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Catalytic asymmetric reductive hydroalkylation
of enamides and enecarbamates to chiral
aliphatic amines
Jia-Wang Wang 1,2, Yan Li1,2, Wan Nie1, Zhe Chang1, Zi-An Yu1, Yi-Fan Zhao1, Xi Lu 1✉ & Yao Fu 1✉

To increase the reliability and success rate of drug discovery, efforts have been made to

increase the C(sp3) fraction and avoid flat molecules. sp3-Rich enantiopure amines are most

frequently encountered as chiral auxiliaries, synthetic intermediates for pharmaceutical

agents and bioactive natural products. Streamlined construction of chiral aliphatic amines has

long been regarded as a paramount challenge. Mainstream approaches, including hydro-

genation of enamines and imines, C–H amination, and alkylation of imines, were applied for

the synthesis of chiral amines with circumscribed skeleton structures; typically, the chiral

carbon centre was adjacent to an auxiliary aryl or ester group. Herein, we report a mild and

general nickel-catalysed asymmetric reductive hydroalkylation to effectively convert enam-

ides and enecarbamates into drug-like α-branched chiral amines and derivatives. This reac-

tion involves the regio- and stereoselective hydrometallation of an enamide or enecarbamate

to generate a catalytic amount of enantioenriched alkylnickel intermediate, followed by C–C

bond formation via alkyl electrophiles.
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Enantiopure amines are frequently encountered as chiral
auxiliaries and synthetic intermediates for pharmaceutical
agents and bioactive natural products (Fig. 1a)1,2. Nearly

half of small-molecule pharmaceuticals among the top 200 drugs
by retail sales in 2019 contain an enantioenriched aliphatic
amine as the key structural element3. To synthesise amines
efficiently4–8, especially those chiral ones, exciting strides in the
fields of hydrogenation of enamines and imines9–13, C–H ami-
nation14–16 and hydroamination of alkenes17–21 have been made
to supplement the nucleophilic substitution reactions of the
corresponding chiral alcohols (Fig. 1b). However, the primary
problem, inadequate substrate scope, still remains. In the
aforementioned classical methods, especially the hydrogenation
and hydroamination of unsaturated bonds, chiral amines with
circumscribed skeleton structures could be successfully synthe-
sised; typically, the chiral carbon centre should be adjacent to an
auxiliary aryl13 or ester group22. As an important process,
Buchwald realised the efficient hydroamination of unactivated
internal olefin to α-branched amine with an excellent enantios-
electivity17. Very recently, Hartwig realised the direct, enantio-
selective intermolecular hydroamination of unactivated alkene
lacking a directing group21. As another prevalent method to
selectively synthesise enantioenriched amides is the catalytic
asymmetric alkylation of imines through carbon–carbon bond
formation. However, only a few catalytic enantioselective alky-
lations of imines with particular hyperactive alkylation reagents,
typically relatively air- and moisture-sensitive Grignard
reagents23 or zinc reagents24,25, have been reported. Poorly
electrophilic alkyl-substituted imines presented poor reactivity,
and the C–N double bond geometrical isomer mixture led to
unsatisfactory enantioselectivities.

