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A low percentage of actinic keratoses progress to develop into cutaneous squamous

cell carcinoma. The immune mechanisms that successfully control or eliminate the

majority of actinic keratoses and the mechanisms of immune escape by invasive

squamous cell carcinoma are not well-understood. Here, we took a systematic approach

to evaluate the neoantigens present in actinic keratosis and cutaneous squamous

cell carcinoma specimens. We compared the number of mutations, the number of

neoantigens predicted to bind MHC class I, and the number of neoantigens that are

predicted to bind MHC class I and be recognized by a T cell receptor in actinic keratoses

and cutaneous squamous cell carcinomas. We also considered the relative binding

strengths to bothMHC class I and the T cell receptor in a fitness cost model that allows for

a comparison of the immune recognition potential of the neoantigens in actinic keratosis

and cutaneous squamous cell carcinoma samples. The fitness cost was subsequently

adjusted by the expression rates of the neoantigens to examine the role of neoantigen

expression in tumor immune evasion. Our analyses indicate that, while the number

of mutations and neoantigens are not significantly different between actinic keratoses

and cutaneous squamous cell carcinomas, the predicted immune recognition of the

neoantigen with the highest expression-adjusted fitness cost is lower for cutaneous

squamous cell carcinomas compared with actinic keratoses. These findings suggest a

role for the down-regulation of expression of highly immunogenic neoantigens in the

immune escape of cutaneous squamous cell carcinomas. Furthermore, these findings

highlight the importance of incorporating additional factors, such as the quality and

expression of the neoantigens, rather than focusing solely on tumor mutational burden,

in assessing immune recognition potential.
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INTRODUCTION

In the Medicare fee-for-service population, there were over
one million cutaneous squamous cell carcinomas (cuSCCs)
diagnosed in 2012 in the United States, and the incidence
is increasing (1). While most cuSCC tumors are successfully
treated with excision,∼4% of cuSCC patients develop metastases
and 2% die from cuSCC (2). Especially in sun-rich states, the
high incidence of cuSCC, coupled with the risk of metastasis
and death, results in similar estimates of death from cuSCC
as melanoma (3). Immunotherapy using immune checkpoint
inhibition with the drug cemiplimab has recently been FDA-
approved for the treatment of locally advanced, unresectable,
and metastatic cuSCC; however, only ∼50% of cuSCC patients
respond to cemiplimab treatment (4). Therefore, it is critical
to improve our understanding of the immune recognition of
cuSCC, in order to advance the prevention and treatment options
for this disease.

Actinic keratoses (AKs) are generally considered to result
from cumulative ultra-violet light-induced DNA mutations,
and a small percentage of these precursor lesions progress
to invasive cuSCC over time (5). However, despite ongoing
research, there is not yet a clear understanding of what
allows some AKs to progress to cuSCC. Lesion progression
involves mutations in the epithelial cells which allow malignant
transformation. In addition, mutations in the tumor cells
generate neoantigens which may be recognized by the naturally-
occurring or therapeutically-induced immune response, and
thus the immune response modulates tumor development.
The interaction between cancer and the immune system is
explained by the cancer immunoediting model, which has
three phases (6). In the elimination phase, the immune
system destroys the developing tumor before the tumor
becomes clinically apparent. The elimination phase can result
in complete elimination or residual cancer cell variants that
resist elimination and enter the equilibrium phase. In the
equilibrium phase, the immune response controls tumor growth.
Editing of the immunogenicity of the tumor occurs in the
equilibrium phase as a consequence of selective pressure from
the immune response. Tumor cell variants that are no longer
recognized by the immune system enter the escape phase and
manifest as clinically apparent tumors. Examples of immune
escape include the loss of tumor antigens or the loss of
the ability to present the tumor antigens on MHC class I.
The immunoediting process has recently been demonstrated
in early stage, untreated non-small cell lung cancer (7).
Tumors with intact MHC class I had a significant decrease
in expressed neoantigens compared with non-neoantigenic,
somatic mutations, and only tumors with intact MHC class I
and immune cell infiltration exhibited a decrease in expressed
neoantigens (7).

