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Adipose tissue macrophages in
remote modulation of hepatic
glucose production

Yan Tao, Quanhong Jiang and Qun Wang*

Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology,
School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
Hepatic glucose production (HGP) is fine-regulated via glycogenolysis or

gluconeogenesis to maintain physiological concentration of blood glucose

during fasting-feeding cycle. Aberrant HGP leads to hyperglycemia in obesity-

associated diabetes. Adipose tissue cooperates with the liver to regulate

glycolipid metabolism. During these processes, adipose tissue macrophages

(ATMs) change their profiles with various physio-pathological settings,

producing diverse effects on HGP. Here, we briefly review the distinct

phenotypes of ATMs under different nutrition states including feeding, fasting

or overnutrition, and detail their effects on HGP. We discuss several pathways

by which ATMs regulate hepatic gluconeogenesis or glycogenolysis, leading to

favorable or unfavorable metabolic consequences. Furthermore, we

summarize emerging therapeutic targets to correct metabolic disorders in

morbid obesity or diabetes based on ATM-HGP axis. This review puts forward

the importance and flexibility of ATMs in regulating HGP, proposing ATM-based

HGP modulation as a potential therapeutic approach for obesity-associated

metabolic dysfunction.
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Introduction

Glucose is an essential energy source for most tissue cells in mammals. The

circulation levels of glucose are strictly controlled within a stable range in healthy

individuals. Abnormally low level of blood glucose, known as hypoglycemia, produces

deleterious effects on physiological functions of various tissues and organs. Severe

hypoglycemia substantially reduces glucose supply to the brain, resulting in central

nervous system damage with consequent seizures, coma and death. In contrast, chronic

hyperglycemia, a state of long-term high blood glucose usually in diabetes mellitus, may

lead to dysfunction and/or failure of various organs (1). Thus, glucose homeostasis is

critical for physiological fasting-feeding cycle particularly in overnutrition state.
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During the fed state, dietary intake supplies exogenous

glucose to provide energy; while under fasting conditions,

endogenous glucose production becomes an indispensable way

to maintain blood glucose levels. The liver produces endogenous

glucose that accounts for the largest amount of glucose output.

As such, the capacity for hepatic glucose production (HGP)

plays a crucial role in maintaining blood glucose during fasting.

Contrarily, aberrant elevations of HGP lead to hyperglycemia

and associated metabolic disorders, particularly in individuals

with morbid obesity and associated diabetes mellitus (2, 3).

Thus, HGP modulation is a pivotal approach for the treatment

of obesity-associated diabetes.

Adipose tissue closely interacts with the liver to regulate

energy metabolism. In the fed state, triglycerides synthesized in

hepatocytes are packed into VLDL and delivered into adipose

tissue for storage (4). In the fasted state, the lipolysis of adipose

tissue supplies the liver with non-esterified fatty acids (NEFAs)

and glycerol that serve as the precursors of HGP (4–6). Besides

metabolic products, adipose tissue communicates with the liver

by exchanging diverse information including adipokines and

extracellular vesicles (EVs) (5, 7). During these interactions,

macrophages exhibit high heterogeneity in dynamic adipose

tissue niches, playing flexible roles in metabolic and immune

processes. Accumulating studies are unraveling the involvement

of adipose tissue macrophages (ATMs) in hepatic glycolipid

metabolism. Here, we review their emerging roles in modulating

HGP in the context of physiological fasting-feeding cycle as well

as obesity or diabetes. Related ATM profiles and regulatory

mechanisms for hepatic gluconeogenesis are discussed.
HGP

Hepatocytes produce endogenous glucose relying on

gluconeogenesis and glycogenolysis. The former generates

glucose from non-carbohydrate substrates, while the latter

produces glucose through glycogen breakdown. Both

glycogenolysis and gluconeogenesis contribute to HGP during

fasting period, whereas glycogenolysis only exists during early

fasting stages due to limited glycogen storage (3, 4, 8, 9).
Hepatic gluconeogenesis

