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Background and aim: It is recognized that nonalcoholic fatty liver disease (NAFLD), including nonalcoholic
steatohepatitis (NASH), may develop after pancreaticoduodenectomy (PD). However, the mechanism of NASH
development remains unclear. This study aimed to examine the changes in gene expression associated with
NASH occurrence following PD.
Methods: The expression of genes related to fatty acid/triglyceride (FA/TG)metabolism and inflammatory signal-
ing was examined using liver samples obtained from 7 post-PD NASH patients and compared with 6 healthy
individuals and 32 conventional NASH patients.
Results: The livers of post-PD NASH patients demonstrated significant up-regulation of the genes encoding CD36,
FA-binding proteins 1 and 4, acetyl-coenzyme A carboxylaseα, diacylglycerol acyltransferase 2, and peroxisome
proliferator-activated receptor (PPAR) γ compared with normal and conventional NASH livers. Although serum
apolipoprotein B (ApoB) and TGwere decreased in post-PD NASH patients, the mRNAs of ApoB and microsomal

TG transfer protein were robustly increased, indicating impaired TG export from the liver as very-low-density
lipoprotein (VLDL). Additionally, elevated mRNA levels of myeloid differentiation primary response 88 and
superoxide dismutases in post-PD NASH livers suggested significant activation of innate immune response and
augmentation of oxidative stress generation.
Conclusions: Enhanced FA uptake into hepatocytes and lipogenesis, up-regulation of PPARγ, and disruption of
VLDL excretion into the circulation are possible mechanisms of steatogenesis after PD.
General significance: These results provide a basis for understanding the pathogenesis of NAFLD/NASH following
PD.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The prevalence of nonalcoholic fatty liver disease (NAFLD) is in-
creasing worldwide. In general, NAFLD is closely linked with overnutri-
tion, visceral fat accumulation, and obesity. Nonalcoholic steatohepatitis
(NASH) is a serious subtype of NAFLD that may progress to cirrhosis,
hepatocellular carcinoma, and hepatic failure [1–3]. Therefore, under-
standing the pathogenesis of NASH is important for the development
of proper preventive and therapeutic strategies. The initial step of
NASH development is accumulation of triglycerides (TGs) into hepato-
cytes. Sources of intrahepatic TG are non-esterified fatty acids (FAs)
released from white adipose tissue and absorbed from the small intes-
tine, as well as those newly synthesized from citrate. FAs are further
metabolized to acetyl-coenzymeA (CoA)mainly throughmitochondrial
β-oxidation or esterified to TG, which is either stored in hepatocytes or
incorporated into very-low-density lipoprotein (VLDL) and released
into the circulation. Therefore, disruption of these metabolic pathways
causes hepatosteatosis. Enhanced inflammatory signaling and cellular
stress injure steatotic hepatocytes and activate Kupffer cells and stellate
cells, resulting in steatohepatitis [4–6].

The pancreas plays a central role in the absorption of essential nutri-
ents, such as fat, amino acids, and fat-soluble vitamin. It is well known
that NAFLD/NASH may develop after pancreatic resection [7–9]. We
previously reported clinical characteristics of NAFLD developed after
pancreaticoduodenectomy (PD) [7]. Most of these patients were diag-
nosed as having steatohepatitis by liver biopsy, but were lean and had
lower levels of serum albumin, total cholesterol, apolipoprotein B
(ApoB), and insulin compared with conventional NASH patients [7].
Hepatic steatosis following PDwas ameliorated by intensifying oral sup-
plementation of pancreatic enzymes [7], revealing a close link between
steatogenesis, pancreatic exocrine insufficiency, and malabsorption/
maldigestion. These results are in agreement with the recent reports
from the other groups [8,9] and suggest that the mechanism of
steatogenesis after PD is different from that of conventional NAFLD/
NASH accompanying obesity and insulin resistance. However, the
mechanism of post-PD NAFLD/NASH occurrence has not been
evaluated.