Cancer immunoediting is also observed in response to
therapeutically-induced immune responses from immuno-
therapy with immune checkpoint inhibitors. Immune checkpoint
receptors are expressed on T cells after activation and
function as part of a homeostatic mechanism to turn off T
cell responses (8). While immune checkpoint receptor-ligand

interactions are helpful in constricting T cell responses after
an infection is cleared, some tumors co-opt this mechanism
to avoid eliciting a T cell response. Immune checkpoint
inhibition therapy blocks this inhibitory signal and improves
immune-mediated tumor destruction. Several studies have
demonstrated an association of higher tumor mutational burden
with improved response to immune checkpoint inhibition in
melanoma and non-small cell lung cancer (9–13). A subset
of these studies also analyzed the number of neoantigens and
found that the number of neoantigens was also positively
correlated with the response to immunotherapy (9, 11–13).
However, these results have not been consistent across all
cancers. Multiple myeloma patients were found to have an
inverse relationship between progression-free survival and
the tumor mutational burden and neoantigens (14). These
opposing results suggest that there are likely additional factors
influencing the relationship between neoantigens and the
response to immunotherapy.

One possible factor suggested by McGranahan et al. is the
homogeneity of the tumor neoantigens. Their group found that
in lung cancers, in addition to the number of neoantigens,
the degree of homogeneity of the tumor was highly associated
with the survival of the patient (9). They found that the
more homogenous the neoantigen presence was in the tumor,
the greater the patient survival (9). Another factor is defined
by Łuksza et al. as the “fitness cost of the tumor,” which
is directly proportional to MHC class I binding and T-cell
receptor (TCR) recognition potential (15). An increased fitness
cost was found to highly correlate with improved response to
immunotherapies, suggesting that, in addition to the number of
mutations and neoantigens, the strength of these neoantigens
is important in predicting the immune response (15). This
finding is corroborated by Anagnostou et al. who demonstrated
the changes in the neoantigens found in tumors before and
after immunotherapy (16). In this study, the overall number
of neoantigens increased from the original tumor to the post-
treatment tumor; however, the strength of retained and gained
neoantigens was less than the strength of the neoantigens that
were lost (16). These results again suggest that the ability of
a tumor to grow in the face of a competent immune system
requires changes not only in the number of neoantigens but in
their quality.

There have been a few analyses of the differences in
tumor mutational burden between pre-cancerous and cancerous
lesions (17–19). Two of these analyses compared the tumor
mutational burden between Barrett’s esophagus and esophageal
adenocarcinomas and found that the tumor mutational burden
increased from the pre-cancerous to the cancerous lesion in
paired samples (17, 18). A single study investigated the tumor
mutational burden in AKs and cuSCCs (19), but, to our
knowledge, there are no reports of the number of neoantigens
or the fitness costs of these neoantigens in AK or cuSCC. In order
to address these gaps, we have compared the neoantigen burden
and fitness cost between AKs and cuSCCs. Understanding what
allows the immune system to keep AKs in equilibrium while
it fails to do so with cuSCCs may help to explain which AKs
progress to cuSCCs.
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TABLE 1 | Summary of the samples available from each patient.

Patient ID 1 2 3 4 5 6 8 10 12

WES normal skin X X X X X X X X

WES saliva x x x x x x X

WES AK X X X X X X X

WES cuSCC X X X, X X X X

RNAseq normal skin x x x x x x x

RNAseq AK x X X x X x x x x

RNAseq cuSCC X X x, x X X x x x

X denotes any samples used in our analyses, and x denotes samples available that were

not used.

METHODS

Datasets
Whole exome sequencing (WES) data with an average coverage
of 135×± 22 (mean± s.d.) (Illumina Hi-Seq) and RNAseq data
average of 64 million reads per sample (Illumina Hi-Seq) from
Chitsazzadeh et al. was used for this analysis (19). Datasets from
7AK samples and 7 cuSCC samples from 9 different patients were
kindly provided by Dr. Ken Tsai and Dr. Kimal Pajapakshe. Eight
out of the 9 patients also had a normal skin sample which was
used for comparison. For the remaining patient (patient 12), a
saliva sample was used in place of the normal skin. These samples
and the patients they come from are summarized inTable 1. Note
that the AK and cuSCC samples from an individual patient are
separate lesions.

Neoepitope Prediction
WES and RNAseq data files for normal skin, AK, and cuSCC
samples were obtained as FASTQ files. WES and RNAseq FASTQ
files underwent quality control using FastQC (20) and were
trimmed for quality using Trimmomatic (21) IlluminaClip
with the following parameters: seed_mismatches = 2,
palindrome_clip_threshold = 30, simple_clip_threshold =