In designing a synthetically useful method for synthesising
sp3-rich chiral amines and derivatives to meet the increased
demand in drug discovery, we innovated an operationally facile
reaction using easily synthesised enamides with readily available
and batch-stable alkyl halides under reductive conditions. Our
group devoted efforts to develop olefin reductive alkylation
reactions26–30. Nowadays, olefin reductive hydroalkylation has
been one of the most appealing methods for alkyl–alkyl for-
mation31–35. In the elegant work from Fu’s group at Caltech32,
enantioconvergent coupling of a broad scope of racemic alkyl
electrophiles with olefins was achieved. Furthermore, conversion
of unsaturated compounds other than olefins to construct
alkyl–alkyl bonds may open the door to efficient methods for
chiral centre construction36. Herein we report a reductive
hydroalkylation of generalised organic unsaturated bonds,
namely, the reductive hydroalkylation process of enamides and
enecarbamates (Fig. 1c)37–40. This reaction involves in situ
hydrometallation of enamide or enecarbamate to generate pro-
spective enantioenriched alkylnickel intermediates, which sub-
sequently react with alkyl halides to form C(sp3)–C(sp3) bonds,
representing an enantioselective control mode different
from the well-known nickel-catalysed electrophile–nucleophile
cross-coupling reactions developed by Fu at Caltech41,42. This
reaction enables the construction of structurally complex and
multifunctional amides and β-aminoboronates with excellent
functional-group compatibility suitable for late-stage elabora-
tion applications. This reaction also facilitates the design and
development of drug-like nitrogen-containing chiral molecules
that are difficult to access by other synthetic routes, resulting
in widespread application in the pharmaceutical sector and
synthetic chemistry field.
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Fig. 1 Design of a modular enamide/enecarbamate reductive hydroalkylation for the synthesis of chiral aliphatic amines. a Representative drug
molecules demonstrating the universal existence of chiral aliphatic amines in biologically active molecules. b Catalytic asymmetric reductive
hydroalkylation of enamides and enecarbamates enables rapid access to the privileged chiral aliphatic amines, complementing mainstream approaches that
are limited by auxiliary groups to access satisfactory stereoselectivity. c Synthetic analysis and proposed mechanism of enamide and enecarbamate
reductive hydroalkylation. Enamides and enecarbamates are prepared via facile syntheses from bulk chemicals—aldehydes, alkynes and amides. It was
assumed that this reaction involved regio- and stereoselective hydrometallation of an enamide or enecarbamate to generate a catalytic amount of
enantioenriched alkylnickel intermediate, followed by C–C bond formation with alkyl electrophile to yield chiral amine.
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Results and discussion
Substrates scope. At the beginning of this study, we determined
that this enamide reductive hydroalkylation could occur when a
chiral nickel/bisoxazoline catalyst was combined with diethox-
ymethylsilane (DEMS) and KF in a DMAc/tBuOH mixed solvent.
For more details for optimisation of reaction conditions, see
Supplementary Table 1. Under our optimised conditions, a fairly
broad scope of tertiary enamides served as active substrates to
deliver the desired products (Fig. 2). We noticed that the major
enantiomer of the product was determined by the configuration
of the ligands (see Supplementary Note 4), and the (E)- or
(Z)-enamides markedly affected the enantioselectivities (11). The
(E)-substrate afforded a much higher level of enantioselectivity
(94% enantiomeric excess). Fortunately, (E)-substrate was indeed
the major isomer in the synthesis of tertiary enamide from the
corresponding aldehyde. Although the amino-protecting groups
varied in terms of steric and electronic properties, high yields
(70–94% yield) and high enantioselectivities (86–97% e.e.
(enantiomeric excess)) were achieved in all cases (1–12). The
alkyl substituents on the enamide were also investigated; steric
hindrance has a typical effect on the coupling efficiency (13–17).
In the case of less bulky alkyl substituents, good yields were
achieved, and vice versa. The enantioselectivity was hardly
affected by the alkyl substituents, with the only exception being β,
β-dialkyl-substituted enamides (18), which were produced in
moderate yield with complete loss of enantioselectivity. N-styr-
ylenamides (16, 17), which exhibit competitive reactivity at the
benzylic position, were also good substrates to deliver the single
N-α-alkylation-selective products.

With respect to alkyl electrophiles, both alkyl iodides and alkyl
bromides could be converted efficiently (19–33). Relatively inert
alkyl bromides (19, 21, 22) required higher reaction temperatures
and a NaI additive to achieve satisfactory outcomes. A wide array
of functional groups was compatible; for example, a phthalimide
(22), an alkyl ester moiety (23), an amide possessing N–H bonds
(24, 25) and a base-sensitive ketone (26) were well tolerated. This
reaction could also be conducted in the presence of an aryl
chloride (27), an alkyl chloride (28) and an aryl bromide (29),
thus providing an exceptional opportunity for further transfor-
mation at the preserved carbon–halogen bonds. In addition,
several highly reactive electron-rich heterocycles (30–32)—which
could undergo facile Friedel-Crafts reaction or C–H activation—
were retained during the transformation. Finally, the late-stage
diversification of complex molecules illustrated the high degree of
compatibility of diverse functional groups for this enamide
reductive hydroalkylation (34–37).

