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Purpose: Retinal degeneration (RD) is a complex mechanism that appears to involve many biologic processes including
oxidative stress, apoptosis, and cellular remodeling. Currently there are 51 mapped, but not identified, RD human disease
loci.
Methods: To assign possible disease genes to RD loci, we have used a comparative genomics procedure that incorporates
microarray gene expression data of three independent mouse models for photoreceptor dystrophy (rd1, rd2, and constant
light-damage in BALB/c mice), human ortholog data, and databases of known chromosomal locations involved in human
RD. Immunohistochemistry and enzyme activity assays were used to further characterize a candidate gene product.
Results: Our analysis yielded candidate genes for four mapped, but unsolved, human chromosomal locations and
confirmed two previously identified monogenic disease loci for human RD, thus validating our approach. PLA2G7
(phospholipase A2, group VII; PAF-AH, Lp-PLA2), a candidate for a dominant form macular dystrophy (Benign
Concentric Annular Macular Dystrophy [BCMAD]), was selected for further study. The PLA2G7 enzyme is known to
mediate breakdown of oxidatively damaged phospholipids, a contributor to oxidative stress in the retina. PLA2G7 protein
was enriched in mouse photoreceptor inner and outer segments. In the rd1, rd2, and BALB/c mice exposed to constant
light, retinal tissue activity levels, but not plasma levels, were significantly reduced at the onset of photoreceptor cell
death.
Conclusions: We have shown that this comparative genomics approach verified existing RD genes as well as identified
novel RD candidate genes. The results on the characterization of the PLA2G7 protein, one of the novel RD genes, suggests
that retinal tissue PLA2G7 levels may constitute an important risk factor for BCMAD. In summary, this reverse mapping
approach, using accepted mouse models of human disease and known human RD loci, may prove useful in identifying
possible novel disease candidates for RD and may be applicable to other human diseases.

The identification of genes and loci causing inherited
retinal diseases such as retinitis pigmentosa (RP), macular
degeneration (MD), and Usher (USH) syndrome are crucial
for disease management [1]. Inherited retinal degeneration
(RD) is the major cause of blindness in the developed world.
Retnet lists 28 different categories, and two complex forms of
retinal disease, including 191 loci that have been mapped; the
disease gene has been identified for 140 of these loci. While
great strides have been made to identify genes and mutations
causing these diseases, progress has been hampered by their
enormous complexity, due to genetic, allelic, phenotypic, and
clinical heterogeneity of patient populations [2]. For example,
autosomal dominant RP has been associated with mutations
in 16 genes and another locus with the gene yet to be
determined; autosomal dominant macular degeneration has
been associated with mutations in 14 genes and eight other
loci; and autosomal recessive RP has been associated with
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mutations in 21 genes with five other loci. Thus, it is clear that
there are a good number of existing RD loci for which the
mutant genes are yet to be determined and, in addition, yet to
be discovered new loci for various monogenic and complex
RDs such as age-related macular degeneration (AMD) and
diabetic retinopathy.

We propose a technique to identify possible gene
candidates for these human disease loci: gene expression
analysis in mouse models of photoreceptor dystrophy. These
analyses could identify genes that are misregulated during
photoreceptor degeneration, correlating the human orthologs
with chromosomal locations associated with inherited human
retinal degeneration. Here we have followed this approach by
using gene expression analysis from three unrelated mouse
models of photoreceptor dystrophy. Two models match the
human condition, as the same gene functions are affected (the
rd1 and the rd2 mouse [3,4]) as well as a popular oxidative
stress model thought to be relevant for diseases such as AMD
(light-damage (LD) in albino mice [5]). The results are based
on the premise that information collected about the orthologs
of genes between species that exhibit the same trait or disease
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may be useful. Orthologs, by definition, evolved from the
same gene, and usually share the same function. Correlating
this information may provide evidence to determine a
regulatory pattern of orthologs associated with congruent
traits [6]. Genes that matched to the human RD loci and that
were commonly up- or downregulated in all three models of
degeneration are thought to be good candidates, especially if
a literature search suggests that the known biologic
information might be relevant to RD. Finally, as human retinal
degenerations are usually caused by missense or nonsense
mutations resulting in altered gene expression, the approach
using expression differences to identify candidates is
acceptable.

