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ABSTRACT	 Objective: Significant efforts are currently being made to identify novel biomarkers for the diagnosis and risk stratification of prostate 

cancer (PCa). Metabolomics can be a very useful approach in biomarker discovery because metabolites are an important read-out 

of the disease when characterized in biological samples. We aimed to determine a metabolomic signature which can accurately 

distinguish men with clinically significant PCa from those affected by benign prostatic hyperplasia (BPH).

Methods: We first performed untargeted metabolomics using ultrahigh-performance liquid chromatography tandem mass 

spectrometry on expressed prostatic secretion urine (EPS-urine) from 25 patients affected by BPH and 25 men with clinically 

significant PCa (defined as Gleason score ≥ 3 + 4). Diagnosis was histologically confirmed after surgical treatment. The EPS-urine 

metabolomic approach was then applied to a larger, prospective cohort of 92 consecutive patients undergoing multiparametric 

magnetic resonance imaging for clinical suspicion of PCa prior to biopsy.

Results: We established a novel metabolomic signature capable of accurately distinguishing PCa from benign tissue. A metabolomic 

signature was associated with clinically significant PCa in all subgroups of the Prostate Imaging Reporting and Data System 

(PI-RADS) classification (100% and 89.13% of accuracy when the PI-RADS was in range of 1–2 and 4–5, respectively, and 87.50% 

in the more critical cases when the PI-RADS was 3).

Conclusions: A combination of metabolites and clinical variables can effectively help in identifying PCa patients that might be 

overlooked by current imaging technologies. Metabolites from EPS-urine should help in defining the diagnostic pathway of PCa, 

thus improving PCa detection and decreasing the number of unnecessary prostate biopsies.
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Introduction

Although prostate-specific antigen (PSA) represents a main-

stay for prostate cancer (PCa) diagnosis, PSA alone is associ-

ated with significant rates of false-negative and false-positive 

findings. Indeed, a large proportion of men diagnosed with 

PCa through PSA screening have an indolent disease not 

necessarily progressing into an aggressive cancer phenotype. 

Moreover, high PSA levels can be found in patients affected 

by benign prostatic hyperplasia (BPH) as well as prostatic 

infections. Therefore, improper and unjustified adoption of 

PSA screening might lead to the implementation of poten-

tially unwarranted invasive procedures both for diagnosis and 

treatment.

In this context, PCa overdiagnosis and overtreatment is 

certainly fueled by the lack of reliable tools to discriminate 

accurately between men with clinically indolent PCa and 

those with more aggressive disease1. Currently, the gold stand-

ard for the diagnosis and staging of PCa is the histopatho-

logic assessment of the core needle biopsy, which provides a 
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measure of the extent of cancer in the examined tissue, along 

with information about the architectural aspects of cancer foci 

(e.g., loss of glandular structure as characterized by Gleason 

score). However, the accuracy of needle biopsy in detecting 

whole-gland abnormalities is limited by its untargeted nature 

and by the heterogeneity and multifocality of PCa. Recently, 

technological advances and a greater understanding of tumor 

biology have opened the way of a new era in PCa detection2. 

Multiparametric magnetic resonance imaging (mp-MRI) has 

shown high negative predictive value for the detection of clin-

ically significant PCa (defined as Gleason score ≥ 3 + 4)3, and 

it is currently recommended for all patients with elevated PSA 

and clinical suspicion of PCa prior to biopsy (EAU guidelines: 

https://uroweb.org/guideline/prostate-cancer/). Despite high 

negative predictive value, mp-MRI does have limitations, such 

as the risk of missing clinically significant disease in approx-

imately 15% of patients. This is mainly due to two factors: 

1) inability of MRI to detect small-volume, high-risk foci of 

PCa; 2) inaccurate estimation of equivocal lesions (defined as 

PI-RADS 3 lesions).

The inability of clinicopathological investigations to 

accurately predict PCa aggressiveness clearly underscores 

the need to determine the potential prognostic usefulness 

of additional biomarkers able to distinguish indolent from 

aggressive PCa. In this context, metabolomics may repre-

sent a very useful approach to discover novel biomarkers, 

since metabolites are an important read-out of disease when 

present in biological samples such as tissues and body flu-

ids. Moreover, prostate is known to exhibit a unique metab-

olite profile4. Specifically, metabolites in body fluids (e.g., 

urine, serum) as well as in radical prostatectomy tissues have 

been correlated with PCa aggressiveness and progression5-11. 

