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1  | INTRODUC TION AND PURPOSE

A great deal of effort has been invested in trying to understand the 
distribution and function of the different biota at multiple scales, 
with the aim of predicting community assembly rules and the conse-
quences of their complex interactions (Cavender- Bares et al., 2009). 
Developing such an understanding has important implications in the 
case of viral disease dynamics and outbreak occurrence, as it would 

provide us with useful tools for inferring both the causes and conse-
quences of viral distributions, as well as aiding the decision- making 
process in the prevention, monitoring, and control of infectious 
diseases (Pedersen & Fenton, 2006). However, in the case of com-
munities of symbionts (organisms associated with other organisms, 
generally parasites) comparatively little is known about their as-
sembly processes. In this case, it is evident that host characteristics 
could act as strong filters on the assembly of pathogen communities 
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Abstract
Understanding the assembly processes of symbiont communities, including viromes 
and microbiomes, is important for improving predictions on symbionts’ biogeogra-
phy and disease ecology. Here, we use phylogenetic, functional, and geographic fil-
ters to predict the similarity between symbiont communities, using as a test case 
the assembly process in viral communities of Mexican bats. We construct general-
ized linear models to predict viral community similarity, as measured by the Jaccard 
index, as a function of differences in host phylogeny, host functionality, and spatial 
co- occurrence, evaluating the models using the Akaike information criterion. Two 
model classes are constructed: a “known” model, where virus– host relationships are 
based only on data reported in Mexico, and a “potential” model, where viral reports 
of all the Americas are used, but then applied only to bat species that are distributed 
in Mexico. Although the “known” model shows only weak dependence on any of 
the filters, the “potential” model highlights the importance of all three filter types— 
phylogeny, functional traits, and co- occurrence— in the assemblage of viral communi-
ties. The differences between the “known” and “potential” models highlight the utility 
of modeling at different “scales” so as to compare and contrast known information at 
one scale to another one, where, for example, virus information associated with bats 
is much scarcer.
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(Dallas & Presley, 2014; Nieto- Rabiela et al., 2018). For instance, 
those ecological behaviors and physiological properties that allow 
symbionts to associate with a particular host in the first place (Luis 
et al., 2015).

Furthermore, Gay et al., (2014) have suggested that the risk 
of disease transmission to humans may depend on the pathogen 
richness found in natural reservoir species. In this case, multiple 
co- infections and host species infection dynamics are important 
features for understanding the mechanisms of emerging diseases 
(Gay et al., 2014; Mihaljevic, 2010; Wolfe et al., 2005). Hence, stud-
ies that adopt a multisymbiont approach are necessary in disease 
ecology in order to understand patterns and processes at different 
levels and to identify the role of species diversity in the dynamics 
of infection (Aivelo & Norberg, 2018; Chan et al., 2015; Dallas & 
Presley, 2014; Rendón- Franco et al., 2014). Additionally, multisym-
biont interactions, both interspecific (mixed helminth infections) and 
nonspecific (genetic strains of microparasites), manifest themselves 
in a complex way (Bordes & Morand, 2011; Graham, 2008). For in-
stance, symbiont interactions may explain variability in infection risk 
better than other factors, such as age or seasonality, due to the fact 
that such interactions can facilitate or hinder colonization of the 
host (Bolling et al., 2012, 2015; Bordes & Morand, 2011; Furuya- 
Kanamori et al., 2016; Newman et al., 2011; Seabloom et al., 2015). 
Thus, a one- by- one interaction analysis may lead to results that offer 
a poor representation of the underlying, more complex, multisymbi-
ont reality, especially given that many host– symbiont interactions 
are intimately embedded within communities of organisms. In short, 
it is clearly necessary to understand the full ecological context of 
infection and transmission (Johnson et al., 2016; Suzán et al., 2015; 
Woolhouse, 2001). Furthermore, understanding the mechanisms 
that determine the structure of symbiont communities in their hosts 
is essential for designing better disease control programs (Johnson 
et al., 2016; Mihaljevic, 2012; Rynkiewicz et al., 2015).

