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Abstract With combined EEG–fMRI a powerful com-

bination of methods was developed in the last decade that

seems promising for answering fundamental neuroscien-

tific questions by measuring functional processes of the

human brain simultaneously with two complementary

modalities. Recently, resting state networks (RSNs), rep-

resenting brain regions of coherent BOLD fluctuations,

raised major interest in the neuroscience community. Since

RSNs are reliably found across subjects and reflect task

related networks, changes in their characteristics might

give insight to neuronal changes or damage, promising a

broad range of scientific and clinical applications. The

question of how RSNs are linked to electrophysiological

signal characteristics becomes relevant in this context. In

this combined EEG–fMRI study we investigated the rela-

tionship of RSNs and their correlated electrophysiological

signals [electrophysiological correlation patterns (ECPs)]

using a long (34 min) resting state scan per subject. This

allowed us to study ECPs on group as well as on single

subject level, and to examine the temporal stability of

ECPs within each subject. We found that the correlation

patterns obtained on group level show a large inter-subject

variability. During the long scan the ECPs within a subject

show temporal fluctuations, which we interpret as a result

of the complex temporal dynamic of the RSNs.
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Abbreviations

EEG Electroencephalography

(f)MRI (functional) Magnetic resonance imaging

RS Resting state

RSN Resting state network

BOLD Blood oxygen level dependent

ECP Electrophysiological correlation patterns

IC Independent component

ICA Independent component analysis

TRN Task related network

EPI Echo planar imaging

GRAPPA Generalized autocalibrating partially parallel

acquisition

MPRAGE Magnetization prepared rapid gradient echo

TR Repetition time

TE Echo time

MNI Montreal neurological institute

SPM Statistical parametric mapping

FSL FMRIB Software Library

AAS Adaptive average subtraction

HRF Hemodynamic response function

DMN Default mode network
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Introduction

During the last decade, the combination of electroencepha-

lography and functional magnetic resonance imaging (EEG–

fMRI) in humans became a prevalent tool in neuroscience

and related research fields. Using methods based on triggered

average subtraction of MR related cardiac and gradient

artifacts in the EEG, as first formulated by Allen et al. (1998)

and Allen et al. (2000), the electrophysiological signal could

be filtered sufficiently to enable the examination of neuro-

science questions, making combined EEG–fMRI a poten-

tially powerful tool for noninvasive investigation of human

brain function. And indeed, studies examining global EEG

characteristics and corresponding BOLD signals reported

significant correlations between the EEG theta, alpha or beta

band power and BOLD signal fluctuation in specific brain

regions (Goldman et al. 2002; Laufs et al. 2003a, b, 2006;

Moosmann et al. 2003; Feige et al. 2005; Goncalves et al.

2006; Scheeringa et al. 2008). These studies used EEG

derived regressors for different frequency bands to correlate

with the fMRI time course. Their findings however are rather

mixed and inconclusive, due to the resulting inconsistent

BOLD maps. This lead to the assumption that several fre-

quency bands might be involved in distinct functional net-

works (Laufs et al. 2006; Mantini et al. 2007).

Around the same time, BOLD resting state networks

(RSNs), which represent coherently fluctuating brain

regions observed in the resting human brain, became a topic

of major interest (Biswal et al. 1995; Lowe et al. 2000;

Cordes et al. 2001; Greicius et al. 2003; Fox et al. 2005;

Damoiseaux et al. 2006; De Luca et al. 2006; Smith et al.

2009; Laird et al. 2011). Using Independent Component

Analysis (ICA), Damoiseaux et al. (2006) showed that these

RSNs are consistent across subjects. Recently, it was

demonstrated by Smith et al. (2009), that ten of these RSNs

reflect various known task related networks (TRNs)

obtained from a large database of functional studies.

However, the question of the direct relation between both

modalities in the resting brain is currently intensely inves-

tigated (Mantini et al. 2007; Goncalves et al. 2008; Britz

et al. 2010; Laufs 2010; Schölvinck et al. 2010). Mantini

et al. (2007) investigated the correlation of various EEG

frequency bands with these RSNs using EEG–fMRI and

found evidence for specific group level EEG band power

correlation profiles for six RSNs. However, studies relating

the alpha rhythm on subject level to coherently fluctuating

BOLD signals during resting state (RS) (Goncalves et al.