Gluconeogenesis is a biological process of glucose generation

from non-carbohydrate precursors such as glycerol, lactate,

pyruvate and glucogenic amino acids (8, 10). As part of the

reverse reaction of glycolysis, gluconeogenesis requires four

critical enzymes to bypass the irreversible steps. Pyruvate

carboxylase (PC) carboxylates pyruvate derived from glycolysis

i n t o o x a l o a c e t a t e , wh i c h i s d e c a r b o x y l a t e d b y

phosphoenolpyruvate carboxykinase (PEPCK) to form

phosphoenolpyruvate. Fructose-1,6-bisphosphatase catalyzes
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fructose 1,6-bisphosphate into fructose 6-phosphate; while

glucose 6-phosphatase (G6Pase) dephosphorylates glucose-6-

phosphate (G6P) into glucose (8, 11, 12). Hepatic

gluconeogenesis is strictly regulated by hormones in different

nutrition states. These hormones regulate gluconeogenic gene

expression by promoting or suppressing the binding of specific

transcription factors with their promoters. To date, multiple

transcription factors including CREB, PGC-1a, FOXO1 have

been identified to promote PEPCK and/or G6Pase

transactivation (13). In fasting conditions, glucagon secretion

is increased whilst insulin levels decreased. Upon binding to

their receptors on hepatocytes, glucagon activates cAMP-PKA

signaling to mediate CREB activation, thereby promoting

PEPCK and G6Pase transcriptions. CREB-mediated hepatic

gluconeogenesis can be further enhanced by coactivator p300/

CBP and CRTC2. In addition, CREB stimulates PGC-1a
expression, another coactivator to cooperate with FOXO1 in

promoting PEPCK and G6Pase transcriptions. During the fed

state, insulin secretion is stimulated whilst glucagon production

is inhibited. Insulin signaling mediates downstream AKT

activation that phosphorylates FOXO1 for degradation,

thereby reducing PEPCK and G6Pase transactivation (4, 9, 14–

16). Fasting-induced glucocorticoid also contributes to hepatic

gluconeogenesis through direct transactivation of PEPCK or

G6Pase (17, 18). In case of hormone dysregulation, for

instance, insulin resistance in human or animals with type 2

diabetes leads to the failure of FOXO1 degradation, causing

hyperglycemia via abnormal gluconeogenesis (16, 19).
Hepatic glycogenolysis

Glycogenolysis is a process of breaking down glycogen into

glucose. Glycogen phosphorylase breaks down glycogen into

glucos-1-phosphate, and the latter is converted into G6P by

phosphoglucomutase, which is hydrolyzed into glucose by

G6Pase. Glycogenolysis also indirectly contributes to hepatic

gluconeogenesis by supplying glycolytic intermediates. A very

recent study on mouse models provides evidence that glycogen

in liver and muscle tissue supplies glycolytic intermediate lactic

acid, hence contributing to gluconeogenesis even in the fed

state (20).
ATMs and their influences on HGP

There are two kinds of typical adipose tissue in mammals,

white adipose tissue (WAT) responsible for energy storge and

brown adipose tissue (BAT) responsible for energy dissipation

(21). WAT has a close crosstalk with the liver to regulate

metabolism and immune reactions. Under different

pathophysiological conditions, heterogenous ATMs constitute

special immune microenvironments, producing broad impacts
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on both adipose tissues and liver. Based on phenotypic

characteristics, ATMs can be classified into M1 macrophages

expressing high levels of proinflammatory cytokines like TNF-a,
IL-1, IL-6, iNOS, and M2 macrophages with high levels of anti-

inflammatory IL-10 and arginase 1. M2 macrophages are

predominant in lean WAT to maintain immune hemostasis in

healthy individuals, whereas M1 macrophages are accumulated

in obese WAT and mediate adipose tissue inflammation and

insulin resistance in metabolically unhealthy individuals.

However, during metabolic switch from homeostasis to

disorders, some phenotype markers may be overlapped

between M1 and M2 macrophages and some potential

markers have not been identified or included. There are still

some difficulties to depict full and precise ATM profiles based on

this simple classification, we therefore specify the phenotypic

characteristics of ATMs related to HGP modulation here.
Cytokines from ATMs on
HGP Modulation

IL-10 in concert with insulin action:
Physiological control of HGP

Insulin is considered as the primary contributor to HGP

suppression in the fed state. A recent study adds ATM-derived

IL-10 to the list of HGP suppression, providing an elaborate

explanation for feeding-induced HGP reduction. An earlier

study showed that in vitro treatment with IL-10 plus IL-1b
inhibited glucose production in primary rat hepatocytes through

reducing PEPCK expression, but the underlying mechanisms
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remained unclear (22). Using different myeloid-specific gene

knockout mouse models, Toda et al. demonstrated that

macrophages, in response to postprandial signals LPS and

insulin, produced IL-10 to suppress gluconeogenic gene

expression and hepatocyte glucose production. This inhibitory

effect was mediated by IL-10-stimulated Stat3 activation.

Feeding induced IL-10 from ATMs, whereas obesity markedly

decreased IL-10-producing macrophages in epidydimal WAT.