In the present study, the expression of genes associated with FA/TG
metabolism, inflammation, and oxidative stress, which are key contrib-
utors of NASH development, was examined using liver samples obtain-
ed from post-PD NASH patients and comparedwith healthy individuals
and conventional NASH patients. The livers of post-PD NASH exhibited
significant increases in the mRNAs related to intrahepatic FA uptake
and FA/TG synthesis. The mRNAs encoding ApoB and microsomal TG
transfer protein (MTTP) were increased regardless of reduced circulat-
ing ApoB and TG, suggesting impairment of TG excretion from the
liver. Additionally, hepatic mRNAs of myeloid differentiation primary
response 88 (MyD88, encoded by MYD88) and superoxide dismutase
(SOD) 1 and 2 (encoded by SOD1 and SOD2, respectively), which are
associated with innate immunity and oxidative stress, respectively,
were augmented. These results propose possible mechanisms of post-
PD NASH development caused by pancreatic exocrine insufficiency
and malabsorption/malnutrition.

2. Material and methods

2.1. Patients

2.1.1. Post-PD NASH patients
The detailed patients' selection criteria were described previously

[7]. Briefly, 80 patients who underwent PD (Whipple's procedure)
between January 2001 and December 2006 at Showa Inan General Hos-
pital and Iida Municipal Hospital without regular alcohol consumption
were examined. These patients were all negative for hepatitis B virus
(HBV) surface antigen and anti-hepatitis C virus (HCV) antibody and
did not have detectable hepatic steatosis before PD. Eight patients
died within 6 months after PD and 12 were unavailable for repeated
abdominal computed tomography (CT) examinations for more than
6months afterwards. The presence of newly appearing hepatic steatosis
was judged as a liver-to-spleen attenuation ratio of less than 0.9 in
unenhanced abdominal CT. In 13 patients developing NAFLD after PD,
8 patients received percutaneous liver biopsy and were diagnosed as
having steatohepatitis [7]. Liver samples from 7 patients were available
for mRNA analysis.

2.1.2. Conventional NASH patients
Liver samples were obtained from 32 NASH patients who

underwent a liver biopsy at Shinshu University or its affiliated hospitals
between April 2006 and March 2008. NASH was suspected by the fol-
lowing criteria: (1) the detection of steatosis by abdominal ultrasonog-
raphy (US); (2) the absence of regular intake of alcohol or drugs;
(3) negative results for HBV surface antigen and anti-HBV core and
anti-HCV antibodies; and (4) the absence of other types of chronic
liver disease, such as autoimmune liver disease, hereditary hemochro-
matosis,Wilson's disease,α1-antitrypsin deficiency, and citrin deficien-
cy. The diagnosis of NASH was confirmed by liver histology.

2.1.3. Normal controls
Normal livers were obtained from 6 healthy liver transplantation

donors at the time of pre-operative liver biopsy who satisfied the fol-
lowing criteria: (1) the absence of past history of liver disease and reg-
ular intake of alcohol and drugs; (2) the absence of obesity, diabetes,
hypertension, and hyperlipidemia; (3) normal liver function tests; and
(4) normal liver histology [10,11].

2.1.4. Clinical data collection
Body height and weight were determined by nursing staff unaware

of the subjects' medical information. The presence of obesity was
defined as having a body mass index (BMI) of more than 25 kg/m2

based on criteria released by the Japan Society for the Study of Obesity.
The diagnosis of the presence of hypertension, diabetes, and hyperlipid-
emia is made based on the criteria described previously [10–12]. Blood
samples were obtained at the time of liver biopsy following overnight
fasting for 8–10h. Laboratory data, such as aspartate and alanine amino-
transferase (AST and ALT, respectively) and γ-glutamyltransferase
(γGT), were measured by standard methods using automated ana-
lyzers. The homeostasis model assessment for insulin resistance
(HOMA-IR) value was calculated as described elsewhere [10–12].