One of the genes, PLA2G7 (PAF-AH, Lp-PLA2), a
candidate for a dominant form of macular dystrophy, benign
concentric annular macular dystrophy (BCMAD), was
selected for further study. The main function of platelet-
activating factor (PAF) acetylhydrolase is to convert PAF into
the biologically inactive lyso-PAF [7]. However, PLA2G7
also hydrolyzes oxidized phospholipids. Oxidized
phospholipids are known to initiate cell death, triggering the
intrinsic apoptotic caspase cascade [8]. Oxidative stress is
activated in the photoreceptors of the three models of retinal
degeneration studied herein [9] and is a contributing factor in
AMD [10]. In addition, products generated by PLA2G7,
lysophosphatidylcholine and oxidized nonesterified fatty
acids, are thought to contribute to inflammation in
atherosclerosis, coronary artery disease, and stroke [11].
Plasma PLA2G7 activity levels can be used in these diseases
as a biomarker, while also functioning as an independent risk
predictor for cardiovascular disease [12]. Finally,
inflammation has been proposed as a possible driving force
of AMD pathology [13-18].

The reverse-mapping approach identified possible novel
disease candidates for RD, which are discussed in the context
of their known gene function and possible involvement in
disease pathology. Of the identified candidate genes, two of
them were previously confirmed to be the disease genes in loci
associated with photoreceptor degeneration, supporting the
validity of our approach while four additional genes were
novel candidates for three mapped RD chromosomal loci. One
of the candidate gene products, Pla2g7, was localized to the
mouse photoreceptor inner and outer segments, and retinal
tissue activity levels were significantly reduced before
photoreceptor cell death. Hence, this tactic has resulted in the
identification of novel candidates for three RD loci and
demonstrated this as a feasible approach to identifying gene
candidates for other human diseases as well.

METHODS
Animals: C57BL/6 rd1 [19] and rd2 [4] mice were gifts from
Drs. Debora Farber and Gabriel Travis (both at University of
California, Los Angeles, CA). Both strains were maintained
as homozygotes. C57BL/6 and BALB/c mice were generated

from breeding pairs obtained from Harlan Laboratories
(Indianapolis, IN). Animals were housed in the Medical
University of South Carolina (MUSC) Animal Care Facility
under a 12 h:12 h light–dark cycle with access to food and
water ad libitum. The ambient light intensity at the eye level
of the animals was 85±18 lux. Light damage was produced by
exposing the BALB/c animals to constant fluorescent light for
24 or 48 h at an illuminance of approximately 1500 lux. This
intensity reduces the number of photoreceptors to 50% within
10 days in 3-month-old (young adult) albino mice [5]. All
experiments were performed in accordance with the ARVO
Statement for the Use of Animals in Ophthalmic and Vision
Research and were approved by the University Animal Care
and Use Committee.
Microarray analyses:

Samples—Affymetrix oligonucleotide (MGU74AV2)
arrays (Affymetrix Inc, Santa Clara, CA), containing 12489
genes and ESTs, were used for this analysis as described
previously [20]. The Affymetrix CEL files, containing the raw
intensity values, were used for expression data analysis. To
determine genes that could be potential candidates for retina-
specific chromosomal locations, we compared gene
expression data from the three unrelated mouse models of
photoreceptor dystrophy. To analyze genes involved in
neurodegeneration, we argued that genes altered early in the
progression would be involved in initiating degeneration. For
the rd1 mouse, we collected retinas from days P6 and P10,
which represent early time points during which cGMP
continues to rise [3] and apoptosis is initiated [21]; for the
rd2 mouse, we collected retinas from P14 and P21,
representing early time points during the first phase of
apoptosis [21]; and finally for the light-damaged paradigm,
we collected retinas 24 and 48 h after the onset of constant
light at 1500 lux, a point at which a few TUNEL-positive
photoreceptors can be observed, but no cell loss can yet be
documented [9].

RNA isolation—All chemicals used in this study were at
least molecular biology grade material and purchased from
Fisher Scientific (Pittsburgh, PA), unless otherwise noted.
Animals (see Samples for ages of animals) were sacrificed by
decapitation and retinas isolated and stored in RNA-later
(Ambion, Austin, TX) at −20 °C. Retinas from four animals
per genotype per time point were pooled, and each data point
was obtained in duplicate. Pooling is recommended as the
method of choice to reduce the number of arrays needed to
generate reliable data [20,22]. Total RNA was isolated using
Trizol (Ambion), followed by a clean-up using RNAeasy
minicolumns (Qiagen, Valencia, CA). The quality of the RNA
was examined by gel electrophoresis, and spectrophotometry
[20].