10, leading = 10, trailing = 10, winsize = 4, winqual = 15.
Trimmed WES reads were mapped to the GRCh38.p7 reference
genome using HISAT2 v. 2.1.0 (22). SAM files were converted to
BAM and coordinate sorted using SAMtools v. 1.4 (23). WES
BAM files were processed according to Broad Institute GATK
(Genome Analysis Toolkit) best practices (24–26). Read groups
were added with Picard Toolkit’s AddOrReplaceReadGroups and
optical duplicates marked with Picard Toolkit’s MarkDuplicates
(v.2.18.1, http://broadinstitute.github.io/picard/). Base quality
scores were recalibrated with GATK (v.4.0.3.0) BaseRecalibrator.
The BAM files were then converted to pileup format using
Samtools 1.3.1 (23). To determine the neoantigens present in
the AKs compared to the cuSCCs, first, high confidence single
nucleotide polymorphisms (SNPs) and indels were called using
VarScan2 version 2.3.9 with minimum coverage of 10, minimum
variant allele frequency of 0.08, and somatic p-value of 0.05 (27).
Somatic mutations were separated from those SNPs that fell
within 1 bp of an indel position, as these were likely to be false
positives due to alignment errors. The variants were annotated
using the Variant Effect Predictor tool from Ensembl version

90.9 (28, 29). Finally, peptides were identified and prioritized
from these variants using pVACtools version 3.0.5 (30, 31).
For every variation in amino acid, all possible peptides were
generated in which the changed amino acid was included at
every position in a sequence. Sequences of 21 amino acids were
considered. The non-mutated sequence corresponding to each
of these possible neoepitopes was also extracted for comparison
sake. These steps were done as outlined in the EpitopeHunter
pipeline from Narang et al. (32).

HLA Typing
HLA typing was completed for three major MHC class I genes
(HLA-A, -B, and -C) using POLYSOLVER (POLYmorphic loci
reSOLVER) version 1.0 (33). POLYSOLVER aligns reads from the
WES data in the HLA region of each sample and then aligns these
regions to a library of all known HLA alleles. Then, a Bayesian
classification approach is used to determine the two alleles for
each gene for each patient.

Predicting MHC Class I Binding Epitopes
Prediction of the potential epitopes that would effectively bind to
MHC class I was completed with the NetMHCpan server version
4.0 (34). Neoantigens of only 9 amino acids were considered.
Scores were calculated for both the mutated peptides and their
wild-type counterparts. Each was scored based on its dissociation
constant to each of the alleles predicted by POLYSOLVER.
The top binding potential for each neoantigen was selected
independently for the wild-type and mutant peptides. These
binding probabilities were then used to determine an “amplitude”
(A) using the methods outlined by Łuksza et al. (15). Only
neoantigens with a maximum dissociation constant of 500 nM
were considered, and the ratio of the dissociation constants (Kd)
for the wild-type (WT) compared to the mutant (MT) peptides
was calculated as shown here:

A = KWT
d /KMT

d

For wild-type peptides with exceptionally high predicted
dissociation constants, an adjustment is made to account for
the lack of accuracy of netMHCpan at predicting dissociation
constants above the range in which it was trained. This
adjustment is described in detail in the paper of Łuksza et al. and
will therefore not be discussed further here (15).

Predicting Neoantigen TCR Recognition
Prediction of TCR recognition potential, R, was calculated as
described by Łuksza et al. (15). A BLOSUM62 similarity matrix
was used to assess the sequence similarity between a neoantigen
and peptide sequences that are known T cell antigens from
the Immune Epitope Database (IEDB) (35). The same set of
IEDB sequences was used as was optimized by Łuksza et al. for
evaluation of neoantigens inmelanoma and small cell lung cancer
(15). The sequence similarity was then used in place of binding
energies, and the TCR recognition potential was calculated as:

R = Z(k)−1
∑

e∈IEDB

exp[−k(a− |s, e|)]
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Where |s,e| is the sequence similarity, a is the horizontal
displacement of the binding curve, and k sets the steepness of
the curve at a. Based on the model fit by Łuksza et al., the
parameters a and k were set to 26 and 4.87, respectively (15).
These parameters were optimized for both melanoma and lung
cancer patients and shown to have consistent predictive value
in both cancers. This gives us confidence that they can likewise
be used with predictive value for cuSCC without the need to
introduce a new training set. Finally, Z(k) is the partition function
over the unbound state and all bound states, calculated as follows:

Z
(

k
)

= 1+
∑

e∈IEDB

exp[−k(a− |s, e|)]

Fitness Cost Calculation
Given the TCR recognition potential (R) and the MHC-binding
amplitude (A), the fitness cost (F) of the neoantigens was
calculated as described by Łuksza et al. (15):

F = A× R

Rather than taking the negative of this value as was done by
Łuksza et al., we have left this value as a positive and will refer to it
as the fitness cost. The greater the fitness cost, the more immune
recognition and immune-mediated destruction we predict for
the tumor. We have chosen to look at both the average and
the maximum fitness cost for the neoantigens in each tumor to
avoid presupposing that the single strongest neoantigen is of sole
importance in the tumor recognizability.