Next, we aimed to expand the scope of asymmetric reductive
hydroalkylation to include a second family of substrates, specifically,
secondary enamides or enecarbamates (Fig. 3). Whereas reactions
using the aforementioned method result in poor yield and
enantioselectivity, as depicted in Fig. 2, secondary enamides or
enecarbamates performed well under modified conditions after
considerable effort. For more details for optimisation of reaction
conditions, see Supplementary Table 2. Different from the tertiary
enamides, in the cases of secondary enamides or enecarbamates,
both (E)- and (Z)-substrates afforded comparable coupling yields
and enantioselectivities (44). We could use the mixture of two
isomers without additional isomer separation process. The scope of
reductive hydroalkylation proved broad with respect to both the
enamide, the enecarbamate and the alkyl halide (38–67). The
amino-protecting group and aliphatic substituent could be altered
and could tolerate many functional groups without any detrimental
effect on the coupling yield or enantioselectivity (38–55). The
improved flexibility of the amino-protecting groups, especially the

ability to work with Boc (tert-butoxycarbonyl)-protecting groups
(e.g. 43–48, 50–53, 58–67), ameliorated the practicability and
applicability of this reaction. Furthermore, even more sterically
encumbered β,β-dialkyl-substituted ones (47–51) could be con-
verted to the desired products with excellent enantioselectivities,
which was significantly different from the results obtained when
using tertiary enamides. Similarly, a wide range of synthetically
useful functional groups, such as an internal alkene (52, 53), an aryl
fluoride (57), a trifluoromethyl (58) and a cyano (60), were
tolerated. Privileged heterocyclic motifs such as thiophene (64),
furan (65), pyrrole (66) and coumarin (67) are commonly found in
medicinal drugs and pose no problems during transformation.

Mechanism study. To examine the reaction mechanism of
enamide/enecarbamate reductive hydroalkylation, we carried out
radical clock experiments (Fig. 4a). Alkyl iodide (69) containing a
cyclopropyl ring is a frequently used radical clock substrate and
was applied under standard reaction conditions. The ring-opened
product (70) was obtained in 80% isolated yield, though the
hypothetical terminal double bond migrated to the interior. We
also tested the reductive hydroalkylation of 5-iodopent-1-ene (72).
The assumed ring-cyclized product (74) was not observed, but a
complex mixture of linear coupling products (73) was obtained,
which revealed that the migration of vinyl double bonds was a
very rapid primitive step. Despite all this, it was concluded that the
activation of alkyl halides proceeded through a radical pathway.
Then, we took advantage of deuterated silane (Ph2SiD2) to study
the stereochemistry of this reaction (Fig. 4b). Deuterium-labelling
experiments revealed that this reductive hydroalkylation was
completely diastereoselective. The stereochemical results indicated
that this reaction proceeded through a Ni-D intermediate for-
mation and syn-addition to an enamide or enecarbamate to gen-
erate prospective enantioenriched alkylnickel intermediates (for
more details, see Supplementary Note 3)43. Totally, a chiral
organometallic intermediate was formed and the chiral centre was
located on nucleophilic site (enamide or enecarbamate), the ste-
reochemical control was determined by the highly regio- and
enantioselective Ni-H insertion. By contrast, in the work of Fu at
Caltech, an achiral organometallic intermediate was formed and
chiral centre was located on alkyl electrophile site, the stereo-
chemical control came from oxidative addition and/or reductive
elimination32. Thus, the essential nature of asymmetric catalysis,
namely the enantioselectivity control site and determining step,
was different between G. C. Fu’s work and our discovery. In
addition, we ruled out the possibility of Z/E isomerization (for
more details, see Supplementary Note 4). Finally, DFT calculations
were carried out (see Supplementary Note 5 and Supplementary
Data 1), and the simulation results were highly consistent with the
results of the mechanistic study (Fig. 4c). The optimised structures
and relative Gibbs free energies of the four transition states in the
Ni-H insertion step are summarised. As shown, TS-α2 corre-
sponds to the major (R)-N-α-alkylation product, and it has the
lowest free energy, which is in line with the experimental out-
comes. Examining the structures, it can be seen that the C1–H1
and C2–H2 bond lengths in TS-α2 are 2.87 Å and 2.94 Å,
respectively, which are longer than the related ones in the other
competing TSs corresponding to (S)-N-α-alkylation products and
N-β-alkylation products (i.e. TS-α1, TS-β1 and TS-β2). Therefore,
the favoured transition state TS-α2 has larger C–H bond distances
between methyl groups of the substrate and phenyl groups of the
ligand, resulting in the lower steric hindrance, and thus the low-
ered activation barrier therein. In addition, we also examined the
effect of the (Z)-configuration on the enantioselectivity by calcu-
lating TS-α1 and TS-α2 with the (Z)-substrate (for more details,
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see Supplementary Note 5). The free energy gap between TS-α1-Z
and TS-α2-Z (Z signifies the (Z)-substrate) is decreased to
1.6 kcal/mol compared to that of 2.9 kcal/mol between TS-α1 and
TS-α2, which is consistent with the higher level of enantioselec-
tivity of the (E)-substrate. Together, the mechanistic study and
DFT calculations confirmed our proposed mechanism and reac-
tion design, as shown in Fig. 1c.