Bats are an useful model for exploring the processes that de-
termine the co- occurrence of symbionts, since a wide variety of 
symbionts have been associated with them, including viruses, 
fungi, parasites, and bacteria (Allocati et al., 2016; Whitaker Jr. 
et al., 2009; Wibbelt et al., 2009). In addition, it is well known 
that these symbionts may co- occur in bat communities (Banskar 
et al., 2016; Presley, 2011; Tello et al., 2008). However, most co- 
occurrence studies have focused on ectoparasites and bacteria 
(Wilkinson et al., 2016). Fewer studies have considered the potential 
interactions of different viruses (Anthony et al., 2017; Nieto- Rabiela 
et al., 2018, 2019), where the potential for spillovers, such as the 
current SARS- CoV- 2 pandemic, is important with their consequent 
effect on public health.

The objective of this paper is to determine whether the assem-
blage of viral communities of bats is linked in a statistically signifi-
cant way to one or more environmental filters and to determine the 
relative weight/importance of each filter type in the assemblage of 
viral communities. We will examine this hypothesis in the context of 
two different data sets: a “known” data set, where only reports from 
Mexico were used, and a “potential” data set, which included virus 

reports from all of the Americas, but restricted to only those bat 
species that are present in Mexico, but which have not necessarily 
been identified as hosts of a given virus there.

The three types of filter we will consider are phylogenetic, 
functional, and spatial. This is not an exhaustive set (Nieto- Rabiela 
et al., 2018), and each type can encompass a large number of intrin-
sic and extrinsic factors. Also, these variables are not completely in-
dependent. Nevertheless, each variable type represents a different 
class of filter:

1) The phylogenetic filter offers a reciprocal understanding 
between the evolution of the hosts and their symbionts over evo-
lutionary timescales (Córdova- Tapia & Zambrano, 2015; Krasnov 
et al., 2014; Streicker et al., 2010). As it provides information about 
when each pair of hosts was separated in evolutionary time (Graham 
& Fine, 2008), it allows us to develop a better understanding of the 
coevolution of bats and their symbiont communities (Cavender- 
Bares et al., 2009). For example, if bats with the same common an-
cestor are found to share a virus, it is suggestive of the fact that the 
virus was present in the common ancestor. However, other factors 
are not ruled out, such as the physiological similarity between hosts 
that could facilitate association with the same viruses.

2) The functional filter can represent the fact that some symbi-
onts are present in hosts that share life histories (Becker et al., 2020; 
Davies & Pedersen, 2008; Luis et al., 2015). We chose as specific 
variables associated with this category: trophic guild, body mass, lit-
ters per year, and number of pups per year, as these have previously 
been associated with viral diversity and have a corresponding poor 
association with phylogeny (Bordes et al., 2008; Córdova- Tapia & 
Zambrano, 2015; Kamiya et al., 2014; Rico, 2015) and therefore have 
less chance of being confounded by phylogenetic characteristics.

3) The spatial filter represents the fact that species must co- 
occur in order to pass infections and share symbionts (Krasnov 
et al., 2010; Webb et al., 2002). The importance and quantification 
of co- occurrence has been observed, for example, in the case of 
Leishmaniasis (Stephens et al., 2009, 2016), where, relative to a null 
hypothesis, the degree of co- occurrence may take positive, negative, 
or random values depending on the type of interaction it proxies 
(competition, cooperation, etc.) and the dispersion capability be-
tween the pair of species considered (Griffith et al., 2016).

With these variables in mind, we generate a model to explain the 
similarity between the viral communities of different host pairs cal-
culated as a response variable. Our initial hypothesis is that in the as-
sembly of viral communities in Mexican bats, “niche,” as opposed to 
“neutral,” processes predominate, where, by “niche,” we mean that 
there exist, either direct or indirect, factors that affect the presence 
or absence of a given pathogen. Our environmental filters can be 
thought of as such niche factors. With this in mind, we can hypothe-
size how these filters may affect viral community differences across 
different bat species. For instance, we might expect to see greater 
differences in viral communities between two bat species that are 
phylogenetically distant as opposed to closely related. Similarly, we 
may expect to see similar viral communities among those bat spe-
cies that co- occur spatially. The motivation for this hypothesis is that 
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species that have high contact rates with hosts will be more suscep-
tible to acquire these new viruses when coexisting with them and 
therefore allow their adaptation and later their association (Stephens 
et al., 2009, 2016; Woolhouse et al., 2005). Finally, we may expect to 
see more similar communities between bat species that share func-
tional traits, such as trophic guild. We will examine these hypotheses 
in the context of our two data sets, where one would expect to see 
them to be valid across both “known” and “potential” data sets and 
their corresponding models.