Recognizing that to be visible to the immune system,
neoantigens must be expressed, the fitness cost was then adjusted
for the magnitude of expression of the given neoantigen.
Transcriptome assembly and read count quantifications were
completed with Salmon version 0.11.3 (36) normalized to reads
per kilobase of transcript per million mapped reads (RPKM).
Using RNAseq data, the expression of each neoantigen with non-
zero fitness cost was calculated as a fraction of the total read
counts for these neoantigens. This fraction was multiplied by the
amplitude and TCR recognition potential to generate an adjusted
fitness cost.

Statistical Analysis
Statistical Analyses were performed using STATA version 14
(STATAcorp; College Station, TX). P-value calculations were
done using a Wilcoxon Rank Sum calculation. Correlation
between variables were calculated as Spearman’s Rho
correlation coefficients.

HLA Mutations and Expression
To determine the role of HLA mutations and expression on the
neoantigen profile of the tumor samples, somatic mutations were
identified within the coding regions for HLA-A, B, and C. The
mutations identified were then compared to the regions encoding
the peptide binding groove. The regions encoding the peptide
binding groove are found on exons 2 and 3. HLA coding regions
and peptide binding groove regions were determined by the
NCBI Gene database (37). MHC class I pathway members, TAP1,

TAP2, or B2M were also interrogated for mutations. RPKM-
normalized RNAseq expression levels of HLA-A, B, and C as
well as TAP1, TAP2, and B2M were fit with a linear regression
against the adjusted maximum fitness cost. The mutation’s effect
on the expression of the gene was evaluated by calculating the
average expression and the standard deviation of the specific gene
across all samples. For the mutations found in HLA-B for patient
2 cuSCC and in HLA-C for patient 5 AK, the expression value
was compared to the average expression of the respective HLA
gene. A value within two standard deviations from the mean was
considered unaffected by the mutation.

Cell Enrichment Type Analysis
We used the xCell web service to deconvolute the diverse
cell populations present in the cuSCC and AK samples (38).
This program uses a gene signature-based method to estimate
the proportions of different cell types in a bulk-RNA-sequence
sample. RPKM gene expression data was used to estimate the
fraction of the tumor sample made up by different cell types. In
this work, the specific focus was on the immune-related cell types.
Linear regressions were fit to the adjusted maximum fitness cost
against the expression level of each of the following: T cell subsets
(CD4T cells, CD8T cells, CD8 central memory T cells, CD8
effector memory T cells, CD8 naïve T cells, regulatory T cells),
dendritic cell populations (immature DCs and conventional
DCs), and natural killer (NK) cells. A Bonferroni correction was
completed on the p-values from these correlations to adjust for
the number of comparisons.

RESULTS

Analysis of Mutation and Neoantigen
Counts
Somatic mutations and neoantigens were identified and
filtered using the methods described. As previously shown by
Chitsazzadeh et al. the mutational burden varied widely over
both the AK and cuSCC samples (19). For cuSCCs there was
an average of 2,861 mutations with a range of 389–11,504 and
for AKs there was an average of 424 mutations with a range of
346–1,697 (Table 2, Figure 1A). While the maximum number
of mutations was higher for the cuSCC samples than the AK
samples, there was no statistically significant difference in the
average number of mutations (p= 0.3379).

The number of binding neoantigens was defined as those
neoantigens predicted by NetMHCpan to have a dissociation
constant for MHC class I of <500 nM. AK and cuSCC
samples both had large ranges of binding neoantigens (88–
442 and 45–3,600, respectively), but there was no statistically
significant difference in the average number observed for the two
populations (Table 2, Figure 1B, p = 0.336). These data show
that neoantigens predicted to bind MHC class I are present in
both AK and cuSCC samples.

The number of neoantigens can be further refined by selecting
only those with a non-zero predicted TCR recognition potential.
We will refer to these as “immunogenic neoantigens.” Again, a
large range was observed (21–112 for AKs, 8–965 for cuSCCs),
but no statistically significant difference was present (Table 2,
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TABLE 2 | Summary of the number of somatic mutations, 21 base pair peptides

(predicted from only non-synonymous mutations), 9 base pair binding

neoantigens, and immunogenic neoantigens for each patient sample.