2.2. Liver biopsy and histological evaluation

Liver samples were obtained from 2 different sites in the same lobe
using a 14-gauge needle by percutaneous US-guided biopsy [7,10,11].
Fragments of liver tissue (5–7 mm) were immediately frozen with a
RNA stabilization solution (RNAlater® solution, Life Technologies,
Grand Island, NY, USA) in liquid nitrogen and stored at −80 °C until
RNA extraction. The remaining specimenswerefixed in 10% neutral for-
malin, cut in 4-μm thickness, and stained using the hematoxylin and
eosin or Azan–Mallory method. Histological findings were assessed in
a blinded fashion by an independent pathologist and scored according
to the staging/grading system proposed by Kleiner et al. [13]. As a
minor modification, Mallory bodies were scored as none to rare (0),
few (1), or many (2). The NAFLD histological activity score (NAS) was
calculated as the unweighted sum of the scores for steatosis (0–3), lob-
ular inflammation (0–3), and ballooning (0–2). The histological diagno-
sis of NASH was made by the presence of macrovesicular steatosis and
hepatocyte ballooning.

2.3. mRNA analysis

Total RNA was extracted from frozen liver samples of healthy indi-
viduals (n = 6), conventional NASH (n = 32), and post-PD NASH
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(n = 7) using a RNeasy Mini Kit (Qiagen, Tokyo, Japan) and cDNA was
generated by SuperScript II reverse transcriptase (Gibco BRL, Paisley,
Scotland). Quantitative PCR (qPCR) was performed by use of SYBR
green PCR kit and ABI Prism 7700 Sequence Detection System (Applied
Biosystems, Foster City, CA, USA) with the primer pairs summarized in
Supplementary Table 1. All mRNA levels were determined using the
ΔΔCtmethod as described previously [10,11]. ThemRNA levels of target
genes were normalized to those of 18S ribosomal RNA and expressed as
fold changes relative to those of normal livers.

2.4. Ethics

This study was approved by the ethical committee of Showa Inan
General Hospital, Iida Municipal Hospital, and Shinshu University
School of Medicine and adheres to the principles of the Declaration of
Helsinki. Informed consent was obtained from all patients.

2.5. Statistical analysis

Statistical analyses were performed using Prism 6 for Windows
(GraphPad Software Inc., La Jolla, CA, USA). Clinical parameters were
expressed as a number (percentage) or median (range). Comparisons
between multiple groups were made using the one-way ANOVA test
with Bonferroni's correction for continuous variables and the Chi square
or Fisher's exact probability test for categorical variables. A P value of
less than 0.05 was considered to be statistically significant.

3. Results

3.1. Post-PD NASH patients exhibit malnutrition

Clinical features of post-PD NASH patients were compared with
healthy individuals. Serum AST, ALT, and γGT concentrations were
increased, but none had obesity and hyperlipidemia in post-PD NASH
patients (Supplementary Table 2). Additionally, serum levels of albumin
and ApoB were significantly lower in these patients (Supplementary
Fig. 1. Hepatic expression of genes encoding enzymes/proteins involved in fatty acid up
Table 2). These differences became more marked when post-PD NASH
patients were compared with conventional NASH patients. BMI, circu-
lating albumin, total cholesterol, TG, ApoB, and HOMA-IR were lower
in the post-PD NASH patients (Supplementary Table 2). Histological
findings revealed similar degree of steatosis, inflammation, ballooning,
fibrosis, and NAS between the two NASH groups (Supplementary
Table 3).

3.2. Up-regulation of genes associated with FA uptake in post-PD NASH

In order to explore the mechanism of steatogenesis in post-PD
NASH, hepatic expression of genes associated with FA uptake from
blood into hepatocytes was examined. The levels of mRNA encoding
CD36, FA-binding protein 1 (FABP1), and FABP4 were significantly ele-
vated in post-PD NASH group compared with normal control and con-
ventional NASH groups (Fig. 1A). These results demonstrate that up-
regulation of the genes involved in FA uptake may be associated with
steatogenesis after PD.