2006, 2008) observed considerable inter-subject variability

in the correlation between both modalities. Given the low

inter-subject variability in the BOLD characteristics, they

concluded that the observed inter-subject variability arises

from the individual variation in the EEG.

In this combined EEG–fMRI study we investigated the

relation of the electrophysiological signal to ICA derived

RSNs which resemble TRNs (Smith et al. 2009). The link

between RSNs as found by ICA and the electrophysio-

logical signal was obtained by correlating EEG frequency

power of four common, low frequency bands (d: (2–4) Hz,

h: (4–7) Hz, a: (8–12) Hz, b: (12–30) Hz) to a specific

RSN, resulting in electrophysiological correlation patterns

(ECPs). Using a long, 34 min resting state scan per subject

we hypothesized that we could investigate the ECPs not

only on group, but also on a single subject level, and,

furthermore, would be able to assess the temporal stability

of these ECPs within a subject.

Data and Methods

Data Acquisition

(f)MRI

For this study, 16 healthy subjects, 12 female and four male

with a mean age of 22 (range 19–41) were scanned. The

experiment was approved by the local ethical committee.

For each subject, 34 min of resting state data were acquired

using a 3T Magnetom TIM Trio system (Siemens Health-

care, Erlangen, Germany) with the product 32 channel head

coil and a multi echo EPI sequence (Poser et al. 2006)

(acquisition parameters: 1030 Vol., TR = 2000 ms, five

echoes: TE = 6.9, 16.2, 25, 35 and 44 ms, flip angle 80�,

39 slices, 3.5 mm isotropic resolution, GRAPPA factor 3,

6/8 partial Fourier). A T1 structural scan was obtained to

register the functional data to Montreal neurological

institute (MNI) space using an MPRAGE protocol

(acquisition parameters: voxel size 1.0 9 1.0 9 1.0 mm3,

matrix size 256 9 256, 192 slices, TR = 2300 ms,

TE = 3.03 ms, T1 = 1100 ms, flip angle = 8�).

EEG

EEG data were recorded simultaneously with a 32

channel cap (ANT WaveGuard MRI), using a BrainAmp

MR plus amplifier and BrainVision Recorder (sample

frequency = 5000 Hz, resolution = 0.5 lV, operating

range = ±16.384 mV, hardware high pass filter 0.1 Hz

and low pass filter at 250 Hz) (BrainVision, Gilching,

Germany). The last 4 subjects were recorded with a 64

channel cap (BrainVision). To stay comparable with the

previous experiments in this study only the same 30

channels (10–20 system) were used in the analysis. The

MR gradient clock and the EEG amplifier clock were

synchronized for optimal gradient artifact correction.
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The subjects were asked to relax, keep their eyes open,

stay awake and not think of anything specific. The room

was darkened during the scan and an infrared eye tracker

was used to control that the subject would not fall asleep.

All subjects managed to stay awake for the complete

duration of the experiment.

12 of the 16 datasets were used for analysis. Four data sets

were excluded due to: incomplete recording of the EEG due to

technical problems; saturation of the EEG channels caused by

large gradient artifacts; residual gradient artifacts after cor-

rection caused by syncing problems between MR scanner and

EEG amplifier; and abnormal brain anatomy, respectively.

This combined EEG–fMRI study was part of a larger RS

study, including 77 subjects, for which an additional dif-

fusion weighted scan was recorded (1 h) and a behavioral

questionnaire was filled in during a break after the RS scan.

Preprocessing

(f)MRI

RS–fMRI preprocessing was performed using functions

from the SPM5 software package (Welcome Department of

Imaging Neuroscience, University College London, UK).