Sample Somatic

mutations

Peptides

(21 mer)

Possible

neoantigens

(9 mer)

Binding

neoantigens

Immunogenic

neoantigens

Patient 1

AK

50 2 26 0 0

Patient 2

AK

1,697 1,191 15,480 442 112

Patient 2

cuSCC

2,540 2,185 28,403 190 41

Patient 3

AK

617 317 4,121 85 21

Patient 3

cuSCC

5,385 2,941 38,231 1,297 339

Patient 4

AK

75 2 27 2 0

Patient 4

cuSCC1

83 12 156 2 1

Patient 4

cuSCC2

47 1 13 0 0

Patient 5

AK

346 197 2,561 88 28

Patient 5

cuSCC

11,504 7,678 99,799 3,600 965

Patient 6

cuSCC

389 245 3,185 45 8

Patient 8

cuSCC

82 12 157 7 0

Patient 10

AK

133 24 312 2 0

Patient 12

AK

53 0 0 0 0

Binding neoantigens are those neoantigens with <500 nM dissociation constant from

MHC class I, and immunogenic neoantigens are those neoantigens with a non-zero

TCR-binding potential.

Figure 1B, p = 0.3185). These data show that the number of
neoantigens can be further refined by incorporating predicted T
cell recognition to yield a smaller subset of neoantigens, which
are predicted to be immunogenic.

As shown in Figure 1C, there was a strong correlation between
the somatic mutations and both the binding and immunogenic
neoantigens (Spearman’s rho correlation coefficients of 96
and 92%, respectively). However, these correlations represent
different associations. The slope of the somatic mutation to
binding neoantigen correlation was 0.31 (95% CI of 0.27–
0.34), and the slope of the somatic mutation to immunogenic
neoantigen correlation was 0.08 (95% CI of 0.07–0.09). Given
that there was no overlap for the 95% confidence intervals,
we can conclude that the difference in these slopes was
statistically significant. While both the number of binding and
immunogenic neoantigens increase with an increase in the
number of somatic mutations, the increase in the number of
immunogenic neoantigens is less than the increase in the number
of binding neoantigens. These data shown that the immunogenic

FIGURE 1 | (A) Comparison of the number of somatic mutations in each of

the samples for AK and cuSCC. (B) In blue, comparison of the number of

neoantigens predicted to have an MHC class I dissociation constant of

<500 nM (termed Binding Neoantigens) in AK and cuSCC. In red, comparison

of the number of neoantigens predicted to have an MHC class I dissociation

constant of <500 nM and a non-zero TCR recognition potential (termed

Immunogenic Neoantigens) in AK and cuSCC. (C) Correlation between the

number of somatic mutations and the number of binding neoantigens (blue)

and immunogenic neoantigens (red). Each data point represents an AK or

cuSCC sample. Numbers for AK and cuSCC indicate the patient sample from

Table 1 used for the analyses. Note that the AK and cuSCC samples from an

individual patient are separate lesions.

neoantigens are a much smaller subset than those with predicted
MHC binding capacity.

Analysis of Neoantigen Fitness Cost
To continue our comparison of the neoantigens present in
AKs compared to those in cuSCCs, we analyzed only those
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samples with more than one immunogenic neoantigen (AKs
from patients 2, 3, and 5 and cuSCCs from patients 2, 3, 5, and
6) as this enabled us to look at the comparative strengths of
the neoantigens in each population. Note that patient 4 had one
immunogenic neoantigen in one of the cuSCC samples. However,
this patient was not included in the subsequent analyses as the
TCR binding and fitness cost of this neoantigen were 1.77 ×

10−4 and 2.36 × 10−5, respectively. These values were 2 orders
of magnitude smaller than the averages for all the other samples
included, and thus, this sample was excluded.

To examine the percent of neoantigens recognized by the
immune system in the AK and cuSCC samples comparatively,
we took the ratio of the number of immunogenic neoantigens to
the number of binding neoantigens. The ratios were similar for
both AKs and cuSCCs (averages of 0.273 and 0.231, respectively,
Figure 2A). However, if a more stringent criteria for the binding
of the TCR was applied where the binding to the TCR must
be ≥0.01, the average for AKs was 0.0290 and the average for
the cuSCCs was 0.0147, which was a statistically significant
difference (p = 0.033, Figure 2B). Since a greater percentage of
the mutations in AKs are theoretically visible to the immune
system, there may be greater immune recognition of these lesions
despite the lack of difference in their mutational rates.