Thus, ATM-derived IL-10 contributes to HGP suppression in

cooperation with insulin in fed state (Figure 1). Upon obesity,

ATMs with low IL-10 production failed to inhibit hepatic

gluconeogenesis, resulting in high HGP and hyperglycemia.

Importantly, IL-10 restoration successfully lowered the plasma

glucose in obese mice, accompanied by the suppression of

gluconeogenic genes in the liver (23, 24). Therefore, ATM-

derived IL-10 may be a promising indicator to monitor HGP

homeostasis during fasting-feeding cycle and a potential

therapeutic target for obesity-induced metabolic dysfunction.

TNF-a in association with insulin resistance:
Pathological stimulation of HGP

Insulin resistance is the major cause and typical feature of

type 2 diabetes, which is closely associated with abnormal

hepatocyte gluconeogenesis that contributes to enhanced HGP

(16, 25, 26). An early study provided direct evidence that mice

received constant infusion of TNF-a showed significant

elevation in HGP together with decrease in insulin action and

increase in glucagon secretion (27). Later, it was verified that

TNF-a expression was significantly upregulated in WAT from

rodents and human with obesity or diabetes, and closely
FIGURE 1

Remote modulation on HGP by ATMs. In the fed state, ATMs in response to insulin and LPS produce IL-10 to control gluconeogenesis-
mediated HGP. In overnutrition state, ATMs secret large amounts of IL-6 and TNF-a, which link WAT inflammation with lipolysis, resulting in
exacerbated HGP through interfering with insulin action or supplying precursors to stimulate aberrant gluconeogenesis. Lipid-associated ATMs
play either protective or detrimental roles in controlling aberrant HGP.
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associated with systemic insulin resistance. Importantly, TNF-a
deficiency provided protection from obesity-induced insulin

resistance in mice (28–30). ATMs are remarkably increased in

obese WAT, which produce large amounts of TNF-a to drive

insulin resistance and interfere with hepatic glycolipid

metabolism (31, 32). TNF-a impairs insulin signaling by

blocking tyrosine phosphorylation of insulin receptor

substrate-1, the failure of AKT activation may facilitate HGP

via glycogenolysis and gluconeogenesis. On the other hand,

TNF-a may induce lipid overload in the liver, either from de

novo lipogenesis through insulin-independent SREBP1

activation, or from excessive lipolysis of WAT elicited by

insulin resistance (31, 33–35). Excessive lipolysis supplies lots

of gluconeogenetic precursors like glycerol, NEFAs to promote

aberrant HGP. Notably, more lipotoxic intermediators such as

saturated palmitic acid and diacylglycerol are generated in these

processes, which induce hepatic endoplasmic reticulum stress,

inflammation and ensuing insulin resistance (5, 36–39).

Therefore, TNF-a from obese ATMs may serve as a strong

stimulator for abnormal HGP in obesity and associated diabetes

mellitus (Figure 1).

IL-6 in cooperation with lipolysis: Indirect
regulation of HGP

Besides TNF-a, IL-6 is another critical cytokine secreted

from ATMs in obese condition. But differently, IL-6 regulates

HGP in a more complex and flexible manner. To a large extent,

the diversity of IL-6 modulation depends on its distinct target

organs in different settings, which is more likely influenced by its

sources and amounts. In fact, when directly acting on liver or

primary hepatocytes, IL-6 at physiological concentrations

elicited a suppression in glucagon-stimulated HGP and

gluconeogenic genes (40, 41). In line with this, hepatic IL-6

that was induced by insulin action in the brain showed an

inhibition on HGP through promoting Stat3 activation and

reducing hepatocyte gluconeogenesis via PEPCK and G6pase

suppression (42–44). Upon targeting adipocytes, IL-6 plays an

indirect role in driving HGP process. In response to exercise or

early fasting, skeletal muscle-derived IL-6 promotes lipolysis in

WAT, thereby providing materials to support HGP (45–47). Of

note, in case of morbid obesity, ATMs produce large amounts of

IL-6 to stimulate excess WAT lipolysis, which abrogates insulin

action on HGP suppression, resulting in hyperglycemia in

rodents or adolescents (48, 49). Using in vivo metabolomics

approach in combination with myeloid-specific JNK-deficient

mice, and IL-6 neutralization or infusion treatment, Perry et al.

provided evidence that insulin failed to suppress hepatic acetyl

CoA, PC activity/flux and subsequent HGP in morbidly obese

condition. During this process, IL-6 from ATMs played a key

role in potentiating abnormal hepatic gluconeogenesis by

increasing WAT lipolysis, leading to uncontrolled increases in

hepatic acetyl CoA content and PC activity (Figure 1). These

findings provide an alternative explanation for ATM-regulated,
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lipolysis-dependent HGP in diet-induced obesity, and propose a

novel therapeutic target based on ATM-derived IL-6 (49).