Microarray procedures—Sample preparation and
hybridization was performed as described in the Affymetrix
Expression Analysis Technical Manual and published
previously [20]. In short, double-stranded cDNA was
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generated (SuperScript™ II Reverse Transcriptase;
Invitrogen, Carlsbad, CA) using 5 μg total RNA as starting
material, and purified using phase-lock gel columns
(Eppendorf, Westbury, NY) followed by ethanol
precipitation. The purified cDNA served as a template for the
generation of biotinylated cRNA, using the BioArray™
HighYield™ RNA transcript labeling kit (Enzo Diagnostics,
New York, NY). Labeled probes were purified using the
RNEasy mini kit (Qiagen, Valencia, CA), fragmented by
metal-induced hydrolysis at 94 °C for 35 min (100 mM
potassium acetate, 30 mM magnesium acetate, and 40 mM
tris-acetate) and stored at -80 ºC. The length of the cRNA and
fragmentation was confirmed by agarose gel electrophoresis.
Hybridization with equal amounts of labeled cRNA (15 µg/
array) and readout was performed by the DNA Microarray
Core Facility at MUSC, using the Affymetrix Fluidics Station.
Data analysis:

Normalization and filtering—Genechips were scanned
using the Affymetrix scanner (Microarray Suite 5.0 software)
to obtain probe level data. Outputs were scaled to the same
target intensity. The raw Affymetrix data (absolute expression
level and perfect match (PM)-values) was used for
normalization. Each of the three model sets were normalized
using quantile normalization on the probe and probe set level.
This procedure was done using Dchip software [23]. Gene
filtering was performed individually on the three retinal
degeneration sets. Normalized data was filtered on significant
p-values (≤0.05) in fold change and difference of the means
between experimental and age-matched control samples
(value of ≥100). With an estimated median expression level
of 90 this automatically excludes low-expressing genes. Venn
analysis was used to identify genes that localized to RD loci.

Analysis of retinal degeneration chromosomal loci—
For us to be able to match the differentially expressed mouse
genes to known chromosomal locations involved in retinal
degeneration, we needed human orthologs to these mouse
genes. The Affymetrix NetAffx Analysis Center was used to
obtain the human orthologs, as well as accession numbers and
chromosome locations for all genes. The list of human
ortholog locations was correlated with the 191 human retina-
specific locations currently listed in RetNet, to determine
which locations were unknown and unsolved.

Gene ranking and probability—To determine the
probability of one of the genes in our analysis falling into one
of the retina-related loci, we implemented an algorithm using
the gene lengths, locus lengths, and chromosome lengths.
Probability was determined by calculating the ratio of gene
length to locus length over the ratio of the gene length to
chromosome length. Genes were ranked based on a combined
score of probability: 5 (0%–4.9%), 4 (5%–9.9%), 3 (10%–
14.9%), 2 (15%–19.9%), 1 (20%-above). This score was
multiplied by the number of models in which the genes were
differentially expressed (3, 2, or 1), resulting in a maximum
score of 15.

Gene ontology analysis—Gene Ontology (GO) analysis
on the identified genes was done using GoStat by Tim
Beissbarth. GO p-values were computed, and the GO terms
with significant p-values identified to compile the final list of
overrepresented GO terms. All ontologies (Molecular
Function, Biologic Process, and Cellular Component) were
analyzed as a group.
Pla2g7 analysis:

Immunohistochemistry—For immunohistochemical
analysis, eyes were fixed in 4% paraformaldehyde, rinsed,
cryoprotected in 30% sucrose overnight, frozen in TissueTek
O.C.T. (Fisher Scientific) and cut into 14 μm cryostat sections.
Immunohistochemistry was performed as described
previously [24] using an anti-PAF-AH antibody (Lis-1;
Abcam, Cambridge, MA) at 1:100. For visualization, a
fluorescent-labeled secondary antibody (Alexa 488;
Invitrogen, Carlsbad, CA) was used. Each staining was
performed on slides from at least three animals per condition.
Sections were examined by fluorescence microscopy (Zeiss)
and images were false-colored using Adobe® Photoshop
(Adobe Systems, San Jose, CA).