Next, we considered the relativeMHC class I binding potential
for the neoantigens in AKs compared to cuSCCs. TheAK samples
had a slightly higher average MHC class I dissociation constant
(195 nM) than did the cuSCCs (179 nM), which was statistically
significant (Figure 3A, p = 0.0497). This indicates that, on
average, the neoantigens from AKs were predicted to bind MHC
class I with lower affinity than those from cuSCC. Considering
this factor alone, it would seem to suggest that the AKs should
be less visible to the immune system than the cuSCCs. However,
as T cells that recognize self-antigens are eliminated during T cell
development, Łuksza et al. propose that if the binding of the wild-
type peptide is high, it is likely that the T cell that would recognize
this antigen has already been deleted (15). To adjust for this, the
amplitude was calculated as the ratio of the dissociation constant
for the wild-type peptide:MHC to the dissociation constant for
the mutant peptide:MHC. As explained by Łuksza et al., the
amplitude reflects the relative probability that a neoantigen will
be bound to MHC class I times the relative probability that
the corresponding wild-type peptide will not be bound (15).
In all cases except AK #5, the amplitude is <1.0, indicating
that on average the wild-type peptides were predicted to bind
MHC class I with greater affinity that the mutated peptides or
neoantigens. The average amplitudes for AK and cuSCC were
similar (Figure 3B, p= 0.4795), suggesting that any difference in
the MHC binding potential of the two groups is eliminated when
the relative binding of the wild-type peptide is accounted for.
Finally, the average TCR recognition potential was 0.121 for AK
and 0.078 for cuSCC (Figure 3C, p = 0.0771). While the trend is
toward a higher TCR recognition potential for AK than cuSCC, at
our sample size this variable is unable to definitively differentiate
the two groups.

The fitness cost of the neoantigens was defined as the
amplitude times the TCR recognition potential. The fitness cost
predicts the immune recognition potential of the neoantigen,

FIGURE 2 | (A) Ratio of immunogenic neoantigens to binding neoantigens

for AK and cuSCC. (B) Ratio of those immunogenic neoantigens with a TCR

recognition potential of ≥0.01 to the binding neoantigens. Numbers for AK

and cuSCC indicate the patient sample from Table 1 used for the analyses.

*p < 0.05.

such that an increased fitness cost is predicted to have greater
immune-mediated destruction. The average fitness cost for AK
was 0.109, while the average for the cuSCC was 0.048; this
difference was not statistically significant (p= 0.288, Figure 4A).
However, given that T cell-mediated immune responses are
mounted to one or a few “immunodominant” antigenic peptides,
another important factor to consider is the neoantigen with the
highest fitness cost. The maximum fitness cost had a very large
range for the cuSCCs (0.604–15.309) compared to a smaller
range (2.791–6.941) for AKs (Figure 4B). Despite the lack of
statistically significant difference between the maximum fitness
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FIGURE 3 | (A) Average dissociation constant (Kd) for mutant (MT)

peptide:MHC in AK and cuSCC. (B) Average amplitude of MHC binding

calculated as the ratio of the dissociation constant (Kd) for wild-type (WT)

peptide:MHC to the dissociation constant (Kd) of the mutant (MT)

peptide:MHC in AK and cuSCC. (C) Average TCR recognition potential for AK

and cuSCC. Numbers for AK and cuSCC indicate the patient sample from

Table 1 used for the analyses. *p < 0.05.

costs of AKs and cuSCCs (p = 1.0), it is notable that some of the
cuSCCs had neoantigens with a greater fitness cost than those of
the AKs.

In an attempt to explain why some cuSCCs had neoantigens
with a high fitness cost, suggesting that these cuSCCs had
neoantigens with high immune recognition potential yet escaped
immune-mediated destruction, we adjusted the fitness cost values
based on the expression of the neoantigens using the RPKM-
normalized RNAseq data. There was a trend for an increased
adjusted average fitness cost in AKs (0.00344) compared with

cuSCCs (0.00023) (Figure 4C, p = 0.08). When evaluating
the neoantigen with the maximum fitness cost after adjusting
for expression, adjusted maximum fitness cost for AKs (0.22)
was significantly increased compared with cuSCCs (0.014)
(Figure 4D, p = 0.03). Taken together these data demonstrate
that while cuSCCs have neoantigens with immune recognition
potential, these neoantigens are not expressed, resulting in
a higher adjusted maximum fitness cost in AKs compared
to cuSCC.

