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Abstract

Transcription factor RelB is a member of the nuclear factror-kappa B (NF-κB) family, which plays a crucial role in
mediating immune responses. Plenty of studies have demonstrated that RelB actively contributes to lymphoid
organ development, dendritic cells maturation and function and T cells differentiation, as well as B cell
development and survival. RelB deficiency may cause a variety of immunological disorders in both mice and
humans. Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system which
involves a board of immune cell populations. Thereby, RelB may exert an impact on MS by modulating the
functions of dendritic cells and the differentiation of T cells and B cells. Despite intensive research, the role of RelB
in MS and its animal model, experimental autoimmune encephalomyelitis, is still unclear. Herein, we give an
overview of the biological characters of RelB, summarize the updated knowledge regarding the role of RelB in
different cell types that contribute to MS pathogenesis and discuss the potential RelB-targeted therapeutic
implications for MS.
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Introduction
Transcription factors of the nuclear factor-kappa B (NF-
κB) family play a critical role in regulating the innate
and adaptive immune responses [1]. In mammalian cells,
this family includes five members: c-Rel, p65 (RelA),
RelB, p105/p50 (NF-κB1) and p100/p52 (NF-κB2) [2].
RelB, first described in 1992 [3], is considered an extra-
ordinary member of the NF-κB family with diverse and
unique features [4–7]. Over the past two decades, a var-
iety of biological characteristics and immunological ef-
fects of RelB have been reported [8, 9].
Multiple sclerosis (MS) is a neuro-inflammatory dis-

ease that is mainly characterized by multicentric white
matter demyelination of the central nervous system
(CNS) [10]. It is a disabling disease that primarily affects

young adults, particularly young women [11]. MS can be
commonly clinically classified into four categories, in-
cluding relapsing-remitting MS (RRMS), primary pro-
gressive MS (PPMS), secondary progressive MS (SPMS)
and progressive relapsing MS (PRMS), among which
RRMS is the most common and classical form [12]. In
the early course of MS, acute attacks of neurological im-
pairment are followed by partial or complete remission.
The relapsing-remitting neurological dysfunctions lead
to chronic neurological damage and neurodegeneration,
which results in disability accumulation and disease pro-
gression. The clinical symptoms of MS are complex and
diverse, including motor, sensory, visual and autonomic
system dysfunctions [13, 14]. Current disease-modifying
therapies could reduce the frequency of relapses; how-
ever, the progression of MS can be not effectively pre-
vented [15–17]. Hence, new therapeutic strategies for
MS still need to be proposed.
Given the significant role of NF-κB in immune re-

sponse [18–21], a better understanding of the role of
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RelB in MS is potentially beneficial for exploring the
pathogenesis and looking for new immunotherapies for
treatment. This review will outline the features of RelB
and RelB-associated pathogenic mechanisms in MS, as
well as the therapeutic implications of targeting RelB.

Biological characteristics of transcription factor
RelB
The gene structure and expression of RelB
The latest data has illustrated that the human RelB gene is
located on chromosome 19q13.32, where 12 exons encode
a protein with 579 amino acids [22]. The 5′ genomic re-
gion of RelB is characterized by a TATA-less promoter
containing two κB cis-acting sites. Furthermore, potential
vitamin D response elements have been recognized in the
RelB promoter region, which are essential for negative
transcriptional regulation and mediated by 1,25-Dihydrox-
yvitamin D3 (1,25-(OH)2D3) and its analogs [23]. Higher
expression of the RelB gene is observed in the thymus me-
dulla, the periarterial lymphatic sheaths of the spleen and
the deep cortex of the lymph nodes [6, 24]. At the cellular
level, RelB expression is mainly restricted to dendritic cells
(DCs) [24]. Furthermore, RelB can also be expressed in
other immune cells, such as T cells, B cells and monocytes
[6, 25–27].

Protein structure and functions of RelB
The RelB protein contains three important domains: the
C-terminal transcriptional activation domain (TAD), the
Rel homology region (RHD) and the N-terminal leucine
zipper domain (LZ) [28]. The RHD, highly conserved se-
quences on all NF-κB family members, consists of 300
amino acids and is responsible for dimerization, nuclear
translocation and DNA-binding activity [29]. The TAD
is indispensable, but not sufficient to motivate expres-
sion of NF-κB-dependent genes [7]. The LZ, recognized
for its unique characteristics, differs from other family
members and participates in activating transcription of
target genes. The structural integrity of both N- and C-
terminals domains is necessary for the fully transcrip-
tional activity of RelB [7].
Nevertheless, RelB protein is unstable. In the cyto-