Moreover, the role of IL-6 in suppressing insulin signaling via

SOCS3 induction in the liver should also be considered (48, 50,

51), which will not be detailed here.

ATMs on the bridge linking WAT inflammation
with hepatic inflammation

As noted above, ATMs make pivotal contribution to hepatic

insulin resistance through releasing proinflammatory cytokines.

More interestingly, WAT inflammation also triggers hepatic

inflammation, producing an overlapped interference on

glycolipid homeostasis including HGP process. Through

intraperitoneally transplanting visceral WAT from obese mice,

Bijnen et al. established evident hepatic inflammation

characterized by neutrophil and macrophage accumulation in

receipt mice, which contributed to the development of non-

alcoholic steatohepatitis (52). When ATMs were deleted from

WAT prior to transplantation, this effect could be reversed. This

study reveals the key position of ATMs in linking WAT

inflammation and hepatic inflammation, in which CD11c+

ATMs that highly express neutrophil chemotactic genes are

considered to recruit neutrophils followed by macrophages

into the liver (52). In support of this, two earlier studies

demonstrated an association of omental ATMs with hepatic

inflammation and steatosis in insulin-resistant subjects, as well

as the WAT inflammation prior to hepatic inflammation in mice

during obesity development (53, 54).
Lipid-laden ATMs on HGP Modulation

Besides the anti- or pro-inflammatory ATMs in lean or

obese conditions, a peculiar population of lipid-laden ATMs

intersecting metabolism and immunity is significantly

upregulated by obesity in human and mouse WAT,

particularly visceral WAT (55, 56). These lipid-laden ATMs

not only showed an association with human body mass index,

but also had an inhibitory effect on insulin signaling of fat

explants from lean mice (56). Through analyzing the lipid

profiles of ATMs in genetically obese (ob/ob) mice that were

treated with or without rosiglitazone, Prieur et al. proposed that

the cytotoxic lipid species including free cholesterol and

saturated triglyceride could induce the switch of ATMs from

M2 toward M1 phenotype, thereby resulting in obesity-induced

inflammation and insulin resistance (55). In agreement with this,

obese mice that received diet switching from high-fat diet to

normal chow diet had a rapid normalization of metabolic

parameters including reduced hepatic steatosis and

gluconeogenesis-based HPG, accompanied by an obvious

reduction in lipid-laden ATMs (57). These findings imply a

close linkage of lipid-laden ATMs with liver metabolism.

Notably, however, accumulating evidences demonstrated that
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some lipid-associated ATMs could improve glucose metabolic

homeostasis by taking up and sequestering excessive lipids to

avoid their damage on both adipose tissue and liver. Silence or

deficiency of lipoprotein lipase or Trem2 associated with lipid

metabolism abrogated the lipid uptake and storage in ATMs,

resulting in insulin resistance and aggravating abnormal HGP

via gluconeogenesis in obese mice (58, 59). As such, the lipid-

associated ATMs may undergo dynamic changes with the

development of obesity and have bidirectional regulation on

HGP. It is very likely that ATMs assist in handling lipid during

the metabolic adaptation to energy surplus, achieving a fine

control of HGP through reducing lipid overload and toxicity on

adipocytes and hepatocytes. By contrast, in case of lipid

overload, toxic lipid species may stimulate ATMs to induce

inflammation, insulin resistance and aberrant HPG, thereby

producing deleterious effects on metabolic health (60, 61)

(Figure 1). In agreement with this, an exosome-dependent

transfer of neutral lipid from adipocytes to macrophages has

recently been revealed (62, 63), further elucidation on lipid

composition and amounts will help to elucidate their

protective or detrimental effects on HGP modulation and

consequent metabolic health.
Potential ATM-based Modulators
for HGP

Given the diversity of ATMs in different nutrition states,

emerging ATM-associated modulators for HGP have been

identified, and several potential targets are briefly

summarized here.

Osteopontin (OPN)
OPN is a secreted matrix glycoprotein significantly

upregulated in human and mouse adipose tissue upon obesity,

and ATMs are its important source. OPN contributes to ATM

accumulation via recruitment or proliferation in obese WAT,

which is therefore closely associated with obesity-induced WAT

inflammation, insulin resistance and HGP. Genetic deletion or

antibody neutralization of OPN successfully alleviated ATM

infiltration, WAT and hepatic inflammation in obese mice,

thus improving insulin sensitivity accompanied by

normalization of HGP markers. Of note, FOXO1 decrease

mediated by AKT activation and Stat3 activation have been

involved in HGP correction, confirming that OPN plays critical

role in stimulating hepatic gluconeogenesis, though its direct or

indirect effects remain to be carefully investigated (64–67).