Activity assay—PLA2G7 is known to catalyze the
hydrolysis of the substrate platelet-activating factor (PAF)
into the biologically inactive lyso-PAF. The assay (Cayman
Chemical, Ann Arbor, MI) uses 2-thio PAF as a substrate for
PAF-AH. Hydrolysis produces free thiols, reacting it with an
excess of 5,5‘-dithio-bis-2-nitrobenzoic acid (DTNB); which
is measured spectrometrically. Neither the substrate nor the
lyso-PAF react with DTNB. As a negative control the enzyme
source (plasma or retina) is heat-inactivated for 15 min and
used with the substrates; human PLA2G7 provided in the kit
was taken as positive control for all the measurements. The
commercial kit was used according to the manufacturer’s
recommendations.

For tissue levels, retinas were dissected out from eyes of
rd1 (P10), rd2 (P21), and 48 h light-damaged BALB/c mice
and corresponding control animals. Retinas were
homogenized in 100 μl of cold Tris-Cl buffer (0.1 M, pH 7.2)
and centrifuged at 10,000x g for 15 min at 4 ºC. Supernatants
were collected and total protein content in each sample
assayed by the Bradford method. To determine plasma levels,
blood was collected from the submandibular vein in isoflurane
anesthetized mice. The vein was punctured with a 22 gauge
needle, which initiates blood flow and sample collected with
a pipette using citrate as an anticoagulant (0.38% final
concentration). Plasma samples were collected after
centrifugation (800x g for 10 min at 4 ºC).

The assay-mixtures each contained 10 μl of sample, to
which 5 μl of assay buffer was added to each well of a 96 well
flat-bottom plate. Reaction in each well was initiated by
adding 200 μl of substrate solution (2-thio PAF). Following
incubation at room temperature (30 min for retina, 1 min for
plasma), 10 μl of DTNB was added to each well. Color
development was measured in a spectrophotometer (Softmax;
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Molecular Devices, Sunnyvale, CA) at 405 nm, 1 min after
the addition of DTNB. Specific activity of PLA2G7 was
calculated from the absorbance values (extinction coefficient
for DTNB at 405 nm, 12.8/mM/cm). Data are expressed as
mean±SE of at least three independent Pla2g7 activity
measurements in units of specific activity for tissue [μmol/
minute/mg of protein] or plasma [μmol/minute/ml of plasma].

RESULTS
Identification of candidate genes: The RetNet database
currently lists 191 retina-specific human loci: 140 of the
human disease loci are mapped and the disease gene
identified, leaving 51 of the human loci uncharacterized (see
RetNet). By correlating the nucleotide position data for each
of these unknown locations with those of the 12489 genes and
ESTs present on the MGU74Av2 array and their orthologs,
we have the potential to identify candidate genes for 37 of
these unsolved disease loci (approximately 73%).

Mapped but unidentified chromosomal disease loci are
typically large, some spanning many cM, and harbor upwards

of hundreds of genes. For example, the 37 RD loci for which
genes matched in the MGU74Av2 array range in size from 1.8
to 49.2 Mbp (median size: 16.71 Mbp). The average number
of genes contained within a location of 16.71 Mbp is 393.18,
based on an average gene density of 40–45 kb [25]. Identifying
potential candidates requires additional search criteria.
Underlying an identification of a mapped locus are genetic
differences influencing the susceptibility to a trait or disease.
Thus, here we argued that these presumed genetic differences
should be reflected in the difference in retinal gene expression
of mice with RD.

To analyze differences in gene expression related to
photoreceptor degeneration, we selected three unrelated
mouse models of photoreceptor dystrophy: the rd1 mouse
(calcium overload) [26]; the rd2 mouse (structural defect due
to a mutation in the disc rim protein peripherin); and constant
light-damage (LD; oxidative stress) [3,5,27]. The rd1 mouse
is considered a model for RP, whereas the rd2 mouse and the
LD model are used as models for both RP and macular
degeneration. For each mouse model, we determined changes
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TABLE 1. GENES CORRESPONDING TO HUMAN DISEASE LOCI IDENTIFIED BY BEING EITHER COMMONLY UP- OR DOWN-REGULATED IN THREE, INDEPENDENT MOUSE MODELS OF PHOTORECEPTOR

DYSTROPHY.