plasm of unstimulated cells, RelB prevents its degrad-
ation by forming a steady heterodimer with p100/p52 or
p105/p50 [30]. Differing from the other NF-κB mem-
bers, a stable RelB homodimer is nonexistent [31]. Accu-
mulating evidence suggests that RelB can act as both an
activator and a repressor to regulate NF-κB-responsive
gene expression [3, 5]. In addition, RelB plays a dual
regulatory role in targeting gene expression by recruiting
co-activators or co-repressors, like human epithelial
growth factor receptor 2 (HER2) [32], histone H3 lysine
methyltransferase G9a [33] and death domain-associated
protein (Daxx) [34]. The accurate mechanisms

underlying these divergent functions are currently un-
clear. One widely accepted notion is that RelB post-
translational modifications, such as phosphorylation
[35–37], ubiquitination [38] and SUMOylation [39], have
a direct effect on RelB transcriptional activity, which re-
sults in functional diversity [40].

The RelB-associated activation pathways
NF-κB family members can be activated by either canon-
ical or non-canonical NF-κB pathways. The canonical
pathway can be triggered by various stimuli that bind to
immune receptors, like the Toll-like receptors (TLRs),
tumor necrosis factor receptor (TNFR), T cell receptor
(TCR) and B cell receptor (BCR). Then, the inhibitor of
κB kinase (IKK) complex, including two catalytic sub-
units IKKα and IKKβ, and one regulator IKKγ, can be
activated, and in turn, phosphorylates IκBα (a member
of κB inhibitors). After that, phosphorylated IκBα under-
goes proteasome-dependent degradation and then re-
leases the RelA/p50 complex. The freed RelA/p50
complex translocates into the nucleus and induces the
expression of multiple inflammatory genes [41] (Fig. 1).
The non-canonical NF-κB pathway is triggered by a
series of tumor necrosis factor superfamily receptors
(TNFSFRs) members, such as B cell activating factor re-
ceptor (BAFFR), lymphotoxin β receptor (LTβR), recep-
tor activator of NF-κB (RANK), CD40, CD30, CD27 and
fibroblast growth factor-inducible factor 14 (FN14) [42].
Once TNF superfamily molecules link to their corre-
sponding TNFSFRs, NF-κB inducing kinase (NIK) phos-
phorylates and activates IKKα. The activated IKKα
phosphorylates p100 at the site of C-terminal serine resi-
dues, leading to the partial degradation of p100 in the
proteasome. Processing of p100 transforms it into p52,
which then forms a RelB/p52 heterodimer that in turn
migrates from the cytoplasm to the nucleus and pro-
motes the expression of target genes through binding to
the promoter or enhancer of target genes (Fig. 1) [43].
While the activation of the canonical pathway depends
on the rapid and transient nuclear translocation of
RelA/p50 dimers, the non-canonical pathway is activated
in a slow and persistent manner via a RelB/p52 complex
[2, 42]. Interestingly, the canonical and non-canonical
pathways are not completely independent in most cases,
but have an impact on each other [44]. The RelB-
associated non-canonical pathway plays a critical role in
regulating immune homeostasis, and its dysregulation
contributes to inflammatory and autoimmune diseases
[42, 43, 45–47].

Immunomodulatory role of RelB
Accumulating evidence suggests that RelB deficiency can
lead to a range of immune disorders in both mice and
humans (Table 1) [9, 48]. In the following parts, we will
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discuss the role of RelB in immune organs, immune cells
and immune responses.

Lymphoid organ development
Serving as the primary lymphoid organ, the thymus is
a location for the development of T lymphocytes and
the formation of central immunologic tolerance [68].
Thymus stromal cell microenvironments, in particular
medullary thymic epithelial cells (mTECs), play a key
role in these processes [69]. The mTECs are not only
involved in the generation of Forkhead box protein 3-
expressing regulatory T cells (FoxP3+ Tregs) [70], but
can also express autoimmune regulator (Aire; Aire+
mTECs) that can contribute to negative thymocyte se-
lection and suppress the initiation of autoimmune dis-
eases [71–73]. The development of mTECs can be

regulated by members of the TNFR superfamily, such
as LTβR, CD40 and RANK, all of which can play
their role through the canonical and non-canonical
NF-κB pathways [74, 75]. Interestingly, a recent study
revealed that the canonical pathways mediate mTECs
differentiation by directly inducing RelB expression
[49]. Acting mainly as a downstream signaling mol-
ecule of the TNFR superfamily, RelB is closely related
to the development and functions of mTECs [50]. In
RelB-deficient mice, the thymic medullary architecture
is highly disorganized, mTECs and dendritic cells
(DCs) are absent, and negative selection is impaired
[49, 51–54]. Along this line, RelB deficiency in
humans causes thymic dysplasia and decreased Has-
sall’s corpuscles [48]. Significantly, RelB is a necessary
regulator for the expression of thymic Aire [54], and