Analysis of HLA Mutations and Immune
Infiltration
We analyzed HLA-A, B, and C for bothmutations and expression
levels because recognition of neoantigens by the immune system
requires functional MHC class I proteins to be made and
expressed within the cell. Mutational analysis revealed two
somatic mutations within HLA coding regions for the HLA-
B gene in the cuSCC sample from patient 2 and the HLA-
C gene in the AK sample from patient 5. However, neither
of these mutations were within the peptide binding groove,
which suggests that these mutations do not alter peptide binding.
Additional analysis was performed to examine whether the
mutations affected the expression level. Expression of HLA-B
for patient 2 cuSCC was within one standard deviation of the
mean expression and expression of HLA-C for patient 5 AK was
within two standard deviations of the mean, suggesting that these
mutations do not alter expression. Mutations in members of the
MHC class I pathway (TAP1, TAP2, and B2M) can also lead to the
loss of cell surface MHC class I expression and immune escape
(39). Therefore, we interrogated TAP1, TAP2, and B2M genes
for mutations, but no mutations in these genes were identified.
We used a linear regression analysis to determine if the rate
of expression of HLA (A, B, and C), TAP1, TAP2, or B2M
correlated with the adjustedmaximum fitness cost. No significant
correlation was found between the adjusted maximum fitness
cost and the normalized expression of any of the six proteins
analyzed (data not shown). This result suggests that there was
no meaningful impact of mutations in or expression of these
proteins on the fitness cost of the tumor.

Analysis was also done to compare the level of immune
infiltration (as determined by xCell analysis) to the neoantigen
strength. Linear regressions were fit to the adjusted maximum
fitness cost against the expression level of each of the following:
T cell subsets (CD4T cells, CD8T cells, CD8 central memory
T cells, CD8 effector memory T cells, CD8 naïve T cells,
regulatory T cells), dendritic cell populations (immature DCs and
conventional DC) and NK cells. There were trends for increased
CD4 and CD8T cell signatures in the tumor with increased
adjusted maximum fitness cost (data not shown). However, no
statistically significant associations were identified, which may in
part be due to the small sample size.

DISCUSSION

Given that a low percentage of AKs progress to cuSCCs,
it is important to understand what allows some of these
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FIGURE 4 | (A) Average fitness cost for AK compared to cuSCC. Fitness cost is defined as the MHC-binding amplitude multiplied by the TCR recognition potential.

(B) Maximum (Max) fitness cost for AK compared to cuSCC. Maximum fitness cost is defined as the highest calculated fitness cost across all neoantigens for each

lesion. (C) Adjusted average (Avg) fitness cost for AK compared to cuSCC. Adjusted fitness cost is defined as the MHC-binding amplitude multiplied by the TCR

recognition potential multiplied by the ratio of RPKM expression for the individual neoantigen to the sum of the RPKM expression of all neoantigens. (D) Maximum

adjusted fitness cost for AK compared to cuSCC. Maximum adjusted fitness cost is defined as the highest calculated fitness cost after adjustment for RNA

expression. Numbers for AK and cuSCC indicate the patient sample from Table 1 used for the analyses. *p < 0.05.

precursor lesions to escape immune surveillance and become
invasive cuSCC, while others AKs remain in equilibrium or
are eliminated. An improved understanding of immunoediting
in AKs and cuSCCs may aid clinical decision making and
assist the development of preventive or treatment strategies.
Chitsazzadeh et al. found, and we confirmed, that the maximum
number of somatic mutations is greater in the cuSCCs than the
AKs (though the large range prevents a statistically significant
difference in the average number) (19). This finding is also
consistent with work showing that esophageal adenocarcinomas
have higher rates of mutations than the precursor Barrett’s
esophagus lesions (17, 18). To our knowledge, our study is the
first to identify neoantigens in AKs and cuSCCs and compare
the quality of neoantigens between precursor and invasive,
cancerous lesions. A limitation of our analyses was the small
sample size; unfortunately, no other publicly-accessible WES
and RNAseq datasets were found for AK and cuSCC samples
in PubMed, NCBI dbGaP or Google Scholar. We identified
binding neoantigens (based on predicted MHC binding) and
immunogenic neoantigens (based on predicted MHC binding
and TCR recognition potential) in both AKs and cuSCC
with similar findings to the number of somatic mutations.
The maximum number of both binding and immunogenic

neoantigens is higher in cuSCCs than AKs, but there was not a
statistically significant difference in the average number. These
findings indicate that there must be some factor other than
the number of mutations and neoantigens that influences the
immune-evasion potential of the tumor.