2  | METHODS

We constructed a database using all reports of viruses isolated or 
detected by molecular techniques from the American continent and 
associated with Mexican chiropters. The information used was that 
reported by Rico- Chávez et al., (2015) in their PCR analyses with bat 
samples obtained from the south of Mexico and information avail-
able online at DBatVir (http://www.mgc.ac.cn/DBatV ir/). Two mod-
els were tested: a “known” model (Appendix 1), where only reports 
from Mexico were used, and a “potential” model (Appendix 2), which 
included virus reports from all of the Americas, but restricted to only 
those bat species that are present in Mexico, but which have not 
necessarily been identified as hosts of a given virus there. We use 
both models as each has its own advantages and disadvantages. For 
instance, the “known” model has the defect that positives may be un-
dersampled, as well as reflecting “local” collection biases. However, 
it does represent the present state of knowledge in Mexico, while 
the “potential” model represents a larger sampling effort, but ex-
trapolates data from outside Mexico to Mexico. We use the word 
“potential” as, in this case, we are assuming that a bat/virus associa-
tion identified outside Mexico for a bat with geographic distribution 
in Mexico could also be present there. This could occur, for instance, 
if the interaction reflects the physiological capability of the species 
to be a host, or that the niche conditions that favor the interaction 
outside Mexico are also present in Mexico.

For each model, a virus– host adjacency matrix, cataloged as the 
presence/absence of the virus in each host species, was constructed. 
The associated Jaccard index (Cooper et al., 2012; Jaccard, 1922; 
Real & Vargas, 1996) was calculated using the vegan library in free 
software R (Oksanen et al., 2016; R Core Team, 2017), with a value 
range between 0, corresponding to completely different viral com-
munities, and 1, corresponding to identical viral communities for 
each host pair.

For the filters, the spatial filter was represented using a co- 
occurrence measure, ε, a binomial test with the corresponding 
formula shown in Figure 1 (Stephens et al., 2009). ε measures the sta-
tistical significance of the difference between the conditional proba-
bility, P(C|X), for two bat species C and X to co- occur, relative to the 
null hypothesis, P(C). These probabilities are calculated by laying a 
uniform grid of N cells on the geographic area of interest and then 
calculating P(C) = N(C)/N, P(X) = N(X)/N and P(C|X) = N(CX)/N(X), 
where N(C) and N(X) are the number of cells with the presence of the 

bat species C or X, respectively, and N(CX) is the number of cells with 
the presence of both. Presence or no presence of the different hosts 
was evaluated using point collection data from the C3/CONABIO 
platform SPECIES (http://speci es.conab io.gob.mx/) using a uniform 
grid of 6,473 cells of area 20km2. In this database, the collections 
reported by Mexican research institutes are registered, so there are 
128,071 records of chiropterans that have been collected from 1889 
to the present along with their sampling site. The denominator in 
ε is the standard deviation of the binomial distribution. In the case 
where this distribution may be approximated by a normal distribu-
tion, |ε | > 1.96 corresponds to the standard 95% confidence interval 
that the codistribution of C and X is not consistent with the null hy-
pothesis that they are distributed independently. The importance of 
using ε as opposed to P(C|X) directly is that the latter can introduce 
spurious correlations in the case where N(X) is small.

As a phylogenetic filter, the phylogenetic distance between 
hosts was calculated and the results were normalized using the for-
mula: log (x) –  log (ẋ), where we calculate the logarithm of the phy-
logenetic distance for a pair of species and subtract the logarithm of 
the mean phylogenetic distance. This value was extracted from the 
mammalian super tree (Bininda- Emonds et al., 2007) using the library 
picante (Kembel et al., 2010) implemented in R (R Core Team, 2017).