The used multi-echo sequence acquired one volume for

each of the five echoes at every time point. To allow the

use of standard fMRI preprocessing tools, these five echoes

were combined using the procedure described in Poser

et al. (2006). In short, the first 30 time points were used to

calculate the temporal signal-to-noise ratio for every voxel,

needed to obtain the echo specific weighting factors for the

echo combination. SPM5 motion correction was applied to

the first echoes and the calculated corrections were applied

to every subsequent echo of the same volume. It can safely

be assumed that the subjects do not move between echoes,

because of the short duration of the multi-echo train of

about 50 ms. The first six volumes were discarded to allow

the system to reach a steady state. The functional data from

every subject were spatially smoothed with a 5 mm

Gaussian kernel and transformed to MNI space using

FSL’s Feat (FSL 4.1, www.fmrib.ox.ac.uk/fsl/).

EEG

MR related artifacts in the EEG signal were removed using

Analyzer 2 (BrainVision). Trigger based average subtrac-

tion (Allen et al. 2000) was used to correct for gradient

artifacts and subsequently the data were downsampled to

500 Hz. A Butterworth zero phase filter, 48 dB/oct with a

low cutoff at 0.8 Hz, to remove slow fluctuations from

respiration, and a high cutoff of 50 Hz was applied.

Additionally a notch filter at 50 Hz was applied to remove

residual mains frequency noise.

Cardiac related MR artifacts were removed using the

Adaptive Average Subtraction (AAS) method. This was

done in three steps: First, markers were obtained by the

algorithm implemented in Analyzer2 that detects MR

related cardiac artifacts, using a channel with cardiac

artifacts that remained quite constant in amplitude and

were well visible. Next, all markers were checked manu-

ally by visual inspection and, finally, the AAS algorithm

was applied. ICA was used to remove eye blinks. The EEG

data were re-referenced to common average.

Analysis

(f)MRI

The normalized fMRI data were concatenated temporally

and group ICA was performed using FSL’s Melodic 3.1 to

obtain 30 group independent components (ICs). The number

of components was chosen for optimal noise separation and

integrity of the RSNs. A higher number could cause the

RSNs to split up into sub networks (Smith et al. 2009;

Kiviniemi et al. 2009). These 30 group IC maps were used in

a dual regression approach (Filippini et al. 2009) to obtain

subject specific IC maps. These maps were thresholded

(Z C 6) and used as masks to obtain an average BOLD time

course of the IC on subject level. We find all RSNs reported

by Smith et al. (2009) and, furthermore, ten components that

show also characteristics of RSNs regarding their functional

maps and their frequency spectra. The remaining nine com-

ponents contain white matter, movement artefacts, or

breathing related artefacts, a.s.o. For further analysis we

selected eleven RSNs (see Fig. 1), which resemble those

described by Smith et al. (2009) depicting TRNs. The sen-

sorimotor component RSN 6 reported by Smith et al. (2009)

split up into two components, termed RSN 6a and RSN 6b.

EEG

Corresponding to the TR used in the fMRI acquisition the

EEG signal was split into 2 s segments based on the MR

volume trigger. A Fourier transform was applied to each

channel in the segment and the frequency power spectrum

of all channels was averaged. The power spectra were split

into four frequency bands: d: 2–4 Hz, h: 4–7 Hz, a:

8–12 Hz, b: 12–30 Hz and the power spectrum within each

band was integrated, resulting in one power time course for

each EEG band. The four power time courses were con-

volved with the standard SPM5 hemodynamic response

function (HRF) and correlated with the BOLD time course

of each RSN using partial correlation to account for com-

mon variance (De Munck et al. 2009), resulting in a subject

specific correlation value per frequency band. Z-values

were calculated on basis of these correlation values, using
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Fig. 1 All 11 group fMRI RSNs as maximum intensity projection on

the central slices and their group ECPs, representing the average Z

scores (12 subjects) for the four EEG frequency bands. Only clusters

larger than 15 voxels were plotted. The large standard errors indicate the

large variability of the subject-specific ECPs
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the mean of all correlation values as global mean. Group

level results were obtained by averaging Z-values over

subjects per frequency band and the variation was calcu-

lated as the standard error of the mean.