Fig. 1 Canonical and non-canonical NF-κB pathways. The canonical pathway is triggered by various immune receptors, for example, TLRs, TNFR,
BCR and TCR. Various receptors activate the IKK complex, resulting in phosphorylation and proteasome-dependent degradation of IκBα, which in
turn frees RelA/p50 and promotes its nuclear import. The non-canonical pathway is induced by the TNFSFRs, such as BAFFR, LTβR, CD40 and
RANK. Then, downstream molecules NIK and IKKα are activated, leading to p100 processing and the liberation of RelB/p52 heterodimers. Finally,
the uncontrolled dimers translocate into nucleus and bind to target genes, triggering their expressionAbbreviations: TLRs: Toll-like receptors;
TNFR: tumor necrosis factor receptor; TCR: T cell receptor; BCR: B cell receptor; TNFSFRs: tumor necrosis factor superfamily receptors; BAFFR: B cell
activating factor receptor; LTβR: lymphotoxin β receptor; RANK: receptor activator of NF-κB; FN14: fibroblast growth factor-inducible factor 14; IκB:
κB inhibitor; IKK: IκB kinase; NIK: NF-κB-inducing kinase
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the development of Aire+ mTECs is primarily medi-
ated by RANK signaling [76–79].
As secondary lymphoid organs (SLOs), the spleen,

lymph nodes and Peyer’s patches provide accommodation
for inactivated lymphocytes that can efficiently respond to
diverse antigens, thereby making them essential for adap-
tive immunity [80]. An analysis of RelB-deficient mice
suggested that RelB plays an important role in the devel-
opment of secondary lymphoid organs. RelB-deficient
mice lack Peyer’s patches and peripheral lymph nodes [53,
55]. Furthermore, RelB-deficient mice and spleens with se-
vere structural damage, containing impaired follicular
dendritic cells (FDCs) networks, a dispersed reticular
fibroblast network throughout the white pulp, deficient
germinal center (GC) and marginal zone development
[56]. The anatomical imperfection in SLOs is closely re-
lated to the activation of the non-canonical NF-κB path-
way by LTβR signaling via the RelB-related heterodimer
[55–57, 81]. Once lymphotoxin-α1β2 (LTα1β2) expressed
by lymphoid-tissue inducer cells binds to its relative
LTβR, which is expressed by stromal organizer cells, non-
canonical signaling is activated, inducing the expression of
RelB-dependent homeostatic chemokines and cell adhe-
sion molecules, which in turn attract and recruit lympho-
cytes to developing and mature SLOs [82]. During the
expression of these homeostatic chemokines, secondary
lymphoid tissue chemokine (SLC) and Epstein-Barr virus-
induced molecule 1 ligand chemokine (ELC) are primarily
responsible for the migration of T cells into SLOs, while B
lymphocyte chemoattractant (BLC) plays a central role in
attracting B cells [83, 84]. Furthermore, BCL and SCL
generation can be prominently decreased in RelB-deficient
mice [56]. Collectively, RelB is required by SLO formation
and maintenance.

The maturation and function of DCs
DCs are professional antigen presenting cells (APCs),
that are required for initiating adaptive immunity, since
they provide signaling to antigen-specific naïve T cells
that differentiate into functional mature T cells [85].
RelB plays a key role in DC maturation [24, 52, 58], par-
ticularly in myeloid-related DCs [86] that serve as con-
ventional DCs (cDC) [87]. Surface markers associated
with myeloid-derived DC maturation, such as major
histocompatibility complex (MHC) class-II, CD11c,
CD80, CD86 and CD40, were decreased in RelB-
deficient mice. Furthermore, these deficiencies were not
found in RelB-Venus knock-in mice [58]. RelB deficiency
profoundly impaired DCs, both in their maturation and
function [59]. In RelB-deficient bone marrow chimera
mice, DCs showed a lower capacity of antigen presenta-
tion and T cell activation [59]. Aryl hydrocarbon recep-
tor (AhR) signaling promotes RelB expression during
DC maturation, and AhR deficiency in DCs may alter

the control of RelB in DC maturation and function [60].
However, there are still different opinions on this topic.
In 2017, Briseno et al. claimed that the development of
most mouse cDC subsets did not rely on cell-intrinsic
requirements for RelB [61]. Similarly, another study sug-
gested that RelB/p50 promotes chemokine CCL19 ex-
pression instead of facilitating human DC maturation
[88]. In summary, RelB plays key roles in the maturation
and function of DCs. However, future studies are still
needed to thoroughly investigate the association between
RelB activation and DC development, making the
present paradox clear.