For the functional filter, the characteristics evaluated were tro-
phic guild and body mass (Bordes et al., 2008; Han et al., 2015; Luis 
et al., 2015; Rico- Chávez et al., 2015). The information was obtained 
using PanTHERIA (Jones et al., 2009), Animal Diversity Web (http://
anima ldive rsity.org), and the Encyclopedia of Life (http://eol.org/). 
The trophic guild was classified as “(1) herbivore (not vertebrate and/
or invertebrate), (2) omnivore (vertebrate and/or invertebrate plus 
any of the other categories), and (3) carnivore (vertebrate and/or in-
vertebrate only)” (Jones et al., 2009). We assigned the value one to 
a pair of hosts when the trophic guild was the same and zero when 
it was different. For body mass, we used two metrics, the absolute 
difference between the pair of bats and the average body mass in 
grams of the pair. The rationale for this is that a positive correlation 
between body mass and symbiont biodiversity has been reported 
such that the greater the body mass, the greater diversity of sym-
bionts (Bordes et al., 2008; Han et al., 2015; Luis et al., 2015). We 
also considered the number of litters per year and the number of 
pups per year. However, for bat species within our database, these 
variables showed no predictive value for viral community similarity 

F I G U R E  1   Epsilon formula as a measure of co- occurrence. nj 
is the number of cells where the species j is distributed, nij is the 
number of cells where both species are distributed, and n is the 
total number of cells

http://www.mgc.ac.cn/DBatVir/
http://species.conabio.gob.mx/
http://animaldiversity.org
http://animaldiversity.org
http://eol.org/
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and therefore were discarded from further analysis. The absence of 
an effect here may be due to the fact that they are not especially 
variable traits among bat species.

After corroborating the normality of our variables, we subse-
quently computed the relation between the Jaccard similarity index 
as response variable and centralized values of the explanatory vari-
ables: phylogeny (phylogenetic distance), functional traits (body 
mass difference and trophic guild), and ε as a spatial variable— using 
a generalized linear model (GLM) (Venables & Ripley, 2002). We used 
the GLM function (Venables & Ripley, 2002) and an automated se-
lection of the best model using the stepAIC function of the MASS 
7.3- 39 library (Venables & Ripley, 2002; Ripley, 2013) which tests 
for all the potential interactions in the model selection and uses the 
Akaike information criterion (AIC) to select the best model (Burnham 
& Andersonl, 1992). Both were implemented in the R software (R 
Development Core Team, 2011).

Of course, in the case of both models, there are multiple data 
biases, some of which we have discussed above, that can affect the 
models. Associated with these, sampling effort can play a role. One 
way of gauging this is by considering the number of papers in the 
literature with respect to a given virus- bat pair. This could then po-
tentially be used as a variable in the GLM to determine its effect. We 
hope to return to this in a future publication.

3  | RESULTS

3.1 | “Known” model

The “known” database, where only reports in Mexico were used, 
consisted of 19 bat species and 6 associated viral species, where 11 
different communities were detected. We tested all the potential in-
teractions between the 5 filters and the following best model was 
found: similarity ~ trophic guild X body mass, with an AIC = 63.27. 
Table 1 shows the best three models, along with a “null” model that 
consists of using only the intercept, with their corresponding AIC 
and R2 values. The differences between one model and another are 
small.

We observed that no individual filter was significant at the 95% 
confidence level (Table 2). The phylogenetic and ε filters have no sig-
nificant influence on the similarity between symbiont communities 
between bat species, with the values 0.36 and 0.19, respectively. 
However, the functional filter was significant, with a value of 0.0001 
(p <.05) for the variable trophic guild x body mass which had a re-
gression coefficient of −0.15.