3.3. Up-regulation of lipogenic genes in post-PD NASH

The expression of genes related to lipogenesis was measured.
Acetyl-CoA carboxylase α and β (ACACA and ACACB, respectively) con-
vert acetyl-CoA intomalonyl-CoA, and FA synthase (FASN) catalyzes the
formation of palmitate from acetyl-CoA andmalonyl-CoA. In addition to
these enzymes, stearoyl-CoA desaturase (SCD) is linkedwith de novo FA
synthesis. Diacylglycerol acyltransferase 1 (DGAT1) and 2 (DGAT2) are
rate-limiting enzymes of TG synthesis. Among these genes, the mRNA
levels of genes encoding ACACA and DGAT2 were significantly higher
in post-PD NASH group comparedwith normal control and convention-
al NASH groups (Fig. 1B).

3.4. Expression of genes related to FA oxidation

Among the enzymes involved in peroxisomal β-oxidation [acyl-CoA
oxidase 1 (ACOX1)], mitochondrial β-oxidation [carnitine palmitoyl-
take (A) and de novo lipogenesis (B). Bars express the median. *P b 0.05, **P b 0.01.
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CoA transferase 1α (CPT1A), medium-chain acyl-CoA dehydrogenase
(ACADM), and hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA
thiolase/enoyl-CoA hydratase α (HADHA)], and microsomal ω-
oxidation [cytochrome P450 (CYP) 2E1 and 4A11] [14,15], the levels
of mRNA encoding CPT1A and ACADM were elevated in post-PD
NASH patients compared with normal controls, but there were no sig-
nificant differences in ACOX1mRNA levels (Fig. 2A). The up-regulation
of CPT1A and ACADM mRNAs appeared to be a compensatory response
to hepatic fat accumulation.

3.5. Up-regulation of genes associated with VLDL formation/secretion in
post-PD NASH

While serum concentrations of ApoB, a major component of VLDL
particle, were significantly reduced (Supplementary Table 2), hepatic
mRNAs encoding APOB were robustly increased in the patients having
post-PD NASH compared with normal individuals (Fig. 2B). Additional-
ly, the mRNA levels of MTTP, a protein transferring TG from liver to
blood as VLDL, were significantly increased in the post-PD NASH
patients compared with normal individuals and conventional NASH
patients regardless of low serum TG levels. These results indicate dis-
ruption of VLDL synthesis and/or secretion in post-PD NASH livers.

3.6. Up-regulation of PPARγ in post-PD NASH

The expression of enzymes/proteins involved in hepatic lipidmetab-
olism is regulated by nuclear receptors and transcription factors, such as
peroxisome proliferator-activated receptor α (PPARA) and γ (PPARG),
liver X receptor α (LXRA), and sterol regulatory element-binding pro-
tein 1c (SREBF1). Although there were no meaningful differences in
the expression of genes encoding retinoid X receptor α (RXRA),
SREBF1, LXRA, and PPARγ co-activator 1β (PPARGC1B), significant in-
creases in PPARA and PPARG mRNA levels were detected in post-PD
NASH livers compared with normal controls and conventional NASH
livers (Fig. 3). Since PPARγ induces the expression levels of CD36 and
FABP4 leading to hepatic adipogenesis [16,17], activation of the
PPARγ-mediated pathwaymay contribute to the steatogenesis after PD.
Fig. 2. Hepatic expression of genes encoding enzymes/proteins involved in fatty acid degrada
3.7. Up-regulation of MYD88 in post-PD NASH

Since inflammatory signaling promotes progression from steatosis
to steatohepatitis, the expression of pro-inflammatory cytokine genes
was assessed. ThemRNA levels of genes encoding tumor necrosis factor
α (TNFα, encoded by TNF) and its receptors (TNFRSF1A and TNFRSF1B),
and transforming growth factor β1 (TGFB1)were not different between
the groups (Fig. 4A). The expression of genes involved in innate immune
system was also measured. While there were no significant differences
in the mRNA levels of Toll-like receptor 4 (TLR4) and CD14, the MYD88
mRNAs were significantly increased in post-PD NASH livers compared
with control and conventional NASH livers (Fig. 4B). The TLR2 mRNA
levels were also elevated in post-PD NASH livers compared with con-
ventional NASH livers (Fig. 4B). MyD88 is a critical modulator of lipo-
polysaccharide (LPS)- and TNFα-mediated signaling [18]. These
results suggest significant activation of MyD88-mediated signaling in
post-PD NASH livers.