T cell differentiation and T cell-mediated immunity
Responding to diverse antigens, T cells are involved in
multiple processes of adaptive immunity [89]. During an
immune response, activated naïve T cells can differenti-
ate into effector cells and memory T cells in order to
eliminate pathogens and keep long-term immunity [90].
Effector T cells are roughly divided into several subsets,
including CD4+ helper T cells (Th1, Th2, Th17), CD8+
T cells and Tregs [91, 92]. Memory T cells are com-
monly classified into two categories: central memory T
cells and effector memory T cells. Human naïve and
memory T cells express CD45RA and CD45RO, respect-
ively [93]. Several components of the non-canonical NF-κB
pathway, like NIK, NF-κB2 and p52, have been confirmed
to participate in T cell activation and T cell-mediated im-
munity [94–96]. Similarly, RelB-deficient mice presented
with damaged T cell immunity, a reduction of interferon-γ
(IFN-γ) and multiorgan inflammation [53, 62]. Emerging
evidence reveals that RelB plays a negative role in Th17 dif-
ferentiation [63]. Kurosawa et al. observed that effector
memory cells from RelB-deficient mice displayed signifi-
cantly elevated migratory activity than that in the WT mice
[64]. Humans with RelB-deficiency present with T cells dys-
maturity, reduced output of T cells from thymus and ab-
normal clonal expansion of T cell subtypes, which results
in severe T cell immunodeficiency [48]. Specifically, com-
plex phenotypes were observed, including increased mem-
ory cells, weakened T cell responses, significantly reduced
IFN-γ and IL-2 generation and decreased expression of sig-
nal transducer and activator of transcription 1 (STAT1)
and T-bet, which facilitate Th1 differentiation [48]. Taken
together, RelB has a pleiotropic effect on T cell differenti-
ation and T cell-mediated immunity.

B cell development, survival, germinal center formation and
humoral immunity
B cells are essential for humoral immunity. After T cell-
dependent antigenic stimulation, GC B cells undergo
somatic hypermutation, negative selection and eventually
differentiate into memory B cells and high-affinity
plasma cells, which are responsible for immunological
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memory formation and antigen-specific antibody secre-
tion, respectively [97, 98]. FDCs are limited to GCs and
contribute to negative selection of B cells by expressing
antigens on their surfaces [98]. In addition, marginal
zone B cells play a critical role in T cell-independent
humoral immune response [99]. GC and FDC network
shortages, follicular B cell reduction and marginal zone
B cell absence can be found in the spleens of RelB-
deficient mice [56]. Consistently, mice with combined
deficiency of RelB/NF-κB2 or RelB/cRel also show B-cell
progenitor developmental disorders, the tumble of estab-
lished GCs and remarkable reduction of peripheral

mature B cells [65, 66], which were also observed in
BAFF or BAFFR-deficient mice [100–104]. Weih et al. il-
lustrated that RelB activation in stromal cells was re-
sponsible for the formation of GCs and FDC networks,
whereas RelB expression in hemopoietic cells was re-
quired for the generation of marginal zone B cells [56].
RelB mediates GC B cell maturation via CD40 and
BAFFR signaling [65, 67] and maintains B-cell survival
via BAFFR signaling [65, 66]. BAFFR-mediated survival
signaling in mature B cells functions by activating the
non-canonical pathway [66, 105, 106]. In humans with
RelB deficiency, B cell development is halted and CD27+