However, only few studies investigated the metabolic con-

tent of expressed prostatic secretion (EPS) and none of them 

implemented metabolomics into mp-MRI diagnostic path-

ways. EPS represent an attractive source of potential PCa 

biomarkers because these fluids bathe the tumor12,13. EPS 

is secreted by the prostate following a digital rectal pros-

tate massage and can be collected in voided bladder after 

the procedure. It contains proteins and metabolites that are 

secreted/released from the prostate into the extracellular 

environment and that might reflect prostate “health sta-

tus” much better than needle biopsy. Despite its importance 

and potential applications, a complete characterization of 

EPS-urine is not yet available. Specifically, although the pro-

teome of EPS has already been found to be a rich source of 

biomarkers14-17, the metabolomics profile of EPS-urine has 

not been studied yet.

Here, we exploited EPS-urine and ultrahigh-performance 

liquid chromatography tandem mass spectrometry (UPLC/

MS-MS) to identify novel biomarkers that distinguish BPH 

from PCa, thus proving a specific metabolomic signature of 

PCa. We also prospectively recognized the EPS-urine metab-

olomic signature in association with the mp-MRI in an addi-

tional cohort of patients who underwent mp-MRI at initial 

prostate biopsy for clinical suspicion of PCa.

Materials and methods

Study population

After we obtained institutional review board approval, we 

prospectively selected 50 consecutive patients, of whom 25 

were affected by BPH and 25 were affected by PCa, scheduled 

for surgical treatment (i.e., transurethral resection or enucle-

ation for BPH patients and robot-assisted radical prostatec-

tomy for PCa patients). All men had EPS-urine collected on 

the day of surgery. After acquisition of the expressed patient 

consent, EPS-urine samples were collected upon bladder void-

ing. Subsequent prostatic massage was performed with three 

strokes per lobe during rectal examination of the prostate12. 

The clinical characteristics of the examined population are 

summarized in Table 1.

Following the first development and proof-of-concept 

phase, a second study was performed by prospectively col-

lecting data from additional 92 two consecutive patients who 

underwent mp-MRI at our institution for clinical suspicion of 

PCa based on increased PSA levels and digital rectal examina-

tion. The clinical characteristics of the second examined pop-

ulation are summarized in Table 2.

Written informed consent was provided by all the 

participants.

Sample collection and preparation

Approximately 50 mL of EPS-urine were obtained from each 

patient and centrifuged at 1,280 g at 4 °C for 30 min to remove 

any possible cellular contamination. After collection, 10 mL of 

each sample were immediately aliquoted (1 mL each aliquot) 

and stored at −80  °C until LC/MS-MS analysis. Twenty-five 

PCa and 25 BPH EPS-urine samples were collected. The PCa 

and BPH EPS-urine samples were subdivided into 5 groups 

https://uroweb.org/guideline/prostate-cancer/
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Table 2  Descriptive characteristics of the study population composed of 92 patients

Variable Overall (n = 92*) No PCa (n = 37, 40.2%) PCa (n = 55, 59.8%) P value

Age (years) 67 [61.8–74.2] 64 [60–69] 71 [63–76] <0.01

PSA level (ng/mL) 6.3 [4.3–9.9] 5.3 [4–7.9] 7.4 [4.8–10.4] <0.05

Prostate volume (mL) 55 [40–70] 60 [45–73] 50 [38–70] 0.17

GGG

  1 13 (14.1) 0 (0) 13 (23.6)

  2 18 (19.6) 0 (0) 18 (32.7)

  3 13 (14.1) 0 (0) 13 (23.6)

  4 7 (7.6) 0 (0) 7 (12.7)

  5 4 (4.3) 0 (0) 4 (7.3)

Clinical T stage 0.07

  1 70 (76.1) 32 (86.5) 38 (69.1)

  2 19 (20.7) 4 (10.8) 15 (27.3)

  3 2 (2.2) 0 (0) 2 (3.6)

PI-RADS score <0.001

  1 2 (2.2) 2 (5.4) 0 (0)

  2 9 (9.8) 7 (18.9) 2 (3.6)

  3 32 (34.8) 18 (48.6) 14 (25.5)

  4 29 (31.5) 8 (21.6) 21 (38.2)

  5 17 (18.5) 0 (0) 17 (30.9)

BPH, benign prostatic hyperplasia; PCa, prostate cancer; PSA, prostate-specific antigen; GGG, Gleason grade group; PI-RADS, Prostate 
Imaging Reporting and Data System. Values are presented as median [interquartile range] or n (%). *Three of 92 patients had no PI-RADS 
value.