To estimate the influence of variations of the HRF on

the ECPs we varied the temporal shifts of the BOLD HRF

by a large, but physiologically plausible amount (Aguirre

et al. 1998), and shifted the signals by two seconds in both

directions relative to each other before correlating.

To assess the temporal behavior of the ECPs within a

single subject the dataset was split into five equal parts

([6 min) and the same procedure as described above was

performed on each of the parts.

Correlation analysis was performed and figures were

made using MATLAB (R2010b, The MathWorks, Natick,

Massachusetts, USA).

Results

A list of the eleven RSNs, which correspond to those found

by Smith et al. (2009) and which we used in the correlation

analysis, is given in Table 1. Figure 1 shows these group

RSNs as maximum intensity projection on the central slices,

together with their group ECPs, representing the average Z

scores of the 12 subjects. The group ECPs of the 11 RSNs are

not significant and show a large standard error of the mean,

indicating a large variability of subject specific ECPs. The

three visual components (RSN 1–3) however show a rela-

tively high negative correlation with the alpha band.

Figures 2 and 3 show two selected RSNs (RSN 1, medial

visual component and RSN 6a, sensorimotor component)

and their ECPs for all 12 subjects, which clearly shows the

subject specific characteristics of the individual ECPs. At

Z [ 2.58 (corresponding to a p value \0.05 corrected for

multiple comparisons) four of the twelve subjects showed

significant correlation with at least one RSN. Subject 1

shows significant negative alpha correlation with RSN 3 and

RSN 4. Subject 4 exhibits significant correlations in 10 of the

11 RSNs, which consistently show negative alpha and beta

correlations as well as positive delta correlations. Subject 5

shows significant negative alpha correlation in RSN 11.

Subject 8 shows negative alpha correlation as well as posi-

tive delta correlation in four RSNs. See Table 2 for a detailed

list of all significant correlations. Three of these four subjects

show negative alpha correlation with visual RSNs (see also

supplementary Figs. S1 and S2).

The sensorimotor component reported by Smith et al.

(2009) was split into two sub components RSN 6a (Fig. 3)

and RSN 6b (supplementary Fig. S3). Subject 4 shows very

similar ECPs for both RSNs with significant correlation in

the delta, alpha and beta band. The ECPs of subject 8

however differ a lot between RSN 6a and 6b, showing

significant correlation with the delta band in RSN 6b and

no significant correlation in RSN 6a.

To assess the influence of the variation of the HRF on

the ECPs by subject specific differences we varied the

temporal shifts of the BOLD HRF, i.e. shifting the time

courses two seconds relative to each other before corre-

lating. This slightly changed the correlation values at the

group level. However the shapes of the ECPs were quite

stable. On subject level the changes of the specific ECPs

due to shifting were larger and in a few non significant

instances even lead to a sign switch (negative correlation

instead of positive in a frequency band). A reduction in

inter-subject variability of the specific ECPs across the

different shifts was not observed. Furthermore, the same

four subjects showed significant correlation across all

shifts, with only small changes of the ECPs.

Due to the long resting state acquisition, we were able to

also investigate the temporal variation of ECPs by splitting

the datasets into five parts where each is still of sufficient

length. Figs. 4 and 5 show the five ECPs for every part of

the datasets of two exemplary RSNs, again RSN 1 and 6a,

for all subjects. There is a certain resemblance of the ECPs

within a subject, however, also a clear temporal variation.

Furthermore, one can see significant changes in the ECPs.

For example, subject 4 seems to have a state shift in the

middle of the acquisition. Compared to the ECPs of the

complete session most of the subjects show higher corre-

lation values at these shorter intervals.

Discussion

Our findings show that BOLD RSNs found with ICA and

dual regression are very similar in all subjects, but the

corresponding ECPs show large variations between sub-

jects leading to a non-significant correlation on group level.