Interestingly, obese mice with selectively silenced OPN in

epididymal ATMs showed an improvement in systemic

glucose tolerance, further implying the contribution of ATM-

derived OPN to the dysregulation of glucose metabolism. In

addition, it should be noted that a population of recruited
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hepatic macrophages expressing OPN has recently been found

to promote the development of non-alcohol fatty liver disease

(68), which is warranted to be further studied regarding its

regulation on HGP.
Dipeptidyl peptidase 4 (DPP4)

DPP4 is a glycoprotein ubiquitously expressed by many cell

types. Given its multiple roles in immune activation and

metabolic influence, DPP4 has been considered as a potential

therapeutic target for type 2 diabetes. DPP4 has a direct role in

enzymatic cleavage of incretin hormone glucagon-like peptide-1,

thereby interfering with normal glucose homeostasis. In

addition, DPP4 is elevated in obese WAT where both

adipocytes and ATMs are counted. Factors related to

metabolic stress such as glucocorticoids and oxidized LDL

have been reported to induce DPP4 upregulation on

macrophages, which can stimulate macrophage inflammation

and T cell activation, hence potentiating WAT inflammation

and insulin resistance (69–72). As DPP4 can function in either

soluble or membrane form, and hepatocytes also express DPP4,

detailed functions of DPP4 including HGPmodulation are yet to

be determined.
Retinol binding protein 4 (RBP4)

RBP4 is a serum retinol transporter secreted by the liver and

fat. In obese mice, RBP4 stimulates ATM activation dependent

on toll-l ike receptor 2/4, leading to production of

proinflammatory cytokines like TNF-a, IL-12, IL-6, IL-1b, and
subsequent T cell activation. This action plays a critical role in

eliciting obesity-induced WAT inflammation and systemic

insulin resistance (73–75). Interestingly, EVs from visceral

WAT of obese mice were found to carry RBP4 that possessed

the capacity to activate macrophages and elicit insulin resistance

(76). More recently, a study on women with obesity linked RBP4

with HGP relying on its stimulation on adipocyte lipolysis.

Direct stimulation on basal lipolysis as well as increased

lipolysis by indirectly activating ATMs were both included

(77). Therefore, RBP4 may act as another promising candidate

for ATM-based HGP modulation, particularly in obesity-related

glucose dysregulation.
Concluding remarks
and perspectives

Fine-regulation of HGP is critical to maintain blood glucose

homeostasis in various nutrition states. HGP dysregulation

contributes to hyperglycemia in obesity-associated diabetes.
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During fasting-feeding cycle or metabolic stress like

overnutrition, ATMs change their cytokine or lipid profiles to

remotely modulate HGP. Feeding induces IL-10 from ATMs,

which controls HGP by inhibiting gluconeogenesis in concert

with insulin action. While exacerbated HGP usually coincides

with large amounts of IL-6 and TNF-a from ATMs, which link

WAT inflammation with lipolysis, further interfering with

insulin action or supplying precursors to stimulate

gluconeogenesis. In response to overnutrition, lipid-associated

ATMs play either protective or detrimental roles in controlling

aberrant HGP (Figure 1). Therefore, ATM-based HGP

modulation may be the promising strategies to treat obesity-

associated diabetes.

Regarding ATM-based HGP modulation, more regulatory

modes and targets remain to be unraveled, whilst some regulators

ofmacrophages, such as a E3 ubiquitin ligase TRIM29 that inhibits

macrophage activation and proinflammatory cytokine production

(78), would be the promising candidates. Besides secretary

molecules, EVs may be another indispensable remoter for fat-

liver crosstalk. It is therefore interesting toexplorewhether andhow

EVs regulate the interactions between ATMs, adipocytes and

hepatocytes, and their influences on HGP homeostasis. Upon

challenged with energy surplus, WAT undergoes the process

from metabolic adaptation to maladaptation, in which HGP-

related ATM phenotypes and functions need to be carefully

determined due to their complexity and flexibility. Given that

gluconeogenesis is precisely regulated by circadian clocks, it is yet

openbut interesting to explore the changes ofATMs in thisprocess.

Furthermore, possibleHGPregulationbyBATmacrophages is also

attractive, due to their involvement in energy metabolism (79, 80).
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