Table 1  Descriptive characteristics of the study population composed of 50 consecutive patients

Variable Overall (n = 50) BPH (n = 25, 50%) cs-PCa (n = 25, 50%) P value

Age (years) 67 [62.2–74.8] 71 [63–79] 67 [62–70] 0.07

BMI (kg/m2) 24.5 [24–25.9] 24.2 [23.5–25.2] 24.7 [24.1–26.1] 0.75

PSA level (ng/mL) 4.2 [2.9–6.9] 3.1 [1.6–4.4] 5.9 [4–8.5] <0.001

Prostate volume (mL) 55 [40.8–77.2] 74 [46–99] 50 [38–56] <0.05

GGG

  2 12 (24) – 12 (48)

  3 9 (18) – 9 (36)

  5 4 (8) – 4 (16)

BPH, benign prostatic hyperplasia; PCa, prostate cancer; BMI, body mass index; PSA, prostate-specific antigen; GGG, Gleason grade group. 
Values are presented as median [interquartile range] or n (%).
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of 5 samples each. EPS-urine samples belonging to the same 

group were pooled together for the LC-MS/MS analysis. The 

analyses were performed in three technical replicates. Quality 

control (QC) samples, made up of all samples pooled together, 

were run within the queue every 5 samples to monitor the per-

formance of the LC-MS/MS system over time.

Additional 92 patients, who were candidate for prostate 

biopsies for clinical suspicion of PCa but with either negative 

(PI-RADS 1–2) or equivocal (PI-RADS 3) lesions at mp-MRI 

or with a positive mp-MRI (PI-RADS 4–5) were also enrolled 

in the prospective study. The clinical characteristics of the 

second examined population are summarized in Table 2. 

Three out of 92 patients had no PI-RADS value. Their EPS-

urine samples were collected as previously described. Every 

EPS-urine sample was analyzed by LC-MS/MS in three tech-

nical replicates. QC samples, made up of all samples pooled 

together, were run within the queue every 5 samples to moni-

tor the performance of the LC-MS/MS system over time.

LC-MS/MS

Metabolomic profiling of EPS-urine was performed using 

UPLC 1290 system (Agilent Technologies, Santa Clara, CA, 

USA) coupled with a TripleTOF 5600+ MS (Sciex, Framingham, 

MA, USA) equipped with an electrospray ionization source. 

Reverse-phase C18 columns (Waters ACQUITY UPLC HSS T3 

C18 10 × 2.1 mm, 1.8 μm) and hydrophilic interaction liquid 

chromatography (Waters ACQUITY UPLC BEH amide 10 × 

2.1 mm, 1.7 μm) were used to cover a wide range of metabo-

lites based on their chemical properties. The chromatographic 

separation by reverse-phase C18 columns was performed 

according to Want et  al.18 with some modifications. Briefly, 

20 μL of EPS-urine were directly injected upon dilution 1:3 

with solvent A (water, 0.1% formic acid) for reverse-phase 

C18 analysis. Metabolites were separated using a flow rate set 

at 0.6 mL/min and a gradient of solvent A and B (methanol, 

0.1% formic acid). The gradient in both the positive and neg-

ative modes was 2% B for 1 min, up to 20% B in 3 min, up to 

95% in 4 min, and at 95% B for 2 min. The column was set at 

50 °C while the samples were kept at 4 °C. For BEH amide col-

umn analysis, the chromatographic separation was performed 

according to Paglia et al.19 with some modifications. Briefly, 5 

μL of EPS-urine were directly injected upon dilution 1:2 with 

solvent A (ACN, 0.1% formic acid) for hydrophilic interaction 

liquid chromatography analysis. Metabolites were separated 

using a flow rate set at 0.4 mL/min and a gradient of solvent A 

and solvent B (water, 0.1% formic acid). The gradient, in both 

positive and negative modes, was in 7 min from 1 up to 70% 

B. The column was set at 40 °C while the samples were kept at 

4 °C. The TripleTOF 5600+ system was used for data acquisi-

tion over a mass range of 50–500 m/z.