On subject level we found significant correlation in four of

Table 1 Lists the RSNs found using ICA and their classification

according to Smith et al. (2009)

RSN 1 Medial visual component

RSN 2 Occipital pole component

RSN 3 Lateral visual component

RSN 4 Default mode network (DMN)

RSN 5 Cerebellum (here combined with

a lateralized anterior component)

RSN 6a Sensory motor component

RSN 6b Lower sensory motor component

RSN 7 Auditory system

RSN 8 Executive control—medial frontal network

RSN 9 Frontoparietal lateralized network (left)

RSN 10 Frontoparietal lateralized network (right)
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Fig. 2 Depicts RSN 1 (medial visual component) after dual regres-

sion on single subject level as maximum intensity projection on the

central slices and the subject specific ECPs for all 12 subjects,

showing the high inter-subject variability of the ECPs but also

significant negative alpha correlation in subject 4 and subject 8. For

visualization purposes a cluster threshold of 100 voxels and a

minimum intensity threshold of 25 % was used
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Fig. 3 Depicts RSN6a (sensorimotor component) after dual regres-

sion on single subject level as maximum intensity projection on the

central slices and the subject specific ECPs for all 12 subjects,

showing the high inter-subject variability of the ECPs. Subject 4

shows significant positive delta correlation and negative alpha and

beta correlation. For visualization purposes a cluster threshold of 100

voxels and a minimum intensity threshold of 25 % was used
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the twelve subjects with consistent negative alpha corre-

lation with the three visual RSNs, which is in good

agreement with the common finding in previous studies

(Goldman et al. 2002; Moosmann et al. 2003; Laufs et al.

2006; Goncalves et al. 2006). Apart from this, these studies

used EEG derived regressors, which lead to large variation

of the BOLD maps. In contrast to these studies we

employed a well established explorative and automated

approach to derive stable BOLD RSNs across subjects

whose time course was correlated with the EEG. Thus, the

observed inter-subject variability very likely results from

the EEG, which would explain the mixed results found in

the former studies.

Our findings are consistent with the finding of Goncal-

ves et al. (2008) where a large inter-subject variability of

the correlation between EEG and fMRI was reported for

the alpha frequency band. Furthermore, they interpreted the

results such that this variability arises from the EEG, since

the BOLD activation clusters were stable over subjects,

which is consistent with our observations. Their and our

findings are, however, in contrast to a study by Mantini

et al. (2007) who reported significant EEG correlation

patterns for six BOLD RSNs on group level with a rela-

tively low inter-subject variation. This could be due to

differences in the experimental setup (length of the resting

state scan, eyes open vs. eyes closed), but also due to

differences in the analysis. Mantini et al. (2007) used single

subject ICA in combination with a clustering algorithm to

obtain group maps.

In our attempt to pin down possible sources of this inter-

subject variability we performed several analysis steps. At

first we investigated the influence on the ECPs by subject

specific differences of the HRF, which links electrophysi-

ological activity and BOLD (Friston et al. 1998a, b;

Logothetis et al. 2001; Stephan et al. 2007). To probe the

influence of HRF variations we varied the temporal shifts

of the HRF, which slightly changed the correlation values

on group level, however the shapes of the ECPs were quite

stable. A larger influence was observed on single subject

level. Obviously, the inter-individual variation in HRFs

influences the ECPs and is a very important topic to

address in terms to understand in detail the relation

between both modalities (Schippers et al. 2011; Schölvinck

et al. 2010; Stephan et al. 2007), but from our results it

seems that inter-subject differences in the HRF are not the

main reason for the observed inter-subject variability in the

ECPs. To investigate the influence of electrode selection on

the variability of ECPs we selected electrodes that are

spatially close to the related RSNs (frontal and occipital).

This did not improve the specificity of the ECPs compared

to averaging over all channels, as the ECPs showed high

similarities between an anterior and posterior selection of

electrodes due to volume conduction. A simple manual

selection of electrodes did not improve the specificity of

the ECPs and did not lead to a reduced inter-subject

variability.