3.2 | “Potential” model

The database associated with the potential species consisted of 
55 bat species and 12 associated viral species, where 22 differ-
ent communities were detected. The best model was found to be: 
similarity ~ phylogenetic + epsilon + trophic guild + average body 

mass + difference in body mass, with an AIC = 384.74 (Table 3). In 
contrast to the “known” model, all filters are significant at the 95% 
confidence level (Table 4). The intercept is 0.50 with p < 2 × 10- 

16. The phylogenetic filter has a regression coefficient of −0.003 
(p < 2 × 10- 16), the negative coefficient indicating that greater 
phylogenetic distance is correlated with less similarity. The trophic 
guild variable has a regression coefficient of 0.26 (p < 2 × 10- 16), 
the positive relation indicating that bats from the same trophic 
guild have more similar viral communities. The spatial filter, ε, has 
a regression coefficient of −0.007 (p = 3.34 × 10– 13), indicating 
that the more two bat species co- occur, the less similar are their 
viral communities. Finally, the regression coefficients for the aver-
age body mass and difference in body mass terms were −0.0028 
and 0.0032, respectively, with corresponding p values 0.001 and 
0.0146. Although with p values <.05, their statistical significance 

TA B L E  1   AIC and R2 comparison for the top three GLM models 
from the “known” model and a “null” model corresponding to the 
intercept only

MODEL R2 AIC

Similarity ~ Intercept (Null model) 76.15

Similarity ~ Phylogenetic + Epsilon + Trophic 
guild × Average body mass

0.07 65.5

Similarity ~ Epsilon + Trophic guild × Average 
body mass

0.02 64.36

Similarity ~ Trophic guild × Average body mass 0.02 63.27

TA B L E  2   Coefficients of the GLM in the best “known” model

Estimate
Std. 
Error t value Pr(>|t|)

Intercept 0.2127 0.0376 6.485 1.6 × 10−9

Phylogenetic 0.0578 0.0631 0.915 0.3618

Epsilon 0.0036 0.0028 1.289 0.1998

Trophic guild −0.0445 0.0541 −0.823 0.4120

Average body 
mass

−0.0461 0.0237 −1.943 0.0541

Trophic guild X 
Body mass

−0.1501 0.0381 −3.937 0.0001

TA B L E  3   AIC and R2 comparison for the top 2 GLM models 
from the “potential” model and a “null” model corresponding to the 
intercept only

Model R2 AIC

Similarity ~ Intercept (Null model) 1,021.6

Similarity ~ Phylogenetic + Epsilon + Trophic 
guild + Body mass

0.35 440.82

Similarity ~ Phylogenetic + Epsilon+Trophic 
guild + Average body mass + Difference 
body mass

0.36 384.74



     |  6309NIETO- RABIELA ET AL.

relative to the other coefficients is much less. The results show 
that similarity decreases slightly with increasing average body 
mass and decreases slightly with increasing difference in body 
mass.

4  | DISCUSSION

The mere fact that a potential host is physiologically susceptible to a 
symbiont does not mean that it is, indeed, a host and, even less, that 
it is an epidemiologically important host. The successful transmis-
sion of a virus between individuals depends on the co- occurrence of 
several variables, both in space and in time. For instance, although a 
bat species may be physiologically capable of acquiring the virus, if 
the bat and the virus do not co- occur in space and time, then the bat 
cannot be infected. Of course, although co- occurrence is a necessary 
condition for viral infection, it is not sufficient, as a bat species may 
have a high contact rate but may be very difficult to infect (Allocati 
et al., 2016; Anthony et al., 2017; May, 2006; Streicker et al., 2010; 
Webber et al., 2016; Wey et al., 2008). For instance, a bat may be in-
fected but produce insufficient infectious particles to transmit them 
to another species, or it may produce them in the wrong body com-
partment for transmission (Viana et al., 2014). Furthermore, a bat's 
immune system may reject the virus, thereby inhibiting transmission. 
However, in all these cases a viral mutation may occur that now fa-
vors transmission. Thus, the importance of co- occurrence of suscep-
tible hosts remains as a fundamental factor in analyzing actual and 
potential transmission risk.

Of course, many underlying factors affect the transmission prob-
ability. Some are intrinsic to the species, such as the particularities 
of its immune system (Ezenwa & Jolles, 2011), where cellular recep-
tors may or may not be recognized by the virus. Others include bio-
chemical mutations, such as those found in the fur or secretions of 
a potential host, that may reject or facilitate the infection (Bordes & 
Morand, 2011; Brook & Dobson, 2015; Presley, 2011; Rynkiewicz 
et al., 2015; Wang & Crowled, 2015).