Affymetrix
gene ID Gene name

Gene
symbol

Mouse
transcript

ID
   Human
ortholog NM

Ortholog
chromosomal

location

    Retinal
degeneration
      locus

160901_at FBJ osteosarcoma oncogene Fos NM_010234 NM_001040059 14q24.3 LCA3
97540_f_at histocompatibility 2, D region locus 1 H2-D1 NM_001025208 NM_005516 6p21.3 TULP1/RP14

101923_at phospholipase A2 group VII (platelet-
activating factor acetylhydrolase, plasma) Pla2g7 NM_013737 NM_005084 6p21.2-p12 RDS/RP7; GUCA1A,

GUCA1B; BCMAD
98549_at vitronectin Vtn NM_011707 NM_000638 17q11 UNC119/HRG4
98579_at early growth response 1 Egr1 NM_007913 NM_001964 5q31.1 BSMD, PDE6A

92223_at complement component 1, q subcomponent,
C chain C1qc NM_007574 NM_172369 1p36.11 NRL/RP27

96020_at complement component 1, q subcomponent,
beta polypeptide C1qb NM_009777 NM_000491 1p36.3-p34.1 LCA9, RP32

103033_at complement component 4 (within H-2S) C4 NM_009780 NM_000592 6p21.3 TULP1/RP14
98472_at histocompatibility 2, T region locus 23 H2-T23 NM_010398 NM_005252 6p21.3 TULP1/RP14

94701_at phosphodiesterase 6B, cGMP, rod receptor,
beta polypeptide Pde6b NM_008806 NM_000283 4p16.3 PDE6B/CSNB3, MCDR2

102612_at neural retina leucine zipper gene Nrl NM_015810 NM_006177 14q11.1-q11.2 NRL/RP27

160894_at CCAAT/enhancer binding protein (C/EBP),
delta Cebpd NM_007679 NM_005195 8p11.2-p11.1 CORD9

94854_g_at guanine nucleotide binding protein, beta 1 Gnb1 NM_008142 NM_002074 1p36.3-p34.1 LCA9, RP32, RD4
93120_f_at histocompatibility 2, K region H2-K NM_001001892 NM_002127 6p21.3 TULP1, RP14

98562_at complement component 1, q subcomponent,
alpha polypeptide C1qa NM_007572 NM_015991 1p36.3-p34.1 LCA9, RP32

95974_at guanylate nucleotide binding protein 1 Gbp1 NM_008142 NM_002074 1p36.3-p34.1 ABCA4
103202_at guanylate nucleotide binding protein 3 Gbp3 NM_018734 NM_133263 1p22.2 ABCA4

103634_at interferon dependent positive acting
transcription factor 3 gamma Isgf3g NM_008394 NM_006084 14q11.2 NRL/RP27

104669_at interferon regulatory factor 7 Irf7 NM_016850 NM_004030 11p15.5 TEAD1/AA/TCF13/ TEF1
99608_at peroxiredoxin 2 Prdx2 NM_011563 NM_005809 19p13.2 R9AP

The highlighted gene symbols (column 3) represent the mapped, but unsolved loci (column 7), the remaining genes localize to
loci that have already been solved. The genes are documented with respect to the mouse gene name, symbol and mouse transcript
ID (columns 2-4) and their human ortholog (column 5). Column 6 provides information about the chromosomal location of the
human ortholog; column 7 lists the name(s) of the loci. Please note that in some entries in the locus column, there are multiple
names given, meaning that more than one trait resides in that chromosomal location; however these may or may not be related.
Column 1, the Affymetrix Gene ID; and column 3, the gene symbol; represent the common denominators for all Tables in the
manuscript (Table 1 and Table 2) and Appendix 1 and Appendix 2.
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in gene expression between the experimental animals and
their age-matched controls at two consecutive time points
early in the progression of degeneration. For a given gene to
be considered as a possible candidate or a retina-specific
location, it had to be significantly up- or downregulated
(p<0.05) with a predefined mean difference in expression

Figure 1. Pla2g7 mRNA and activity levels, analyzing levels from
P10 rd1, P21 rd2, and 48 h light-exposed BALB/c animals and their
respective age-matched controls. A: Pla2g7 mRNA levels were
plotted from Appendix 1. Retina Pla2g7 mRNA levels are
significantly reduced in all three genotypes when compared to
controls. Data are expressed as mean±SD of the two arrays analyzed
per genotype. B: Tissue retina Pla2g7 levels as measured in a
calorimetric assay using 2-thio platelet activating factor (PAF) as
substrate, revealed that activity levels in retinas from the three
genotypes correlated well with the respective reduced amount of
mRNA found in the tissue. Data are expressed as mean±SEM of at
least three, independent samples in unit of activity (μmol/min/mg of
protein). C: Plasma Pla2g7 levels measured in mandibular blood
samples revealed that the two genetic mutations (rd1 and rd2) or the
environmental stress (constant light) did not influence systemic,
plasma-derived Pla2g7 activity. Data are expressed as mean±SEM
of at least three independent samples in unit of activity (μmol/min/
mL of plasma). In the graph, red indicates control and blue indicates
experimental. The following abbreviations were used: light-damage
(LD) and not significant (n.s.)