Fig. 2 Role of different cells in the pathogenesis of MS and EAE. In the thymus, thymocyte precursor cells develop into γδT1, γδT17, nTregs and
naïve CD4+ T cells. Upon neuroinflammation, γδT1 and γδT17 cells can cross the endothelial BBB and traffic into the central nervous system CNS,
whereas naïve T cells migrate into the peripheral immune tissue. Naïve T cells connected with APCs (DCs and B cells), thereby differentiating into
various effector T cells (iTregs, Tr1, Th17 and Th1). Th1, Th17, γδT1 and γδT17 cells secrete pro-inflammatory cytokines that trigger
neuroinflammation and impair the myelin sheath and axons. Meanwhile, Tregs (Tr1, iTregs and nTregs) secrete anti-inflammatory cytokines and
restrain immune responses mediated by T cells, B cells and DCs, thereby promoting tissue repair. Further, with the help of Tfh cells, naïve B cells
differentiate into plasma cells, memory B cells and Bregs. While plasma cells damage the myelin sheath and axons on neurons via secreting
antibodies, Bregs play a protective role via producing IL10, IL35 and TGF-β. Memory B cells and several activated B cells can produce a series of
pathogenic cytokinesAbbreviations: MS: multiple sclerosis; EAE: experimental autoimmune encephalomyelitis; γδ: gamma delta; BBB: blood-brain
barrier; CNS: central nervous system; APC: professional antigen presenting cells; DC: dendritic cell; iTreg: induced regulatory T cell; Tr1: type 1 Treg;
Th: T helper; nTreg: natural regulatory T cell; Tfh: follicular helper T; Breg: regulatory B cell; IL: interleukin; IFN-γ: interferon-γ; TGF-β: transforming
growth factor-β; TNF-α: tumor necrosis factor α; GM-CSF: granulocyte monocyte-colony stimulating factor
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memory B cells are absent, leading to shortage of spe-
cific antibodies and severe B cell immunodeficiency [8,
48]. Furthermore, B cells from these patients show de-
creased expression of the surface molecule BAFFR and
impaired CD40 signaling [48]. Collectively, RelB plays a
crucial role in B cell development, survival, GC forma-
tion and humoral immunity.

RelB in the pathogenesis of multiple sclerosis and
its animal model
MS is a chronic and progressive autoimmune disease
in the CNS, characterized by inflammatory demyelin-
ation of the brain and spinal cord [10]. Experimental
autoimmune encephalomyelitis (EAE), a conventional
animal model of MS, is widely applied to study the
pathophysiology and treatment for MS [107]. MS is
traditionally thought of as a T cell-mediated auto-
immune disorder [108]. Autologous myelin antigen-
derived CD4+ T cells migrate from the periphery into
the CNS, where they produce cytokines, chemokines
and inflammatory molecules to impair the myelin
sheath and axons [109]. It is generally accepted that
Th1 and Th17 cells are responsible for MS and EAE
initiation [109, 110]. However, a growing body of evi-
dence suggests that the occurrence of MS is always
accompanied by diverse immune cells infiltration,
which mainly contains a variety of activated T cells
subtypes, DCs and B cells (Fig. 2) [10]. The invading
immune cells mediate MS pathology by secreting a
mass of pro-inflammatory or anti-inflammatory cyto-
kines (Fig. 2) [111]. RelB is a powerful molecule that
regulates lymphoid organ formation, as well as lympho-
cyte development and function [9]. While the relationship
between RelB and a variety of tumors is widely studied,
such as in laryngeal cancer, lung adenocarcinoma and
colon cancer [112–115], the role of RelB in MS is still ob-
scure. This section summarizes the RelB-associated mech-
anism in MS and EAE, which may provide new insights
into the treatment of MS.

Th17 cells
Th17 cells play a central role in the pathogenesis of MS,
and their differentiation depends on the transactivation
of the orphan nuclear receptors γt and α (RORγt and
RORα) [116, 117]. Autoreactive Th17 cells infiltrate the
CNS, where they secrete IL-17A, IL-17F and granulocyte
monocyte-colony stimulating factor (GM-CSF). They at-
tract and activate diverse immune cells, eventually
resulting in neuroinflammation [118–121]. IL-17A (also
known as IL-17), a hallmark cytokine of Th17 cells, is
crucial for the development of EAE [122]. Functional
blockage of IL-17 leads to a remissive disease course and
improves the outcomes of EAE [123–125], whereas its
high expression is related to MS severity [126]. GM-

CSF−/− mice fail to induce EAE because of the inability
of autoreactive lymphocytes to proliferate and the ceas-
ing of immune cell infiltration [120, 127]. The expres-
sion of GM-CSF and its receptor is upregulated in brain
tissues from acute and chronic MS patients [128]. Inter-
estingly, a recent study puts forwards a new theory that
Th1-like Th17 effector memory cells, especially Th17.1
cells, dominantly contribute to MS pathology. Th17.1
cells were affluent and showed increased production of
IFN-γ and GM-CSF in patients with MS [129].
There is growing evidence that RelB is a negative