Automated calibration was performed using an external 

calibrant delivery system, which infused APCI-positive or 

APCI-negative calibration solution every 5 sample injections. 

A time-of-flight mass spectrometry (TOF MS) survey scan 

experiment with an information-dependent acquisition (IDA) 

experiment was set to monitor the 8 most intense candidate 

ions (accumulation time of 150 msec in TOF-MS and 50 msec 

in IDA experiment) with a collision energy of 35 ± 10 V, a 

declustering potential of 80 V, source temperature of 500 °C, 

and ion-spray voltage floating of 5500 V in high sensitivity 

mode. The method was applied both in positive and negative 

polarities, with appropriate corrections (collision energy, −35 

± 10 V; declustering potential, −80 V, ion-spray voltage float-

ing, −4500 V).

Data processing

All data were processed using MasterView™ software 

(Sciex) for metabolite identification with the Accurate Mass 

Metabolite Spectral Library (Sciex). For the first part of the 

study (EPS-urine metabolomics analysis; 25 BPH vs. 25 PCa 

patients), MarkerView™ software (Sciex) was used for simul-

taneous feature finding, alignment (retention time width: 1 

min and 10 s). Significant metabolites for each experimental 

comparison were used for the principal component analysis 

(PCA). Since normalization is recommended to improve the 

differential profile between sample groups by detecting and 

decreasing unwanted variations arising from errors in the EPS 

withdrawal20, probabilistic quotient normalization (PQN)21 

was applied. MultiExperiment Viewer version 4.9.022 (freely 

downloadable) was used for hierarchical clustering heatmap 

of peak area of the significant differentially regulated metab-

olites among experimental conditions both in positive and 

negative polarities, applying Pearson correlation metric (P < 

0.05). This analysis was performed on the mean values of the 

three technical replicates for each group of EPS-urine samples. 

Pathways analysis was also carried out on the PQN normal-

ized data using web-free available MetaboAnalyst version 4.023 

(freely available). Mapped pathways were ranked according 

with their enrichment and topological analysis performed 

by the MetPa method implemented in MetaboAnalyst. The 
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pathway impact is calculated as the sum of the importance 

measures of the matched metabolites normalized by the sum 

of the importance measures of all metabolites in each pathway.

For the prospective study on 92 patients, a batch correc-

tion step was also added in the data processing to avoid bias 

in the peak area calculation due to the temporal difference in 

the LC-MS/MS acquisition process. Pairs of features assigned 

to the same metabolite and having the most similar retention 

times were aggregated (aligned), and the mean retention time 

was defined as representative of the aggregated pair. The pro-

cedure was repeated for all pairs that had a difference of reten-

tion times of at most 1 min with an additional tolerance of 

10 s. Within each batch, only features with at least 5 not null 

values were considered. The same aggregation scheme was first 

applied to each batch separately and then to the resulting fea-

tures of the six batches. The obtained data were normalized 

through the PQN method21, using the median of each metab-

olite among the QC samples to define the reference profile. 

PQN was first applied within each batch and then between 

batches. The values of a metabolite in three technical repli-

cates were averaged only if at least two values were available; 

otherwise, all three values were set to zero. Only features with 

non-zero values in most of the patients (70%) were used in 

differential abundance assessment by t-tests between healthy 

and prostate cancer groups both in positive and negative. Two 

comparisons were considered: all 92 patients and only the 

most critical group characterized by PI-RADS 3.

Prediction model

A set of combinations of 1 to 6 metabolites plus 1 to 3 clinical 

variables were used to evaluate naive Bayes predictors using 

cross validation. For each classifier, several measures have 

been computed such as accuracy, true-positive, true-negative, 

false-positive, and false-negative rates. Then, the list has been 

sorted and ranked in order to extract the predictor that per-

forms better in the three classes of interest (PI-RADS 1–2, 

PI-RADS 3, and PI-RADS 4–5), taking into account both the 

accuracy and the true-negative rate. Because of the limited size 

of the dataset, leave-one-out cross-validation was adopted: 

each sample was selected iteratively to evaluate the accuracy 

of the predictor trained with the remaining 91 samples. In 

this way, 92 validated predicted outputs were obtained, and 

relevant parameters were considered such as accuracy, true-

positive rate, and false-negative rate were used to create a 

confusion matrix.