Other factors that can play an important role in the transmis-
sion process are those associated with the behavioral and func-
tional traits of the species, such as its trophic guild, where shared 
food may harbor infection and act as a fomite favoring interspecific 

transmission of a virus. Another example is migration, where ele-
vated metabolic rates in some hosts can maintain an infection and 
therefore favor its transmission to other species.

In short, pathogen transmission, both intra-  and interspecific, 
is highly multifactorial, involving many variables, among which are 
phylogenetic, functional, life history, or other ecological and envi-
ronmental factors, that can also affect contact rates, by influencing 
where a host or vector is to be found in space and time and in what 
concentration. Of course, there are many other potential variables. 
As a complex adaptive system, the vector– host– pathogen trans-
mission network represents many different interactions that are 
subject to environmental and host pressures and which lead to ef-
fects that can amplify or cancel one another, thus making it difficult 
to isolate one interaction from another (Bordes & Morand, 2011; 
Presley, 2011; Rynkiewicz et al., 2015; Wang & Crowled, 2015).

Although our emphasis in this paper is on identifying and quan-
tifying the effect of several representative filters on assembly pro-
cesses of viral communities in bats, theory, such as niche theory 
and the corresponding null model— neutral theory (Chave, 2004; 
Hubbell, 2005)— can also help us to interpret and understand the 
impact of these filters on the development of community structure. 
Although, at first sight, these filters may seem antagonistic, they 
may also alternate, or complement each other, depending on the 
spatial scale under consideration (Chase & Myers, 2011). The neu-
tral theory, for example, proposes that species distributions are ran-
dom. Thus, if the distribution of viruses is random, similarities will 
not be found between the characteristics of those bats that host 
them. In contrast, in the case of niche theory, it has been recognized 
that species that have common ancestry are similar and, in particular, 
have similar ecology (Racey, 2011; Sober & Steel, 2017). Hence, as 
a result of this shared ancestry, species may exhibit similar abiotic 
tolerances, that then contribute to the species niche and influence 
the set of hosts which may be infected by a given community of sym-
bionts (Graham & Fine, 2008; Krasnov et al., 2010). So, if a filter is 
a predictive variable for community similarity, we would argue that 
this is most naturally interpreted in the context of niche theory, not 
neutral theory.

The correlation between the similarity of the viral communities 
and the phylogenetic, functional, and spatial filters that describe 
their hosts differs significantly between the known and potential 
models. Both are consistent with niche theory, in that there is at 
least one filter that is significantly correlated with viral community 
diversity (see Tables 2 and 4).

In the “known” model, the only statistically significant niche 
variable is actually a composite variable— average body mass x tro-
phic guild— and is of the functional type. Average body mass itself 
is very close to the 95% level, with a p- value of 0.0541. The corre-
sponding regression coefficient is −0.0461, showing that the greater 
the average mass of the species pair, the smaller the Jaccard index 
and therefore the greater the dissimilarity in their viral communi-
ties. Body mass has been identified previously as a predictor of the 
richness and abundance of symbionts (Arneberg et al., 1998; Bordes 
et al., 2008; Lindenfors et al., 2007). In this case, the intuition is that 

TA B L E  4   Coefficients of the GLM in the best “potential” model

Estimate
Std. 
Error t value Pr(>|t|)

Intercept 0.5002 0.0346 14.443 <2 × 10−16

Phylogenetic −0.0035 0.0002 −13.957 <2 × 10−16

Epsilon −0.0079 0.0009 −8.323 <2 × 10−16

Trophic guild 0.2638 0.0159 16.502 <2 × 10−16

Average body 
mass

−0.0028 0.0008 3.835 0.0001

Difference 
body mass

0.0032 0.0011 −2.443 0.0146
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the larger the animal, the greater the capacity for hosting a greater 
diversity of pathogens. Of course, this does not mean a priori that 
two species with large body mass should have viral communities that 
differ more than two species with small body mass.