factor regarding mediating Th17 cell differentiation
and function, which affects the induction and pro-
gression of EAE [63, 130, 131]. Park et al. showed
that lipopolysaccharides directly stimulated Th17 cell
differentiation, enhanced the frequency of IL-17-
producing cells and aggravated EAE via modulating
phosphorylation of RelB and NF-κB1 [132]. Xiao and
his colleagues reported that OX40, a T cell costimula-
tory molecule in the TNFSFR family, activated down-
stream molecule RelB, which inhibited IL-17
expression and alleviated EAE through triggering
chromatin modification and forming a “closed” chro-
matin structure at the IL-17 gene [131]. Besides,
mucosa-associated lymphoid tissue lymphoma trans-
location gene 1 (MALT1) is closely related to the
level of RelB protein. Using MALT1−/− Th cells and
mice, Brustle et al. demonstrated that the deficiency
of MALT1 can reduce the degradation of RelB in Th17
cells and decrease the production of IL17 and GM-CSF,
thereby preventing mice from EAE induction [130]. In
conclusion, RelB regulates Th17 differentiation negatively
in EAE, and the treatment that activates RelB in Th17
cells may be a potentially therapy for MS.

Th1 cells
Prior to the discovery of Th17 cells, Th1 cells were
thought to be responsible for neuroinflammation in
MS and EAE [133]. Th1 cells express the transcrip-
tion factor T-bet that acts as a positive regulator to
promote IFN-γ production [134]. The level of IFN-γ
could be increased in EAE and MS patients [135,
136]. Accumulating evidence indicates that both IFN-
γ inactivation [137–140] and T-bet depletion [141]
protect mice from developing EAE. Furthermore,
Cron and his colleagues observed a noteworthy reduc-
tion of IFN-γ and defective Th1 differentiation in
RelB-deficient mice. Meanwhile, a remarkable reduction
in expression of T-bet occurs in RelB-deficient Th1 cells
[142]. Collectively, RelB plays a role in MS and EAE by
mediating T-bet expression and Th1 differentiation. Ex-
ploring approaches to suppress RelB expression in Th1
cells may be an implicit treatment for MS.
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Gamma delta T cells
In the thymus, some of the double negative thymocytes
differentiate into gamma delta (γδ) T cells that further
develop into IFN-γ-secreting (γδT1) and IL-17-secreting
(γδT17) cells under the conditions of the transactivation
of T-bet and the orphan nuclear receptors RORγt and
RORα4, respectively [143, 144]. γδ T cells play an im-
portant role in the pathogenesis of MS and EAE [145,
146]. By using frozen CNS specimens from acute MS pa-
tients, Wucherpfennig et al. observed the accumulation
and clonal expansion of γδ T cells in lesions [147]. Coin-
cidentally, recent investigations indicated that γδ T cells
exert a harmful effect on EAE, evidenced by a significant
remission of the clinical symptoms in γδ T cell-deficient
animals [148–150]. Some evidence demonstrated that
γδT17 cells aggravate EAE by enhancing IL-17 produc-
tion, suppressing Tregs responses and improving
antigen-specific T cell responses [151]. Interestingly, an-
other study has illustrated that RelB regulates γδT17 cell
differentiation in the thymus and IL-17 production
through controlling the expression of RORγt and
RORα4, which requires the activation of LTβR signaling
[144]. Therefore, RelB may worsen EAE by regulating
γδT17 cell differentiation.

Regulatory T cells and steady-state migratory DCs
Tregs are well accepted for their central role in restrain-
ing autoreactive immune responses and maintaining per-
ipheral tolerance. There are two widely-studied types of
Tregs: FoxP3+ Tregs and IL-10-secreating type 1 Tregs
(Tr1) [152]. FoxP3+ Tregs encompass two categories:
thymus-derived natural Tregs (nTregs) and periphery-
induced Tregs (iTregs), and both of them secrete im-
munosuppressive cytokines, such as IL-10, IL-35 and
transforming growth factor-β (TGF-β) [153]. Tr1 cells
are induced in the periphery and primarily produce IL-
10 and TGF-β [154]. Tregs can restrain various immune
responses mediated by T cells, B cells and DCs [155].
The protective role of FoxP3+ Tregs and Tr1 cells was
observed in MS and EAE [156–160].
Mature DCs are essential for the immune response,

whereas immature DCs improve immune tolerance by
inducing T cell anergy or Tregs generation [161].
Steady-state migratory DCs, known as semi-mature DCs,
transport self-antigens from peripheral tissues to the
draining lymph nodes [162]. Idoyaga et al. proved that
steady state Langerin+ migratory skin DCs exert an un-
paralleled effect on inducing Foxp3+ Treg generation
in vivo, which prominently improved the prognosis of
EAE [163, 164]. Moreover, the activation of the non-
canonical NF-κB pathway via RelB/p52 is essential for
maintaining the frequency of steady-state migratory DCs
and inducing Foxp3+ iTreg formation by steady state
migratory RelB+ Langerin+ dermal DCs [165]. RelB+

