered macrophages and sporadic
alpha-actin-positive cells, while T-cells are absent; conversely,
early valvular lesions are characterized by an inflammatory
infiltrate composed ofmacrophages (foam cells and nonfoam
cells) and T cells and scattered alpha-actin-positive cells [10].
Thus, early lesions of CAVD have some similarities with the
atherosclerotic process (lipid accumulation, inflammatory
infiltrate, and interruption of the basement membrane) and
some differences (presence of early calcification and reduced
number of smooth muscle cells). Leukocytes activated in
the subendothelium and in the fibrosa induce a chronic
inflammation with release of cytokines and enzymes as IL-
2 [9], transforming growth factor- (TGF-) 𝛽1 [7], IL-1𝛽
[14], TNF-𝛼 [15], and matrix metalloproteinases (MMPs)
[16], which contribute to ECM remodeling, inflammatory
activation of myofibroblasts which, in turn, develop an
osteoblast-like phenotype, and calcification. Mineralization
arises in close proximity to areas of inflammation and has
been demonstrated in early [10] as well as advanced lesions
[17]. Several features suggest the presence of an active highly
regulated process closely resembling developmental bone for-
mation [18, 19]. In vitro studies of cultured explants of stenotic
valves have identified cells with osteoblastic characteristics
that undergo phenotypic differentiation and spontaneous
calcification [20]. These osteogenic cells express and pro-
duce a variety of regulatory bone matrix proteins including
osteopontin (OPN) [21, 22] and bonemorphogenetic proteins
(BMPs) [17]. The initiation of mineralization (nucleation)

may be stimulated by the presence of oxLDL [12, 17] or by the
presence of cellular degradation products following apoptosis
[8].

This paper focuses on the role of the tumor necrosis factor
superfamily (TNFSF)members in the pathogenesis of CAVD.
The TNFSF is composed of 19 ligands and 29 receptors and
plays highly diversified roles in the body [23]. In particular,
we discuss the clinical and experimental studies providing
evidence of the involvement of tumor necrosis factor-alpha
(TNF-𝛼), receptor activator of nuclear factor-kappa B (NF-
𝜅B) ligand (RANKL), its membrane receptor RANK and
its decoy receptor osteoprotegerin (OPG), and TNF-related
apoptosis-inducing ligand (TRAIL) in valvular calcification.

2. TNF-𝛼

Tumor necrosis factor-alpha or TNF-𝛼 maps to chromo-
some 6p21.3 and is primarily produced as a 212-amino-
acid-long type II transmembrane protein arranged in stable
homotrimers [24, 25]. From this membrane-integrated form,
the soluble homotrimeric cytokine (sTNF) is released via pro-
teolytic cleavage by the metalloprotease TNF-𝛼-converting
enzyme (TACE) [26].

TNF-𝛼 is produced by different kinds of cells, including
activated macrophages, monocytes, T-cells, smooth muscle
cells, adipocytes, and fibroblasts. The cytokine is involved
in acute and/or chronic inflammation. Whereas, in acute
inflammation, TNF-𝛼 protects against bacterial endotoxin,
viruses, and parasites, provides increased nutrients for
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immune cells, and favors a proper host response, in chronic
inflammation, TNF-𝛼 activates pathways responsible for
numerous pathological conditions, such as arthritis. In fact,
molecules neutralizing it are beneficial in the treatment of
diseases. TNF-𝛼 was aptly named when it was discovered to
induce tumor cell apoptosis [27], or programmed cell death.
In general, TNF-𝛼 promotes several cell functions related
to immune cell proliferation and adhesion and apoptosis
[23, 28].