For trophic guild, one might expect that the relation with viral 
similarity is influenced by the host communities’ own assembly, as 
manifested in the fact that a nested assembly has been observed to 
increase the complexity of the trophic guild (from herbivores to car-
nivores) within Phyllostomids in Chiapas, Mexico (de la Peña- Cuéllar 
et al., 2012).

Finally, in the “known” model, neither the spatial nor the phylo-
genetic filters are significantly correlated with viral community simi-
larity. In the case of phylogeny, this could be explained by observing 
that, in the data of the known model, the Phyllostomidae family pre-
dominates, and this can skew the potential influence of phylogeny, 
as the bat species considered are mostly grouped within this single 
family, which therefore represents a poor sampling of the underlying 
phylogenetic diversity in Mexico. Indeed, the known model is mostly 
characterized by a lack of significant filters. We believe this is largely 
due to the nature of the data of the known model, which covers a 
much smaller set of species that are biased both with respect to their 
phylogeny and their spatial distribution. This is an important reason 
as to why the potential data set was considered.

In contrast to the known model, in the “potential” model, all 
three environmental filters are involved: phylogenetic, functional, 
and spatial, with all considered filters being statistically significant. 
Phylogeny is now very significant (p < 2 × 10- 16), which can be at-
tributed to the substantial increase in the number of bat species in 
the model, thereby increasing the degree of observable phylogenetic 
variation, which is now more widely distributed among five host 
families: Antrozoidae, Molossidae, Mormoopidae, Phyllostomidae, 
and Vespertilionidae. With phylogeny, we observe that its regression 
coefficient is negative, as we expected, showing that the greater the 
phylogenetic distance between two bat species, the less similarity in 
their viral communities.

Interestingly, in terms of the spatial variables implicit in ε, the 
regression coefficient is also negative. This means that viral com-
munities are more dissimilar, the greater the degree of overlap be-
tween species. At first sight, this seems to be counterintuitive and, 
contrary to our original hypothesis, relative to the intuition that 
more overlap should lead to more contact. A potential explanation 
of this result is that species of bats that are very similar (phyloge-
netically and functionally) tend to compete by the niche exclusion 
principle, something that is not beneficial for either of the spe-
cies. In order to avoid competition, they may separate spatially. 
However, although now spatially separated, the similarity in their 
viral communities is the signature that they coexisted ancestrally. 
Of course, this is only a hypothesis that must be further studied 
and validated using other data. Additionally, it neglects the possi-
bility that niche differentiation may occur in situ, that is, that two 
species may find ways to occupy sufficiently different niches even 
though they are present in the same spatial areas. Another hypoth-
esis is that the dissimilarity in viral communities with co- occurring 

hosts is a way for the virus communities themselves to avoid 
competition.

When we analyzed the clustering of viral communities by host 
genus within the phylogenetic tree (Figure 2), we found that many 
species within the same genus were associated with smaller values of 
ε. This is consistent with the fact that the conformation of viral com-
munities represents historical processes, with adaptation taking place 
over many thousands or millions of years, unlike "mediated" processes, 
such as in the case of the individual analysis of viruses. However, this 
is for the moment a hypothesis that must be further tested.

In addition, it is possible that species with higher values of ε, corre-
sponding to higher degrees of co- occurrence, are habitat generalists, 
with nonspecific niches and ample geographic distributions such that 
there are no particularly important, direct biotic interactions between 
them. However, they will coexist with a larger number of more habitat- 
specialized species with more restricted niches and geographic distribu-
tions and with which they may share symbionts. Thus, we hypothesize 
that the lower values of ε associated with the species of a given genus 
could also be attributable to them being specialists. Of course, this dis-
cussion does not negate the importance of co- occurrence but rather 
posits that its interpretation has subtleties when taken as a proxy for 
potential biotic interactions. Therefore, we conclude that the viral 
communities associated with bats are more similar when the spatial 
distribution of the hosts does not significantly overlap.

Trophic guild is now significant in its own right, where we see 
that viral community similarity is great, the more similar the trophic 
guilds of the bat species. As mentioned, this could be due to the fact 
that shared food may harbor infection and act as a fomite favoring 
interspecific transmission of a virus.