There was variation in the number of mutations and
neoantigens across the different samples. This magnitude of
variation is consistent with a prior study that has shown large
differences in somatic mutations even in those tumors with
high mutational burdens (40). Our results are also consistent
with previous work reporting a small number of mutations that
form binding neoantigens (41). For a mutation to lead to a
neoantigen it must be in a coding region of the DNA, change the
amino acid sequence, and meaningfully bind the MHCmolecule.
Because of these criteria, only a small number of the mutations
accumulated in a tumor will create binding neoantigens and an
even smaller number of these will be able to be recognized by
the immune system as immunogenic neoantigens (as is reflected
in Table 2).

One significant difference observed between the cuSCCs and
the AKs is the percentage of their neoantigens that are highly
recognized by TCRs. The cuSCCs on average had a lower
percentage of binding neoantigens that are also predicted to be
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highly recognized by the TCRs. Thus, the presence of a greater
numbers of neoantigens in cuSCCs may not directly correlate to
the visibility of that lesion to the immune system. Rather, the
increased percentage of neoantigens that are recognized in AKs
compared to cuSCCs indicates that the TCR recognition of the
neoantigens predicted to bind MHC may be an important factor
in determining the success of immunosurveillance. This finding
corroborates the work of Anagnostou et al. who demonstrated
that, after immunotherapy, the number of neoantigens increased,
but the strength of those neoantigens decreased (16).

When considered separately, neither predicted MHC binding
nor predicted TCR recognition of neoantigens appears to account
for a difference in immune evasion of cuSCC compared with AK.
The predicted affinity of neoantigens binding MHC in cuSCC is
slightly higher on average than in AK, which would suggest that
the immune system should be able to recognize the cuSCCs more
readily. However, this difference is eliminated when the relative
binding of the corresponding wild-type peptide is considered.
This suggests that the negative selection of self-reactive T cells
is one important factor to consider in determining the ability
of the immune system to recognize the tumors. We observed a
trend for a difference in TCR recognition potential between AKs
and cuSCCs (p = 0.0771), suggesting that, perhaps, with a larger
sample size, this might prove to be a statistically significant factor
in determining immune recognition. However, with our current
sample size, it is not possible to determine if TCR recognition
potential alone is able to explain the difference in immune
evasion between the pre-cancerous and cancerous lesions.

Predicted MHC binding and TCR recognition potential were
then combined into an overall fitness cost, as has been done by
Łuksza et al. (15), but the average and maximum fitness costs
were found to have no statistically significant difference between
AKs and cuSCCs. Surprisingly, the range of the maximum fitness
costs included higher values for the cuSCCs than the AKs.
This result seemed to contradict the expected result that the
cuSCCs should have enhanced immune evasion mechanisms
than the AKs, as they have escaped immune recognition to
develop into invasive cancers. We then incorporated RNAseq
expression data into our calculation since a neoantigen of any
strength cannot be recognized by the immune system unless it is
appreciably expressed by the cell. When the expression data was
incorporated, the maximum fitness cost for AKs was significantly
increased compared with cuSCCs, and there was a trend for
increased average fitness cost for AKs compared with cuSCCs.
These results suggest that, although the cuSCCs accumulate
many potentially immunogenic neoantigens (many of which
are stronger than the immunogenic neoantigens of the AKs),
these neoantigens are not appreciably expressed. This leads us to
hypothesize that down-regulating the expression of these strong
neoantigens is a mechanism of immune evasion for cuSCCs that
may allow them to escape the immune system whereas the AKs
fail to do so. Consistent with this hypothesis, Rosenthal et al.
demonstrated that there are higher rates of gene suppression in
those genes with mutations that formed neoantigens compared
to genes with non-neoantigenic mutations (7). The work of
Matsushita et al. also corroborates our finding by showing that
a strong neoantigen is downregulated in those tumors which

succeed in growing in an immunocompromised host compared
to an immunodeficient host (42). Their work also corroborates
the suggestion that it is the maximum strength neoantigen that
is of most importance in determining the immune detection of
the tumor.

By identifying and comparing the quality of neoantigens in
AKs and cuSCCs, we show that cuSCCs have lower rates of
predicted TCR recognition of neoantigens that bind MHC class
I than do AKs. Additionally, when expression is considered,
many of the strong neoantigens from cuSCCs are insufficiently
expressed, causing the maximum fitness cost (and by extension,
immune recognition) to be lower for cuSCCs than for AKs.
Our findings shed light on why tumor mutational burden
alone may not accurately predict the anti-tumor immune
response in treatment with immune checkpoint inhibition (9–
13). Our results also suggest a role for the down-regulation of
highly immunogenic neoantigens in the escape of cuSCCs from
immune recognition.
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