TNF-𝛼 can induce biological reactions by either TNF
receptor 1 (TNFR1) or TNFR2: the first, which contains a
death domain (DD), is highly promiscuous and is expressed
on every cell type in the body, whereas the expression of the
second receptor is limited to cells of the immune system,
endothelial cells, and nerve cells. Each receptor can mediate
distinct intracellular signals. In particular, TNF-𝛼 induces at
least 5 different types of signals that include activation of NF-
𝜅B, apoptosis pathways, extracellular signal-regulated kinase
(ERK), p38 mitogen-activated protein kinase (p38MAPK),
and c-Jun N-terminal kinase (JNK). When TNF-𝛼 binds
to TNFR1, it recruits a protein called TNFR-associated
death domain (TRADD) through its DD [29]. TRADD then
recruits a protein called Fas-associated protein with death
domain (FADD), which then sequentially activates caspase-
8, caspase-3, and, thus, apoptosis [30]. Alternatively, TNF-
𝛼 can activate mitochondria to sequentially release ROS,
cytochrome C, and Bax, leading to activation of caspase-9,
caspase-3, and, thus, apoptosis [31].

TNF-𝛼 has also been shown to activate NF-𝜅B, which,
in turn, regulates the expression of proteins associated with
cell survival and proliferation [32]. For NF-𝜅B activation,
the intracellular domain of TNFR1 is bound by an adaptor
protein, TNF receptor-associated death domain (TRADD),
which mobilizes additional adaptor protein receptor inter-
acting protein-1 (RIP-1), and TRAF2 [33]. Subsequently, the
TRADD-RIP-1-TRAF2 complex is released from TNFR1.
The adapter proteins in the complex activate key signaling
pathways. RIP-1 recruitment of MAPK extracellular signal-
regulated kinase kinase-3 (MEKK3) and TGF-𝛽-activated
kinase (TAK1) activates the I𝜅B kinase (IKK) complex. The
IKK complex phosphorylates I𝜅B𝛼 that ubiquitinates and
degrades I𝜅B𝛼. This subsequently releases NF-𝜅B subunits,
which translocate into the nucleus and promote gene tran-
scription [34–36]. The proinflammatory effect of TNF-𝛼 is
mediated through NF-𝜅B-regulated proteins, such as IL-
6, IL-8, IL-18, chemokines, inducible nitric oxide synthase
(iNOS), cyclooxygenase-2 (COX-2), and 5-lipoxygenase (5-
LOX), all major mediators of inflammation. Indeed, TNF-𝛼
can induce expression of TNF-𝛼 itself through activation of
NF-𝜅B [37].

TNF-𝛼 can also activate cellular proliferation through
activation of another transcription factor, activator protein-1
(AP-1) [38], which is activated by TNF-𝛼 through sequential
recruitment of TNFR1, TRADD, TRAF2, MAP/ERK kinase
kinase-1 (MEKK1), MAP kinase kinase-7 (MKK7), and JNK.
The activation of p38MAPK by TNF-𝛼 is mediated through
TRADD-TRAF2-MKK3. How TNFR2, which lacks a DD,
activates cell signaling is much less clear than how TNFR1

activates cell signaling. Since TNFR2 can directly bind to
TRAF2, it can activate both NF-𝜅B and MAPK signaling.

Although initially discovered as an anticancer agent,
TNF-𝛼 and its family members have now been linked to an
array of pathophysiologies, including cancer, neurologic, pul-
monary, autoimmune,metabolic, and cardiovascular diseases
[39–47].