Both average body mass and difference in body mass of the bat 
species pair are statistically significant at the 95% confidence level, 
but their degree of significance is much less than that of the other 
filters.

F I G U R E  2   Relationships between phylogenetic distance and 
values of epsilon
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Thus, we conclude that the “potential” model can be used to pre-
dict hosts that share, to a certain degree, their viral communities by 
considering their similarity in trophic guild, co- occurrence, phylog-
eny, and body mass, information that can be used for future research 
and the search for new, unsampled hosts.

Although only six of the twelve considered virus species have 
been detected in Mexican bats, as mentioned, one cannot be sure 
that this represents a true absence of the other viral agents. One 
might then conclude that it is necessary to carry out much more ex-
tensive and exhaustive monitoring in order to know the real host 
range of a given virus. However, we believe that the “potential” 
model can help in this respect by indicating which bat species are 
likely to be hosts and to provide a better understanding of the as-
sembly of viral communities.

The results we have presented are based on currently available 
information, which, however, may contain several biases, such as to-
ward synanthropic species, or to those competent reservoir species 
for infectious pathogens that are of public and animal health concern. 
Our study, therefore, highlights the importance of designing models 
so that true negatives, in the sense of a statistical inference model, can 
be determined which, in turn, would allow us to analyze such biases.

The use of two data sets, each associated with a different spa-
tial scale, also illustrates the potential pitfalls that stem from biased 
data sampling when considering emerging or re- emerging diseases. 
All else being equal, the potential model should offer a better esti-
mation of the viral assembly process, as it is associated with a larger 
sample than the known model. However, potentially different data 
collection biases can affect conclusions at distinct spatial scales. 
The point collection data for bat species is, we believe, substan-
tially less biased than the data for virus, particularly for the known 
model.

We believe that comparing and contrasting models derived from 
different data sets, and different spatial scales, is a useful way for 
analyzing relative data biases in the different sets. The subsequent 
analysis of the models and consistency with hypothesis can then be 
used as a way of estimating degrees of data bias. Thus, the fact that 
the known model, in contrast with the potential model, did not indi-
cate that viral community diversity depended on our chosen filters is 
a result, we would argue, of data bias in that model, where the data 
were skewed toward southern Mexico and the Phyllostomid family 
of bats, as well as a result of small sample size. This is not to say that 
there is no bias in the potential model per se but, rather, that criteria 
can and should be developed to be able to detect data biases.

5  | CONCLUSION

The environmental filters we have considered here are correlated 
with the assembly of the viral communities that are associated with 
Mexican chiropterans. This is consistent with niche theory. In other 
words, viral communities respond to host filters (functional and 
phylogenetic), as well as environmental (spatial) filters. However, 
the significance of each filter is dependent on data biases, sample 

size, and potentially other variables, as manifested in the differences 
between the “known” and “potential” models. Further research is 
clearly required at distinct scales to determine how the different fil-
ters change their significance from one scale to another.

The differences between the “known” and “potential” models 
highlight the utility of modeling using different data sets associated 
with different spatial scales so as to integrate and leverage known in-
formation at one scale to another different one where, for example, 
virus information may be much scarcer, as is the case with bats here. 
Such information gaps could be bridged by considering predictive 
variables that are applicable to arbitrary spatial scales and then using 
them to predict the degree of similarity between viral communities 
of different potential hosts.

This approach to understanding the assembly and distribution 
of viral communities offers a greater understanding of the under-
lying ecological dynamics when compared to more epidemiological 
approaches which concentrate more on viral interactions such as in-
terference, superinfection, and coinfection.

Generally, in public and animal health, as well as disease ecology, 
simple models are usually employed, that may end up yielding biased 
results, which then translate into inefficient conservation or public 
health policies. Here, we wish to stress that the whole viral associa-
tion history behaves in a complex and dynamic way. As such, these 
simple models should be principally used in order to identify those 
individual factors that most influence the behavior of the system, 
which can then be incorporated into more complex models that more 
accurately reflect the phenomenon being studied (González, 2016). 
Such results then serve as a basis for further studies and predictive 
models that can take into account variables, such as trophic guild and 
co- occurrence, as relevant factors in virus– host associations.
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