Substrates scope of β-aminoboronates. Chiral amino alcohol
skeleton structures are ubiquitously found in bioactive natural
products or drug molecules. They are also extensively used
as chiral pools, ligands or catalysts for asymmetric catalysis.

The best known route to obtain amino alcohols—reduction of
amino acids—requires prior multistep synthesis using the highly
toxic metal cyanide44. Building on our preceding foundation, we
establish that enamide reductive hydroalkylation with racemic
α-haloboronates to access β-aminoboronates can be accom-
plished (Fig. 5, 83–94). Our method, based on classical alkyl-
borate transformations and the Mitsunobu reaction, provided a
modular and simplified strategy for the synthesis of chiral amino
alcohols and other useful families of enantioenriched molecules
(e.g. heterocycles, aldehydes and alkyl halides) with little loss of
stereochemistry at both the boron-bound and nitrogen-bound
carbons (95–99). A wide array of enamides and α-halobor-
onates, which varied in amino-protecting groups and side
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chains, served as suitable coupling partners in this enamide
reductive hydroalkylation reaction. Reductive hydroalkylation
proceeded well with consistently good yields and high levels of
stereochemical control on the carbon adjacent to the N-atom
with all substrates. Although mediocre diastereoselectivities
on the carbon adjacent to the B-atom were observed in a
few cases (e.g. 83–86), these two diastereoisomers could be
prepared in a single reaction and then separated through col-
umn chromatography.

Synthetic transformations. Given that chiral amine motifs exist
in many small-molecule pharmaceutical agents and physiologi-
cally active natural compounds, the convenient synthesis of such
molecules and medicinally valuable derivatives would demon-
strate the availability and practicability of our reaction (Fig. 6). A
representative chiral amine 100, the key intermediate of an
immunosuppressive agent, features two sterically and electro-
nically similar alkyl substrates. The conventional method to
access 100 requires time-consuming and tedious synthesis using
a stoichiometric chiral allylation reagent, a poor atom-economic

amino-activating group and high hydrogen pressure45. By capi-
talising on the flexible retrosynthetic analysis of our reductive
hydroalkylation, amine 100 could be conveniently accessed
through the use of readily available raw materials via an asym-
metric catalytic method (Fig. 6a). This reductive hydroalkylation
was also useful for the total synthesis of alkaloids, such as coniine
and coniceine. The commercially available raw material 105 was
employed in the reductive hydroalkylation, and desired products
106 and 107 were obtained in an efficient fashion. Subsequent
intramolecular cyclization on the accommodated alkyl chloride
groups yielded the pivotal intermediates and synthesis targets
(Fig. 6b, 108, 109). An advantage of the current catalytic
asymmetric reductive hydroalkylation is its substantial capacity
to quickly and efficiently access 1-arylpropan-2-amines (e.g.
amphetamine), which are key components of central nervous
system drugs. The vast array of benzyl bromides and benzyl
alcohols could be easily programmed into arylpropanamines
with high structural and functional diversity. Various isotope- or
fluorine-labelled pharmaceutical agents, such as trifluoromethyl-
labelled Carmoterol (an asthma medicine), fluorine-labelled
Lisdexamfetamine (an attention deficit and hyperactivity
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disorder medicine) and deuterium isotope-labelled Tamsulosin
(a urinary system medicine), were produced via brief synthetic
routes (Fig. 6c, 113, 115, 118), highlighting the suitability of this
reductive hydroalkylation in drug discovery. Additionally,
reductive hydroalkylation of tertiary enamides also shows pro-
mise in tailor-made applications in the synthesis of the orexin
receptor antagonist 122, which contains a chiral carbon adjacent
to a tertiary amide (Fig. 6d).