The naive Bayes is a prediction model in which all varia-

bles are assumed statistically independent so that a simplified 

product formula can be used to estimate the probability of 

each class. For example, for the healthy condition (H):
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where x1, x2, ... are the variables (metabolite abundance and 

clinical variables). All probabilities in the right side of the 

equation were modeled as Gaussian curve with mean and 

standard deviation obtained from the training set.

Given a new sample characterized by variables x1, x2, …, the 

prediction is obtained with the previous formula by evaluat-

ing the probability that the sample is in the class “healthy” or 

“PCa” and considering the class associated with the maximum 

probability as output.

Results

EPS-urine metabolomic signature 
differentiates BPH from PCa patients

An untargeted metabolomic study was performed on EPS-

urine obtained from 25 patients with clinically significant PCa 

(defined as biopsy Gleason score ≥ 3 + 4) and 25 men with 

BPH who were scheduled for surgical treatment. Polar and 

apolar metabolites were simultaneously extracted and profiled 

using two chromatographic columns (C18 and BEH amide).

To define the metabolomic signature that could discrim-

inate between the two groups of patients, we compared 

several normalization approaches: logarithmic, total area, 

protein content, and PQN. PCA plots for each normaliza-

tion method are presented in Supplementary Figure S1. The 

PQN methodology was the most reliable, recommended by 

several studies21, and consistent with the other methods, as 

it revealed the presence of several metabolites differentially 

expressed between EPS-urine of patients with PCa and BPH. 

PCA on PQN normalized data clearly segregated BPH from 

PCa patients in separate clusters (Figure 1), thus indicating 

that BPH and PCa metabolic profiles were highly specific. 

More in details, the C18 column identified 55 metabolites 

in positive modality and 86 metabolites in negative modal-

ity. Using the BEH amide column, we also identified 79 
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metabolites in positive modality and 80 metabolites in neg-

ative modality (Supplementary Table S1a– S1d). By apply-

ing the t-test between PCa and BPH patients, we identified 

17 metabolites that were significantly different (P < 0.05, 

out of 300 metabolites) in the two groups (Supplementary 

Table S1e), as also indicated by the hierarchical clustering 

(Figure 2A). The C18 column retrieved 2-piperidinone and 

indoleacrylic acid as differentially expressed metabolites, 

whereas 15 metabolites resulted differentially expressed 

using the BEH amide column (Figure 2A).

To identify the intracellular metabolic pathways that were 

mostly altered in PCa (vs. BPH), a metabolic pathway analysis 

(MetPA) was performed on differentially represented meta

bolites using MetaboAnalyst, a web-based tool for metabolo-

mic data interpretation23 (Figure 2B). Metabolites belonging 

to the citrate cycle (TCA cycle), lysine degradation, cysteine 

and methionine metabolism, and Tryptophan metabolism 

were enriched in PCa and presented the highest impact value 

(i.e., pathway impact value calculated from pathway topology 

analysis) (Supplementary Table S1f).
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Prediction model based on mp-MRI patients

The untargeted metabolomic approach developed in the first 

part of this work was then applied to prospectively inves-

tigate 92 patients undergoing mp-MRI for PCa diagnosis. 

Because the BEH amide column identified the vast majority 

of the significantly different metabolites in PCa/BPH patients 

(Figure 1), we used this column for further analyses. Similarly, 

taking into account the previous results on the comparison 

of several normalization methods, we only applied the PQN 

methodology. A total of 200 metabolites in positive polarity 

and 207 in negative polarity were thus identified upon PQN 

methodology (Supplementary Table S2a and S2b). To select 

for the most discriminating metabolites between PCa patients 

and control subjects, the metabolites with 70% of non-missing 

values (Supplementary Table S2a and S2b) were considered 

using either all patients (Supplementary Table S2c and S2d) or 

those classified as PI-RADS 3, the most problematic subgroup 

for clinical decisions (Supplementary Table S2e and S2f). We 

found a number of metabolites that changed between PCa and 

control subjects, and even if these changes were marginally sig-

nificant when analyzing each metabolite independently, they 

could be predictive of PCa status when combined together. 