Langerin− dermal DC subset controls the peripheral
pool of Foxp3+ nTregs [166]. Further, some researchers
found Foxp3+ Tregs markedly expanded in mice with
RelB depletion because of increased levels of IL-2, a
growth factor for Foxp3+ Tregs that is produced by
hyperactive T effector cells [167]. In conclusions, the
role of RelB in EAE via regulated Tregs and steady-state
migratory DCs are complex. Further studies are still
needed to uncover exact mechanisms, and steady-state
migratory DCs may be a therapeutic target for MS or
other autoimmune diseases.

Dendritic cells
DCs play a critical role in activating immune response.
In MS and EAE, DCs present autologous myelin antigen
to naïve CD4+ T cells, which then differentiate into
myelin-reactive Th1 and Th17 cells that induce neuroin-
flammation and CNS damage [168–170]. Moreover, one
of their major effector molecules, cytokine IL-23, is also
increased in MS patients [171]. RelB is essential for DC
maturation [86], and silencing RelB generates stable tol-
erogenic properties, creating what is known as tolero-
genic DCs [172]. Tolerogenic DCs exhibit an immature
phenotype, with lower levels of costimulatory molecules,
repressed effector T cell responses and Treg induction
[172]. In a previous study, our lab successfully induced
tolerogenic DCs by applying 1,25-(OH)2D3, which re-
pressed EAE via the induction of Tregs and the reduc-
tion of Th1/Th17 [173]. Coincidentally, monocyte-
derived DCs that were treated with 1,25-(OH)2D3 also
showed a decreased ability to induce a T cell response
and an increase in anti-inflammatory cytokines in MS
patients, compared to healthy controls [174]. Moreover,
1,25-(OH)2D3 may function by regulating RelB expres-
sion in DCs [23, 175]. In addition, dimethyl fumarate
(DMF), an immunotherapeutic drug for MS approved by
the United States Food and Drug Administration (FDA),
has a therapeutic effect via impairing human myeloid
DC maturation. Compared to untreated cells, myeloid
DCs from DMF-treated MS patients showed an imma-
ture phenotype, decreased expression of RelB, limited
capacity to activate T cells and reduced secretion of pro-
inflammatory cytokines IFN-γ, IL-17 and GM-CSF
[176]. Currently, RelB-silenced tolerogenic DCs are used
to study autoimmune diseases, such as systemic lupus
erythematosus and myasthenia gravis. Moreover, signifi-
cant protective effects have been observed in disease
conditions [177–179]. In a very recent research, Andreas
and his team found that mice with RelB-deficient DCs
are almost resistant to induction of the EAE model
because of the accumulation of FoxP3+ Tregs and the
reduction of pathogenic T cells [180]. Therefore, RelB-
silenced tolerogenic DCs may be a promising cell
therapy for MS.
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It should be noted that macrophages are also effective
antigen-presenting cells and Recent reports indicate that
macrophages play dual roles in the pathogenesis of MS as
they contribute to lesion formation and axonal damage,
but also present repair mechanisms through the produc-
tion of neurotrophic factors and anti-inflammatory mole-
cules as well as clearance of myelin debris (Abdul-Majid
et al.,2002; Kigerl et al., 2009).

B cells
For decades, MS was generally known as a mainly T
cell-mediated disease, and the role of B cells in MS was
overlooked; however, a growing amount of evidence
shows the significant involvement of B cells in MS path-
ology [181, 182]. When naïve B cells encounter myelin
antigens, they are activated and differentiate into plasma
cells, memory B cells and regulatory B cells (Bregs) with
the help of follicular helper T (Tfh) cells [108]. In MS
patients, a portion of activated B cells act as APCs, pre-
senting myelin antigens to CD4+ T cells and improving
Th1 and Th17 responses [183–185]. Plasma cells pro-
duce myelin specific antibodies that not only cause func-
tional myelin impairment, but also form oligoclonal
bands (OCBs) within the CNS and peripheral blood
[186]. The detection of OCBs from cerebrospinal fluid
are used to diagnose MS with high sensitivity [187, 188].
In untreated RRMS patients, circulating effector memory
B cells significantly increase, producing abundant GM-
CSF, TNF-α and IL-6 [189]. Additionally, activated B
cells from MS patients or EAE mice also secrete patho-
genic cytokines IL-6, TNF-α and LT-α [189, 190]. By
contrast, Bregs play a protective role in EAE by produ-
cing several anti-inflammatory cytokines, such as IL-10,
IL-35 and TGF-β [191–194]. RelB is critical for the mat-
uration and survival of B cells. Mice and humans with
RelB deficiency present with developmental disorders of
B-cell progenitors and a significant reduction of periph-
eral mature B cells [48, 65, 66]. Furthermore, RelB/NF-
κB2-deficient GC B cells have reduced the expression of
inducible T cell co-stimulator ligand (ICOSL), which
connect with ICOS expressed on Tfh cells to mediate
the selection of high-affinity B cells [195]. Hence, the in-
hibition of RelB expression in B cells may be beneficial
for MS.