3.8. Up-regulation of SOD in post-PD NASH

Oxidative stress is another key promoter of NASH development.
Among oxidative stress-related genes, the mRNAs encoding SOD1 and
SOD2 were significantly augmented in post-PD NASH livers compared
with conventional NASH livers (Fig. 5). The mRNA levels of genes
encoding catalase (CAT), glutathione peroxidase 1 (GPX1), and
NADPH oxidase 2 (CYBB) were not altered in post-PD NASH livers.
Since the mRNA levels of SOD1/2 are induced in response to oxidative
stress [19], these results suggest greater oxidative stress in post-PD
NASH livers compared with conventional NASH livers.

4. Discussion

NAFLD/NASH may develop after PD, but the mechanism of
steatogenesis is not understood. The present study revealed significant
up-regulation of PPARγ and its downstream genes associated with FA
uptake into hepatocytes, such as CD36 and FABP4, and genes involved
in lipogenesis in the post-PD NASH livers. Marked increases in hepatic
tion (A) and VLDL formation/secretion (B). Bars express the median. *P b 0.05, **P b 0.01.



Fig. 3. Hepatic expression of genes encoding nuclear receptors. Bars express the median. *P b 0.05, **P b 0.01.
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APOB/MTTP expression but reduced serumApoB/TG concentrations sug-
gested disruption of VLDL synthesis/secretion. Therefore, enhanced FA
uptake and lipogenesis, up-regulation of PPARγ, and impairment of TG
export from the liver are possible mechanisms of steatogenesis after
PD. In addition, up-regulation of MyD88 and antioxidant genes was
also observed in post-PD NASH livers. These results provide novel infor-
mation regarding the pathogenesis of post-PD NAFLD/NASH.

The livers of post-PD NASH demonstrated marked up-regulation of
PPARγ and its target genes, such as FABP4 and CD36. PPARγ is a key reg-
ulator of adipogenesis that is mainly expressed in white adipose tissue.
While hepatic basal expression of PPARγ is relatively low, forced PPARγ
expression in hepatocytes using Pparg-encoding adenovirus led to
severe TG accumulation and hepatic adipogenesis [16], revealing that
Fig. 4. Hepatic expression of genes encoding pro-inflammatory cytokines (A) and toll-
aberrant PPARγ expression in the liver can cause steatosis. Activation
of PPARγ and up-regulation of its target genes were reported in
human NAFLD with moderate-to-severe steatosis [20]. The other
study showed that the mRNA levels of FABP4 and CD36were correlated
with liver fat percentage in NAFLD patients [21]. It is intriguing that the
activation of PPARγwasmoremarked in post-PDNASH livers compared
with conventional NASH, suggesting greater contribution of PPARγ-
mediated pathway to the pathogenesis of post-PD NASH.

Increased expression of ACACA andDGAT2mRNAswas also associat-
ed with hepatic TG accumulation after PD. It was documented that
hepatic mRNA levels of ACACA tended to be higher in NAFLD patients
with moderate-to-severe steatosis compared with non-NAFLD individ-
uals [20]. While the expression of ACACA is regulated by SREBF1 and
like receptor-related molecules (B). Bars express the median. *P b 0.05, **P b 0.01.



Fig. 5. Hepatic expression of genes encoding oxidative stress-related enzymes. Bars express the median. *P b 0.05, **P b 0.01.

173T. Nagaya et al. / BBA Clinical 3 (2015) 168–174
its upstream LXRA, there were no increases in SREBF1/LXRA mRNAs in
post-PD NASH. Up-regulation of ACACA mRNAs might occur through
SREBF1-independent mechanism.