In summary, we describe a streamlined method to access chiral
aliphatic amines and their derivatives through nickel-catalysed
asymmetric reductive hydroalkylation of enamides and enecar-
bamates with alkyl halides. This reaction complements the
substrate scope of traditional chiral amine synthesis strategies,
overcomes the limitation of essential and finite auxiliary groups,
and thus facilitates the chiral amine synthesis. We believe that the
ready accessibility of raw materials, convenient implementation
and efficiency of this highly stereoselective amine synthesis will
lead to many applications in organic chemistry and pharmaceu-
tical chemistry46,47.

Methods
General procedure for asymmetric reductive hydroalkylation of tertiary
enamides. In the air, a 10 mL screw-cap test tube equipped with a magnetic stirrer
was charged with NiBr2(diglyme) (0.02 mmol, 10 mol%), (S,S)-L1 (0.024 mmol,
12 mol%). The test tube was evacuated and backfilled with argon for three times,
then DMAc/tBuOH (v/v= 5:4, 0.8 mL) was added and the mixture was stirred at

room temperature for 30 min. Meanwhile, in the air, another 10 mL screw-cap test
tube equipped with a magnetic stirrer was charged with KF (0.6 mmol, 3.0 equiv.)
(if enamide or alkyl halide was a solid, it was also added at this time). The test tube
was evacuated and backfilled with argon for three times. Next, the solution of the
catalyst was added in one portion via syringe, followed by the enamide (0.2 mmol,
1.0 equiv.) and alkyl halide (0.4 mmol, 2.0 equiv.). The resulting solution was
stirred for 2 min at 0 °C, DEMS (0.6 mmol, 3.0 equiv.) was added dropwise
via syringe and the solution was kept stirring for 5 min at 0 °C, then was stirred at
25 °C for 20 h. The reaction mixture was diluted with H2O followed by extraction
with EtOAc, dried with anhydrous Na2SO4 and concentrated in vacuo. The residue
was purified by flash column chromatography on silica gel to give the target
product.

General procedure for asymmetric reductive hydroalkylation of secondary
enamides and enecarbamates. In the air, a 10mL screw-cap test tube equipped
with a magnetic stirrer was charged with NiBr2 (diglyme) (0.02mmol, 10mol%), (S)-
L2 (0.024mmol, 12mol%). The test tube was evacuated and backfilled with argon for
three times, then DMAc (1.0 mL) was added and the mixture was stirred at room
temperature for 30min. Meanwhile, in the air, another 10mL screw-cap test tube
equipped with a magnetic stirrer was charged with KF (0.6mmol, 3.0 equiv.) (if alkyl
halide was a solid, it was also added at this time). The test tube was evacuated and
backfilled with argon for three times, and the test tube was then placed in an EtOH
cooling bath at−27 °C. Next, the solution of the catalyst was added in one portion via
syringe, the reaction mixture was stirred at −27 °C for 10min, DEMS (0.6mmol, 3.0
equiv.) was added dropwise via syringe over 1min, and then the reaction mixture was
stirred for another 5 min. Finally, the enamide or enecarbamate (0.2mmol, 1.0 equiv.)
and alkyl halide (0.4mmol, 2.0 equiv.) were added. The reaction mixture was stirred
at−27 °C for 40 h. The reaction mixture was diluted with H2O followed by extraction
with EtOAc, dried with anhydrous Na2SO4 and concentrated in vacuo. The
residue was purified by flash column chromatography on silica gel to give the target
product.
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