TNF-𝛼 in CAVD. Demer first identified that TNF-𝛼 may
participate in vascular calcification, upregulating alkaline
phosphate (ALP) activity as a necessary component of cal-
cifying vascular cell mineralization in vitro [48]. Thereafter,
the role of TNF-𝛼 in the pathogenesis of aortic valvular
calcification has been gradually elucidated; TNF-𝛼 is a
pleiotropic cytokine which induces ECM remodeling [49],
cell proliferation and differentiation [15], and calcification
[50]. Kaden showed that TNF-𝛼 is expressed bymacrophages
in calcific aortic valves and it stimulates in vitro proliferation
of human valvular myofibroblasts as well as their expression
of MMP-1 [49]; normal valves present rare macrophages
and low expression of TNF-𝛼, MMP-1; conversely, calcific
aortic valves present inflammatory infiltrate and colocalized
expression of TNF-𝛼, MMP-1 [49]. Aortic valve calcification
is associated with an osteoblast-like phenotype of local
myofibroblasts and is actively regulated by an inflammatory
process involving TNF-𝛼. Upon stimulation with TNF-𝛼,
human aortic valve myofibroblasts cultured under miner-
alizing conditions showed increased formation of calcified,
ALP-enriched cell nodules, ALP activity, concentration of the
bone-type ALP isoenzyme, and concentration of osteocalcin
(OCN), all of which are markers of an osteoblast-like cellular
phenotype [15]; by electrophoretic mobility shift assay, DNA
binding of the essential osteoblastic transcription factor
runx2/cbfa-1 was increased compared to untreated controls
[15]. TNF-𝛼 increases the gene expression of the osteogenic
makers ALP and BMP-2 and induces calcification of VICs
obtained from the patients with AS [50]; TNF-𝛼-induced
calcification, ALP activation, and NF-𝜅B and BMP-2 gene
expression are inhibited in the presence of inhibitors of
NF-𝜅B signalling, showing that TNF-𝛼 activates the NF-𝜅B
signalling pathway and translocates NF-𝜅B p65 subunit into
the nucleus for upregulation of the BMP-2 and NF-𝜅B genes
[50]. Oxidized lipoproteins have been detected in stenotic
aortic valves where they stimulate inflammatory activity
[12]; valves with higher oxLDL content had a significantly
higher density of inflammatory cells and expression of TNF-
𝛼, as well as an increased tissue remodeling [51]. Additional
experimental evidences support the important role of TNF-𝛼
in CAVD [52]. IL-1 receptor antagonist-deficient (IL-1Ra−/−)
mice spontaneously develop AS, and T-cells from IL-1Ra−/−
produce much higher levels of TNF-𝛼 after anti-CD3 anti-
body stimulation compared to wild-type mice; furthermore,
TNF-𝛼 deficiency completely suppressed AS development in
IL-1Ra−/− mice, suggesting that TNF-𝛼 actively participates
in AS development in IL-1Ra−/− mice [52]. Circulating levels
of TNF-𝛼 are elevated in patients with severe AS and correlate
with the severity of the hemodynamic pressure overload;
moreover, the peripheral TNF-𝛼 and TNF receptor levels
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increase in direct relation to deteriorating NYHA functional
classification [53]. Circulating TNF-𝛼 levels reduce progres-
sively, returning to normal 6months after surgical aortic valve
replacement (AVR) [54].

3. RANKL/RANK/OPG

The RANKL/RANK/OPG pathway was initially described in
the context of bone mass regulation, but now its prominent
role in cardiovascular disease is emerging [55].

RANKL is encoded by a single gene at human chromo-
some 13q14. Alternative splicing of RANKL mRNA allows
expression as a type II transmembrane glycoprotein of either
316 or 270 amino acids or as a soluble ligand of 243
amino acids [56, 57]. In addition, RANKL can be released
from its membrane-bound state by metalloproteinases [58,
59]. RANKL is expressed by activated CD4+ and CD8+
T lymphocytes, double-negative thymocytes, immature B
lymphocytes, osteoblasts, osteocytes, bone marrow stroma,
vascular endothelia, developing lymph node anlage, and
developing breast epithelia [56, 60–64]. RANKL acts fol-
lowing the binding with RANK which plays a crucial role
in bone homeostasis and lymphoid tissue organization [64–
67]. In particular, RANKL is the master cytokine driving
osteoclast differentiation. The strongest evidence for the role
of RANKL during osteoclastogenesis came from gene inac-
tivation in murine models [56, 67–69], leading to osteoclast-
poor osteopetrosis already present at birth. At 1 month of age,
RANKL−/− mice were severely growth retarded due to poor
nutrition secondary to lack of tooth eruption and displayed
shortened long bones with club-shaped ends, thinning of
the calvariae, generalized increase in bone density with very
little marrow space, marked chondrodysplasia with thick,
irregular growth plates, and relative increase in hypertrophic
chondrocytes. Moreover, RANKL−/− mice displayed defects
in the immunological compartment: reduced thymus size,
spleen enlargement, complete lack of lymph nodes, and
smaller Peyer’s patches [56, 70, 71].