Other immune cells
Macrophages and microglia are prominent innate immune
cells and play a dual role in the pathogenesis of MS [196].
While macrophages and microglia are induced into the
M1 phenotype in the acute phase, which contribute to de-
myelination and MS lesion formation; macrophages and
microglia are activated into M2 phenotype in the later
stage, which exhibit neuroprotective effect by clearance of
myelin debris and secretion of neuroprotective molecules

[196, 197]. Therefore, shifting the phenotype of macro-
phages and microglia from M1 into M2 may be attractive
therapy for MS. Interestingly, overexpression of RelB was
observed in LPS-stimulated macrophages, which sup-
pressed the production of TNFα, a pro-inflammatory
cytokine [198]. Some studies also observed that the ex-
pression of RelB was enhanced in M1 macrophages and
RelB deficiency inhibited the differentiation of M1 macro-
phage [199, 200]. Therefore, strategies to degrade RelB
could suppress the polarization of macrophages toward
pro-inflammatory phenotype M1 cells, which might be
beneficial for the trentment of MS.

Non-immune CNS cells
The role of oligodendrocytes and astrocytes in MS cannot
be ignored by researchers. MS lesions are featured by
oligodendrocyte death and axon degeneration. Gupta
et al. found that the deficiency of RelB in oligodendrocytes
decreased the severity of EAE through promoting survival
of mature oligodendrocytes [201]. As the most abundant
cell type in the CNS, astrocytes are important regulators
of inflammation and essential for maintaining CNS
homeostasis [202]. Highly expressed RelB in astrocytes
may induce immune tolerance in experimental neuroin-
flammation due to decreased pro-inflammatory cytokines
such as IL-1β, IL-6 and IL-8 [203]. Moreover, the severity
of EAE with RelB specifically deleted in astrocytes is simi-
lar with control mice [201]. Taken together, regulating the
expression of RelB in oligodendrocytes and astrocytes may
be an option to treat MS in the future.

RelB as a future therapeutic target for MS
As mentioned above, RelB has pleiotropic effects on MS
or EAE pathogenesis via a cell type-specific manner.
RelB activation or inhibition in specific cell types could
be achieved by regulating upstream signaling pathway.
While decreased RelB expression in Th1, γδT17, DCs, B
cells, macrophages and oligodendrocytes may have a
beneficial role in MS or the EAE animal model, suppres-
sive processes in other cell types may also cause greater
severity. In this scenario, the use of RelB inhibitors
in vivo is still in its infancy, and potential harmful effects
must not be ignored by researchers. Therefore, we
propose that targeted therapies in more specific cell
types, such as RelB-inhibited Th1, γδT17, DCs, B cells,
macrophages and oligodendrocytes need to be further
investigated. Considering the fact that our research
group has successfully alleviated established EAE by
adoptive transfer of 1,25-(OH)2D3-induced tolerogenic
DCs [173], in the future, the adoptive transfer of RelB-
silenced tolerogenic DCs may be a promising strategy
for the precise treatment of MS. However, to our know-
ledge, limited data about RelB in patients with MS has
been reported and most work has been mainly focused
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on the animal models of MS. Only when we are suffi-
ciently knowledgeable should we consider targeting RelB
as a clinical approach to treat patients with MS.

Conclusion
Transcription factor RelB, a member of NF-κB family, is
essential for lymphoid organ formation and lymphocyte
development and function. In MS and its animal model
EAE, RelB exerts an impact on Th17, Th1, γδT17, steady-
state migratory DCs, DCs, B cells, macrophages, microglia,
oligodendrocytes and astrocytes, which provide the theor-
etic foundation for possible therapies that target RelB.
Further studies are still needed to better understand RelB-
associated mechanisms and applications.
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