Serum TG levels reflect the amount of TG involved in VLDL, and
serum ApoB levels mainly indicate the contents of ApoB in VLDL.
While serum VLDL concentrations could not be measured in this
study, decreased serum TG/ApoB and increased hepatic fat contents
and MTTP/APOB expression led us to consider that VLDL formation/se-
cretion is disrupted in post-PD NASH livers. Impaired VLDL secretion is
sometimes linkedwith NAFLD development in humans [22]. Disruption
of TG secretion from the liver might be a common mechanism of
malnutrition-related NAFLD.

PPARα activation enhances mitochondrial β-oxidation activity
accelerating FA degradation in the liver [14]. Additionally, down-
regulation of PPARα is associated with steatogenesis in humans [11].
While the expression of PPARA and its target genes, such as CPT1A and
ACADM, was increased in post-PD NASH livers, these changes are likely
an adaptation to severe hepatic fat accumulation. Indeed, some kinds of
FA can activate PPARα [23].

Our previous study demonstrated several similarities of phenotypic
changes between humans having post-PD NASH and mice fed a
methionine- and choline-deficient diet (MCD). Increased FA uptake,
up-regulated PPARγ expression, impaired VLDL secretion, and compen-
satory induction of β-oxidation enzymes were documented in the
mouse livers of MCD-induced NASH [24–27]. There is a view that MCD
feeding is not suitable for studying the mechanism of human NASH
because of the lack of obesity and insulin resistance. However, the mu-
rineMCDmodel largely reproduces the pathologies of post-PD NASH in
humans.

Increased MyD88 expression was found in post-PD NASH livers, but
not in conventional NASH, suggesting a major role of MyD88-mediated
pathway,which is activated by LPS [18], for the development of post-PD
NASH. Gut bacterial overgrowth might occur after PD due to intestinal
hypomobility, decreased secretion of gastric juice, or blind loops. Addi-
tionally, malnutrition due to pancreatic exocrine insufficiency may
induce intestinal mucosal atrophy leading to bacterial translocation
[28–30]. Therefore, up-regulation of MyD88 may reflect continuous
portal endotoxinemia and indicate an important role of gut-liver axis
for NASH development after PD. Attenuating intestinal bacterial over-
growth and mucosal atrophy might be beneficial for post-PD NASH.

In response to enhanced oxidative stress generation, oxidative
stress-related transcription factors, such as NF-E2-related factor 2, are
activated and anti-oxidant genes are induced [31]. As shown in
Fig. 2A, the expression of β-oxidation enzymes is enhanced in steatotic
hepatocytes to degrade surplus FA, resulting in increased generation of
reactive oxygen species (ROS). LPS and lipid peroxides can activate
Kupffer cells and stellate cells, augmenting ROS production in these
cells and thus injuring hepatocytes. The results of the present study sug-
gest greater contribution of oxidative stress to the pathogenesis of post-
PD NASH compared with conventional NASH.

The major limitation of this study is small cohort size that is derived
from lower incidence of post-PD NAFLD/NASH compared with conven-
tional NAFLD/NASH in the general population and difficulty to obtain
liver samples by percutaneous liver biopsy. Although this study is likely
preliminary, the results may be of great significance in understanding
the pathogenesis of post-PD NASH and will serve as a foundation for
more comprehensive studies in the future.

In this study, post-PD NASH patients were older compared with the
normal controls and conventional NASH patients (Supplementary
Table 2). We could not compare gene expression between age-
matched patients because of the small cohort size. It was reported that
PPARγ levels were decreased with age [32,33], but post-PD NASH livers
showed higher hepatic PPARγ levels compared with normal and con-
ventional NASH livers. Therefore, aging presumably does not give the
great impact on hepatic PPARγ expression in the post-PD NASH
patients.

While pancreatic enzyme supplementation can ameliorate
hepatosteatosis after PD [7], the changes in gene expression after the
treatment could not be assessed in this study. Further studies are need-
ed to address this issue. Additionally, the mechanism on how hepatic
PPARγ is induced after PD or under hyponutritional state also deserves
future investigation for understanding the association between PPAR
and nutrients.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbacli.2015.02.001.
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