Therefore, we used 10 metabolites with the highest differences 

in each comparison (Supplementary Table S3) along with the 

most relevant clinical variables to develop a model to predict 

the presence of PCa (Supplementary Table S4). The different 

behaviors of the three sets of metabolites associated with the 

model suggest the definition of a meta classifier (MC) that 

activates the corresponding model depending on the known 

value of the PI-RADS. We therefore obtained an MC that 

includes three naive Bayes models, each one based on a spe-

cific set of variables optimized to obtain the highest accuracy 

in a PI-RADS subgroup (Figure 3). The theoretical accuracy of 

the MC of approximately 89.89% can be easily obtained with 

the average of the three accuracies weighted by the number 

of samples in each category, specifically 100%, 87.50%, and 

89.13% for PI-RADS 1–2, PI-RADS 3, and PI-RADS 4–5, 

respectively. The distribution of the more predictive variables 

in each PI-RADS class highlights the complex relationship 

among metabolite levels, clinical attributes, and patient state 

(Supplementary Figures S2–S4).

Predictors were tested in three relevant subsets of samples 

according to mp-MRI findings: probably healthy (PI-RADS 

1–2), difficult to diagnose (PI-RADS 3), and probably sick 

(PI-RADS 4–5) (Supplementary Table S5). As expected, 

predictive accuracy was higher when mp-MRI was positive 

(100% and 89.13% of accuracy when PI-RADS is in range 

of 1–2 and 4–5, respectively) than in more equivocal cases 

(87.50% when PI-RADS was 3) (Supplementary Table S6). 

However, for PI-RADS 3-classified patients, the predictive 

contribution of metabolite level and clinical variables was 
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more pronounced as compared to the other groups (+ 31.25% 

for PI-RADS 3 against + 18.19% and + 6.52% for PI-RADS 

1–2 and 4–5, respectively), when using only PI-RADS classi-

fication (Supplementary Table S6). The addition of clinical 

variables did not significantly improve the prediction above 

the use of PI-RADS only (Supplementary Table S6). On the 

contrary, the metabolite levels provided significant benefit in 

all cases (Supplementary Table S6). In addition, to compare 

our results with state-of-the-art methods in terms of diagnosis 

and PCa patient stratification, the metabolites included in the 

commercial Prostarix™ prostate cancer test (Metabolon Inc., 

Durham, NC) (alanine, glycine, glutamic acid and sarcosine) 

were used to train a naive Bayes model. The obtained results 

for the 92 patients are reported in Supplementary Table S6, 

showing high accuracy only in the PI-RADS 4–5 subgroup 

(Supplementary Table S6).

Analysis by confusion matrices (Figure 4) highlighted other 

important characteristics of the model, the most relevant 

being the sensitivity value of 100% in the PI-RADS 3 sub-

group, with a considerably high specificity value of 77.78%. 

In the “gray zone” of the PI-RADS 3 subgroup consisting of 

32 patients, 14 men were correctly predicted as healthy and 

14 patients as affected by PCa and 4 patients not correctly 

assigned, with 87.50% of accuracy in the prediction (Figure 

4B). Among 11 patients within the PI-RADS 1–2 group, 9 

patients were correctly predicted as healthy and 2 patients as 

affected by PCa, with a sensitivity and specificity of virtually 

100% (Figure 4A). Among 46 patients with PI-RADS 4–5, 

our model was able to correctly classify 6 patients as healthy 

and 35 patients as affected by PCa, showing a sensitivity of 

92.11%, a specificity of 75%, and 89.31% of accuracy in the 

prediction (Figure 4C).

All together, these findings demonstrate the usefulness of 

measuring EPS-urine metabolites to improve the diagnostic 

accuracy of PCa patients and identify a metabolic signature 

that would be particularly important in classifying PI-RADS 

3 patients.

Discussion

Promising results from metabolomics urinary fingerprinting 

analyses suggest that there is more to be studied in the field of 

metabolomic biomarkers in EPS-urine. This is a highly novel 

and challenging field of investigation that brings an exciting 
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[NEG] Butyric acid
[POS] Homocitrulline

PI-RADS
level?