RANK is a type I transmembrane glycoprotein encoded
on human chromosome 18q22.1 and is expressed on the
surface of osteoclasts and osteoclast precursors as well as
bone-marrow-derived dendritic cells, activated T-cells, vas-
cular endothelia, chondrocytes, bonemarrow fibroblasts, and
mammary gland epithelia. EachRANKL trimer engages three
molecules of RANK. Trimerization triggers a conformational
change in the cytoplasmic domain of RANK that allows
recruitment of TNFR-associated factors (TRAFs). In partic-
ular, TRAF2 and TRAF6 are the most critical for RANK
signalling [72–74]. TRAF2 mediates activation of AP-1 in
concert with ASK1 [75, 76]. TRAF6 makes complexes with
c-Src and c-Cbl to activate PI3K, leading to PKB activation
and cytoskeletal reorganization [77–79]. Moreover, TRAF6
activates microphthalmia transcription factor (MITF) by
activating the p38 microtubule-associated protein kinase
pathway through TAB2 and TAK1 [80].

OPG, encoded by a single gene on chromosome 8q24, is a
soluble, 110 kDa, disulfide-linked, homodimeric glycoprotein
that functions as a decoy receptor for RANKL. Thus, OPG

modulates osteoclast formation by inhibiting RANK activa-
tion [62]. OPG also can bind the TNFSFmember TRAIL, and
it has been found that OPG inhibits TRAIL-induced apop-
tosis of Jurkat, LNCaP cells in culture and of osteoclast, and
malignant plasma cells in multiple myeloma [81–85]. OPG
mRNA has been detected in B cells, bone-marrow-derived
and follicular dendritic cells, vascular endothelia, VSMCs,
heart, lung, kidney, bone, stomach, intestine, placenta, liver,
thyroid, skin, spinal cord, and brain [86–93].

Transgenic mice expressing OPG exhibited increased
bone density, which was explained histologically by a marked
decrease in osteoclast number that was presumably due to
reduced osteoclast formation [87]. In animals expressing high
levels of OPG, the bones were virtually solid, lacking a visible
marrow cavity and with nonresorbed cartilage remnants
visible histologically within trabeculae [87]. By contrast, mice
deficient in OPG developed osteopaenia at an early age
owing to increased osteoclast activity, thereby underscoring
a physiological role for OPG in the maintenance of normal
bone mass [94]. In addition, OPG−/− mice develop arterial
calcification, suggesting that OPG plays a role in the main-
tenance of VSMCs homeostasis [94]. OPG could act as an
inhibitor of vascular calcification, whereas RANKL promotes
extracellular mineralization of cultured VSMCs via a BMP-4-
dependent mechanism [95].