Finally we examined the temporal stability of the ECPs

within individual subjects by splitting the individual data-

sets into five equal segments. The ECPs for the different

RSNs were calculated for each segment, showing large

fluctuations over the entire scan. On the other hand, the

observed temporal changes of the ECPs do not seem to be

arbitrary. In essence, some individual characteristics are

kept and exhibit mostly smooth temporal changes. How-

ever, it is clear that intra-individual temporal changes of

the ECPs lead to a higher inter-individual variability. Most

probably these temporal changes of the ECPs can be

explained by the temporal dynamics of the RSNs as

observed in some studies (e.g. Damoiseaux et al. 2006).

Thus, correlating the power timelines of the different EEG

frequency bands with one specific RSN time course will

lead to low and unstable correlation values because they

consist of the superposition of the electrophysiological

signals coming from all RSNs, which cannot be disentan-

gled by a global EEG power time course. This might also

explain why more significant correlation could be found in

Table 2 lists all significant ECPs (Z scores) sorted by frequency band, subjects and RSNs

RSN1 RSN2 RSN3 RSN4 RSN6a RSN6b RSN7 RSN8 RSN9 RSN10

Delta

Subject4 2.81 3.15 2.69 2.63

Subject8 3.69

Alpha

Subject1 -3.04 -3.01

Subject4 -4.21 -4.22 -3.85 -3.42 -3.47 -3.38 -3.68 -3.98 -3.58 -3.83

Subject5 -3.04

Subject8 -3.33 -2.93 -3.23

Beta

Subject4 -2.75 -2.77 -2.98 -3.84 -2.83 -3.86
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Fig. 4 Shows the ECPs of RSN 1 (medial visual component) for all five parts of the split datasets for all 12 subjects. The ECPs show higher Z

scores at these shorter time intervals and the patterns change over time
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Fig. 5 Shows the ECPs of RSN 6a (sensorimotor component) for all five parts of the split datasets for all 12 subjects. The ECPs show higher Z

scores at these shorter time intervals and the patterns change over time
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shorter intervals. An alternative explanation for our

observations would be that the different RSNs do not have

a specific ECP, but that different states of one RSN lead to

different ECPs. Our observation of the temporally chang-

ing ECPs is in good agreement with findings by Schölvinck

et al. (2010), who reported changes of correlation patterns

over time in a combined EEG–fMRI resting state experi-

ment with macaque monkeys. They found alertness related

fluctuations of the correlation between both modalities in

the gamma frequency range in two of the three partici-

pating monkeys whereby a lower correlation was reported

during eyes open RS. This might be one possible expla-

nation for the low correlations found in our eyes-open

resting state study. They also report a huge variability

between the animals in the correlation between EEG and

BOLD for the lower frequency range. An overview of

combined EEG–fMRI, including animal studies, can be

found in the review of Leopold and Maier (2011).

In future studies, to more specifically investigate the

relation between RSNs and EEG, one would need a direct

handle to link specific EEG components to the different

RSNs. To use temporal ICA for the analysis of resting state

EEG equivalent to those studies using a task design (e.g.

Eichele et al. 2008) is not possible since clear characteristic

temporal patterns are missing. A more promising solution

might be the separation of EEG on the basis of the fMRI

RSNs which are stable across subjects. We are of the

opinion that by using a realistic head model (Acar and

Makeig 2010; Bojak et al. 2011; Hallez et al. 2007) one

could in principle directly model the link between fMRI

RSNs and their related EEG for more specific investiga-

tions of the relation between both modalities in a resting

state.

In summary, we found reproducible RSNs across sub-

jects and significant correlations with EEG in four of the

twelve subjects, three of them showed negative alpha

correlation with visual RSNs which is in good agreement

with previous findings. However, we also observed large

inter-subject variability in the ECPs. Besides a clear inter-

individual difference in EEG patterns, it seems that the

found temporal variability of the ECPs within a subject

explains a large part of the observed inter-subject vari-

ability in the ECPs, i.e. the correlation between EEG fre-

quency power and BOLD RSNs. In addition, the unstable

ECPs over time between both modalities might be inherent

to eyes open RS. It seems that there is only a minor con-

tribution from the variation of the individual HRF to the

inter-subject variability of the ECPs.
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