[NEG] Stearic acid
[POS] Argininosuccinic acid
[POS] Creatine

PSA
cT stage
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Architecture of the
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Three combined predictors activated on
different levels of the PI-RADS variable

Dataset
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Figure 3  Structure of the meta classifier: the PI-RADS value is used to choose a different set of variables as input for the corresponding 
classifier. The metabolites for each PI-RADS level are indicated along with the polarity (positive or negative) for mass spectrometry acquisition. 
PI-RADS, Prostate Imaging Reporting and Data System; pos, positive; neg, negative.
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new technology such as metabolomics in the PCa biomarker 

discovery field.

Diagnostic usefulness of metabolomic biomarkers in 

routine clinical practice has already been demonstrated24. 

Specifically, metabolites in body fluids (e.g., urine, serum) 

as well as in RP tissues have been correlated with PCa pro-

gression5-11. Recently, sarcosine, proline, kynurenine, uracil, 

and glycerol 3-phosphate were found in high concentrations 

in metastatic prostate cancer urine samples25,26. This finding, 

however, was not confirmed by Jentzmik et al.27,28, who did not 

observe any significant correlation between sarcosine levels 

in post-DRE urine or tissues and prostate cancer aggressive-

ness. Cao et al.29 reported only a modest correlation between 

sarcosine levels and PCa progression, and the prognostic value 

of sarcosine was found to be inferior to the more robust pros-

tate cancer gene 3 (PCA3) and PSA biomarker30. Therefore, 

the diagnostic and prognostic impact of sarcosine in prostate 

cancer progression remains controversial. As for sarcosine, 

more consistent studies are needed for other metabolites. In 

fact, it remains elusive whether metabolomics findings could 

aid in the diagnosis of PCa and in patient stratification based 

on tumor aggressiveness.

Only few studies used EPS-urine, and none of them imple-

mented metabolomics into mp-MRI diagnostic pathways that 

are now the standard of care for PCa diagnosis. Since EPS 

bathe the tumor, it is an attractive source of potential PCa 
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biomarkers, containing informative proteins and metabolites 

that might better reflect prostate “health status” than needle 

biopsy. Although the proteome of EPS has already been found 

to be a rich source of biomarkers14-17, the metabolomics pro-

file of EPS has not been studied yet.

Our untargeted metabolomic approach on EPS-urine 

provided metabolomic signatures that clearly discriminated 

between PCa and BPH patients and more accurately classi-

fied patients undergoing mp-MRI for PCa diagnosis. Our 

experimental design did not comprise healthy donors because 

our goal was to propose a diagnostic tool that can enhance 

the performance of mp-MRI, applied only to those cases of 

PCa suspicion. Our approach provides an additional level of 

accuracy, beside PSA level and other clinical parameters, to 

calculate the individual risk of clinically significant PCa. By 

using the novel metabolomics signature, we could find the way 

to improve the performance characteristics of mp-MRI and 

compare its performance vs. that of commercially available kit 

such as Prostarix™.

For example, in the PI-RADS 4–5 case, our best predictor 

was composed of three metabolites (stearic acid, argininosuc-

cinic acid, and creatine) and two clinical variables (PSA and 

cT-stage). Notably, stearic acid was significantly up-repre-

sented in PCa compared with BPH patients in the first part 

of this work, in line with literature, as recently reviewed by 

Giunchi et al.31 They also concluded that greater de novo fatty 

acids synthesis is a hallmark of PCa31. Thus, our metabolomics 

results not only confirmed the predictive value of stearic acid 

in EPS-urine from PCa patients but also showed that stearic 

acid is one of the metabolites predicting the more aggres-

sive PI-RADS 4–5 case, thus indicating the specificity of the 

prediction.

The other two metabolites selected for PI-RADS 4–5 (i.e., 

argininosuccinic acid and creatine) are part of the arginine 

metabolism32. Arginine is a semi-essential amino acid, whose 

endogenous synthesis, under physiological conditions, is suffi-

cient to meet the body requirements. However, during infancy, 

growth, pregnancy, and illness, such as infections and cancer, 

arginine is synthesized in multiple tissues by the arginine–

citrulline cycle33. Indeed, arginine is a major metabolic hub for 

the synthesis of multiple metabolites, such as NO, polyamines, 

proline, and creatine, all of which are essential for cell survival 

and proliferation34-36. Besides NOS, the other two enzymes 

that function in the arginine–citrulline cycle are argininosuc-

cinate synthase 1 (ASS1) and argininosuccinate lyase (ASL). 