RANKL/RANK/OPG in CAVD. Kaden et al. first showed by
immunohistochemistry that RANKL and OPG are differen-
tially expressed in calcific AS. RANKL is present in aortic
valves from patients with AS, while it is not expressed at
relevant levels in normal valves; conversely, OPG expression
is marked in normal valves but significantly lower in AS.
Additionally, areas containing focal calcification exhibit sig-
nificantly less OPG-positive cells as compared to noncalci-
fied regions [96]. Further studies support the concept that
RANKL/RANK/OPG system exhibits a differential profile
throughout the progression of the disease. In particular,
the percentage of cells labeled by OPG, RANK, and NF-
𝜅B is increased in sclerotic valves compared with stenotic
valves, whereas the frequency of RANKL is higher in
stenotic compared to sclerotic valves. As a consequence, the
OPG/RANKL ratio is decreased in stenotic compared to
sclerotic valves [97]. Other studies showed that there is a
progressive increase in the gene expression of OPN, bone
sialoprotein II, and OPG in the clinical continuum from
healthy valves to heavily calcified ones; conversely, BMP-2
and -4 gene expression is significantly decreased in calcified
valves suggesting that the expression of pro- and anticalcific
noncollagenous bone-associated matrix proteins is altered
during the disease continuum and that this imbalance may
contribute to the pathology of CAVD [98]. In cultured
human aortic valve myofibroblasts, stimulation with RANKL
leads to a significant rise in matrix calcification, nodule
formation, ALP activity, expression of the bone-type isoen-
zyme of ALP, and expression of OCN; moreover, RANKL
increased DNA binding of the essential osteoblast transcrip-
tion factor runx2/cbfa-1 [96]. RANKL is also involved in
connective tissue remodeling; the addition of RANKL to
the culture medium of human aortic valve myofibroblasts
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induces cell proliferation andMMPexpression and activation
as compared to medium alone [99]. Experimental studies
showed that exogenous OPG protects aortic valve function
in hypercholesterolemic Ldlr−/−Apob100/100 mice, which are
prone to develop calcific AS. OPG profoundly attenuates
valve calcification by inhibition of osteogenic transformation,
but it does not prevent valve fibrosis or lipid deposition; in
particular, OPG strongly suppresses levels of osterix, OCN,
and monocyte-chemoattractant protein-1 [100]. In patients
undergoing AVR surgery for AS, plasma levels of RANKL,
runx2/cbfa1, and tartrate-resistant acid phosphatase (TRAP)
exhibited a significant correlation to the severity of AS; in
the same patients, mRNA levels of RANKL, RANK, and
TRAP are significantly elevated in calcified parts of the
valves compared to normal and thickened parts of the same
valves obtained at time of surgery [101]. In patients with
symptomatic AS, the levels of circulating OPG are poorly
correlated with the degree of AS, but they are significantly
associated with impaired cardiac function and all-cause
mortality [102]. In patientswith severeAS scheduled forAVR,
preoperative circulating OPG levels are associated with left
ventricular and left atrial remodeling; moreover, increasing
OPG levels are associated with a poor postoperative outcome
after surgery [103]. Interestingly, circulating OPG levels sig-
nificantly change after surgical AVR, but they remain without
any significant differences after transcatheter aortic valve
implantation [104].

4. TRAIL

Tumor necrosis factor- (TNF-) related apoptosis-inducing
ligand (TRAIL/Apo2L), located on chromosome 3, as a
member of the TNF superfamily of proteins, is expressed as
a type II transmembrane protein. Cleavage of its C-terminal
part (extracellular domain) allows for a soluble form of
TRAIL [105–107].

TRAIL is mostly expressed by cells of the immune system
where it was shown to play a role in the homeostasis of
certain T-cells and in NK and T-cell-mediated killing of
virally and oncogenically transformed cells [108–110]. TRAIL
forms homotrimers that bind receptors present on the cell
surface.This trimerization enhances the biological activity of
TRAIL as compared to monomeric forms of TRAIL [106]. To
date, TRAIL has been shown to interact with five receptors,
including the death receptors DR4/TRAIL-R1/TNFRSF10A
[111] and DR5/TRAIL-R2/TNFRSF10B [112–115] as well as the
decoy receptors DcR1/TRAIL-R3/TNFRSF10C [112, 113] and
DcR2/TRAIL-R4/TNFRSF10D [114]. In addition to these four
membrane-bound receptors, TRAIL is also able to bind to
OPG [81]. DR4 and DR5 are type I transmembrane proteins
that contain a death domain in their cytoplasmic domain
that can bind to other death domains. Upon binding of
TRAIL trimer, DR4 and DR5 are oligomerized and can then
transduce the apoptotic signal. Inversely, DcR1 and DcR2
can transduce an apoptotic signal. Indeed, DcR1 is bound to
the membrane exclusively through a glycosylphosphatidyli-
nositol (GPI) anchor, hence, lacking the entire cytoplasmic
domain, and DcR2 contains a truncated and nonfunctional