ASS1 is a cytosolic enzyme that catalyzes the formation of 

argininosuccinate from citrulline and aspartate, with ATP 

being broken down into AMP and pyrophosphate during the 

reaction. Subsequently, ASL promotes the cleavage of argin-

inosuccinate to arginine and fumarate. ASS1 is overexpressed 

in various human cancers37, but the cancer-promoting mecha-

nisms fostered by ASS1, and their clinical implications, remain 

unclear. It is possible that high levels of ASS1, which can result 

in high levels of argininosuccinate, support tumor prolifera-

tion and aggressiveness by increasing the supply of arginine 

for NO production.

Five metabolites (creatinine, l-arginine, 5-hydroxylysine, 

butyric acid, and homocitrulline) and two clinical varia-

bles (PSA and age) were the best predictors in the PI-RADS 

3 subgroup. Although l-arginine and homocitrulline belong 

to the arginine metabolism, butyrate can induce growth inhi-

bition and apoptosis in numerous cancers, including prostate 

cancer38.

Finally, in the case of PI-RADS 1–2, our best predictor con-

tains four metabolites (biocytin, fumaric acid, 1,3-dimetyluric 

acid, and quinic acid). Notably, tryptophan, quinolinic acid, 

and quinic acid were also found to be significantly overrepre-

sented in EPS-urine from PCa compared with BPH patients, 

thus indicating a possible relevance of tryptophan metabolism 

also in the context of prostate cancer, in addition to its demon-

strated role in colon39 and breast cancer40. Quinolinic acid is 

an essential precursor for de novo NAD+ synthesis. Under nor-

mal physiological conditions, the production of picolinic acid 

and quinolinic acid is at equilibrium at the end of the kynure-

nine pathway of tryptophan metabolism. However, during 

chronic activation, the kynurenine metabolism is diverted 

toward quinolinic acid production, and hence NAD+ biosyn-

thesis, which may promote cellular growth and contribute to 

immune escape40.

Conclusions

Our metabolic predictors associated with mp-MRI are 

expected to better guide physicians in their clinical deci-

sion-making process and also to have significant impact on the 

National Health System. Indeed, our novel metabolomic sig-

nature would decrease the number of unnecessary biopsies in 

men with negative/equivocal mp-MRI. Additionally, based on 

the identified metabolic signature, patients at low risk of mul-

tifocal, clinically significant PCa might undergo a decreased 

number of cores at biopsy. These patients would be candidate 

for mp-MRI-guided targeted biopsy only. This, in turn, would 
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translate into significant reduction in costs and in complica-

tions associated with more extensive biopsy sampling.

The main limitations of our study are the small size of the 

cohort (overfitting in predictive models) and intrinsic tech-

nical difficulties in metabolomics data analysis (e.g., peak 

alignment, data normalization, missing values). Therefore, a 

further validation study on a bigger set of patients will clar-

ify to which extent our model can be generalized. Moreover, 

targeted analysis for the selected panel of metabolites will be 

one of our future goals to determine the metabolite absolute 

quantification in EPS-urine in order to define a metabolic 

diagnostic score needed for a correct patient stratification. 

So far, our model has been assessed by cross-validation and 

has performed better than other metabolomics-based diag-

nosis methods, such as Prostarix™. It is not surprising that 

our model performed better than Prostarix™, since it was 

tailored on these patients; nevertheless, it includes a set of 

metabolites that are also present in this commercial diagnos-

tic tool.

Our approach is also in line with the emerging trend toward 

the shift from trans-rectal prostate biopsy to “liquid biopsy”. 

Although direct analysis of tumor tissues may potentially 

provide access to greater concentrations of tumor-specific 

metabolites, their extreme heterogeneity would likely result 

in unsatisfactory yields of tissue-derived tumor-specific meta

bolites. On the contrary, EPS-urine is obtainable in a straight-

forward, noninvasive fashion. Thus, it is a clinically attractive 

biofluid that can be used to routinely screen for prostate bio-

markers in combination with mp-MRI, eventually offering 

important aid to clinicians in the clinical decision making 

process of PCa diagnosis.
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