death domain. Hence, even though TRAIL binds to the decoy
receptors, the apoptotic pathway cannot be engaged. This
competition for the binding to TRAIL was first thought to be
themechanism behind the resistance of certain tumor cells to
TRAIL-mediated apoptosis. TRAIL binding to DR4 and DR5
induces recruitment of the adapter molecules Fas-associated
death domain (FADD) that leads to direct activation of
the caspase cascade. This activation is accomplished by
recruitment of caspase-8, followed by its proteolytic activa-
tion. Once activated, caspase-8 can proteolytically cleave the
BH3-interacting death domain agonist (Bid), a proapoptotic
member of the Bcl-2 family proteins, leading to the formation
of a truncated Bid form (tBid) that, in turn, activates the
mitochondrial apoptotic pathway [115–117]. Alternatively, the
activated initiator caspase-8/-10, in turn, targets the effector
caspase-3 for proteolytic cleavage which, once activated,
cleaves other caspases as well as numerous regulatory and
structural proteins [118, 119], resulting in the appearance
of the hallmarks of apoptosis such as membrane blebbing,
internucleosomal DNA fragmentation, and nuclear shrink-
age [120].

TRAIL firstly received considerable attention as a
molecule showing the ability to induce apoptosis in a wide
variety of neoplastic cells [121]. However, many normal cells,
such as thymocytes [121], neural cells [122], hepatocytes [123],
osteoclasts [124–126], osteoblasts [127–129], VSMCs [130],
and VICs [8], are sensitive to TRAIL-induced apoptosis.

TRAIL in CAVD. VICs sensitivity to TRAIL apoptotic effect is
of paramount importance because apoptosis has been shown
to be an initiator of vascular calcification in in vitro studies
[131]; increased apoptosis precedes calcification in VSMC
cultures, and apoptotic bodies may act as nucleating struc-
tures for calcium crystal formation [131]. Previous studies
focused on the role of apoptosis in the pathogenesis of CAVD
[7, 132, 133].

TGF-𝛽1 is present in human calcific aortic stenotic cusps
and promotes calcification of cultured sheep aortic VICs
(SAVICs) through mechanisms involving apoptosis [7]; in
fact, the administration of an apoptosis inhibitor to SAVICs
cultured in an osteogenic environment results in a significant
decrease in nodules calcification, thereby demonstrating that
a certain level of apoptosis is necessary for the calcification
of nodules in these cultures [7]. TRAIL has been detected in
atherosclerotic lesions [134], and TRAIL-expressing T-cells
induce apoptosis of VSMCs in the atherosclerotic plaque
[130]. TRAIL is expressed in human calcified aortic valves
but not in normal ones, and it is mainly produced by T-
cell and macrophages. Moreover, serum levels of TRAIL
are significantly elevated in patients with CAVD compared
to normal subjects [8]. VICs derived from calcific and
noncalcific aortic valves express both death and decoy TRAIL
receptors; in particular, VICs derived from calcific valves
show significantly higher gene and protein levels of DR4,
DR5, DcR1, and DcR2 compared to VICs derived from non-
calcific valves [8]. Additionally, VICs derived from calcific
valves express significantly higher levels of runx2 compared
to VICs from noncalcific valves; thus, the osteoblast-like
phenotype is also associated with a higher expression of all
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TRAIL receptors [8]. The expression of TRAIL receptors in
human VICs is associated with the sensitivity to TRAIL-
mediated apoptosis involving caspase-3 activation [8]. VICs
cultured in an osteogenic medium express higher mRNA
levels of runx2 and OCN, together with the increase of DR4
levels compared to medium alone [8]; moreover, the addition
of TRAIL to the osteogenic medium leads to a significant
increase of mineralized matrix nodule deposition [8]. Taken
together, all of these results suggest an active role of TRAIL-
induced apoptosis in the pathogenesis of CAVD.

5. Conclusions

Although, to date, no medical therapeutic options are able
to prevent or reduce the progression of CAVD and the only
treatment for severe AS is surgical aortic valve replacement
(AVR), the understanding of the underlying pathogenic
mechanisms of the disease is mandatory to identify promis-
ing therapeutic targets. It is known that the recently avail-
able biologic drugs neutralizing RANKL and TNF-𝛼, key
cytokines in CAVD pathogenesis, are having a great success
in the treatment of osteoporosis and arthritis, respectively
[135, 136]. Thus, it could be that in the future these molecules
could be useful in CAVD treatment/prevention, also because
a strong association has been demonstrated between arterial
and valvular calcification and osteoporotic bone remodelling
[137].
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