level (≥100) in at least one of the three models. Of the 902
genes that met these criteria, 20 genes were found to have
human orthologs that were localized to human retinal
degeneration (Table 1). Experimental data regarding gene
expression levels and fold differences in gene expression
(Appendix 1) are provided in the supplemental material
section. These 20 genes were ranked on two criteria: (a) based
on their probability of falling within a human disease locus by
chance; (b) multiplied by the number of models in which the
genes were differentially expressed. Due to the significant
difference in locus size for the different diseases (i.e., the 20
loci range in size from 1.7 to 60 Mbp), the probability ranged
from 1.9% to 46.9% (Table 2, column 5), with the median
probability of 6.6%.
Gene ontology analysis of identified genes: To gain biologic
understanding from the identified genes found in unsolved
chromosomal locations (Table 1), we analyzed their
functional annotations. GO identifications (GO IDs) and GO
terms were retrieved for all significant ontologies (Biologic
Process, Molecular Function, and Cellular Compartment).
The GO terms associated with the 20 identified genes were
compared to those of the reference group (all genes present
on the array minus those listed in Table 1), determining
significantly over-represented terms and obtaining important
GO terms that describe these differentially regulated genes.
The significantly overrepresented GO terms that were
retrieved for the upregulated genes included the terms
“defense response,” “immune response,” and “complement
activation,” whereas in the downregulated genes, the terms
identified the keywords “positive gene regulation of
rhodopsin,” “retinal rod cell development,” and “thioredoxin
peroxidase activity” (Appendix 2).
Pla2g7 in retinal degeneration: Pla2g7 (PAF-AH, Lp-
PLA2), a possible candidate for a dominant form of macular
dystrophy (BCMAD), was selected for further study.
Pla2g7 mRNA levels are significantly down-regulated in P10
rd1 [fold difference (lower bound; upper bound)] [-1.39
(-1.26; -1.54)], P21 rd2 [-4.5 (-3.5; -5.55)] and 48 h of light-
damage in the BALB/c mouse retina [-2.37 (-1.57; -4.7)],
which is before significant cell loss [9] (see Figure 1A).
Pla2g7 localization in ocular tissues and PAF-AH activity
levels in plasma and retina tissue were investigated.

Pla2g7 is a gene highly enriched in the mouse retina
according to the Brain Gene Expression Map; in the retina,
Pla2g7 mRNA is present in the outer nuclear layer (ONL) that
contains only the cell bodies with the nuclei of rods and cones
(retina SAGE library) [28]. Immunohistochemistry revealed
labeling in the photoreceptors (Figure 2), in particular the
inner and outer segments, with additional labeling in the outer
and inner plexiform layer, as well as staining of cells in the
inner retina.

Pla2g7 activity was compared in soluble extracts of retina
and in plasma (Figure 1B,C). Serum levels of Pla2g7 activity
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were not affected by RD triggered by either genetic (rd1,
rd2) or environmental insults (LD; Figure 1C). Plasma levels
in the P10, C57BL/6 wild-type mouse were higher than that
obtained at P21, but not different from rd1 at P10 nor rd2 at
P21 ([in μmol/min/ml plasma] P10: wt, 0.093±0.013 versus
rd1, 0.091±0.0058; P21: wt, 0.0367±0.00009 versus rd2,
0.0387±0.0012). Likewise, no difference was identified in
light-damaged BALB/c retina (cyclic light, 0.0935±0.005
versus LD, 0.0913±0.006). When compared to their
respective age-matched controls, Pla2g7 levels were reduced
by ~30% in the rd1 retinas, by ~70% in the rd2 retinas, and
by ~50% in the light-damaged retinas (Table 3). Relative
changes in retina Pla2g7 mRNA levels were a good predictor
of retina cytosolic Pla2g7 activity levels.

DISCUSSION
Comparative genomics analysis to identify novel disease
genes: RD-causing mutations are found in genes whose
proteins participate typically in one of four mechanisms: outer
segment morphogenesis, cellular metabolism, function of the
retinal pigment epithelium, and the photoreceptor signal
transduction cascade [29]. However, other genes that are not
typical photoreceptor-specific genes have been identified to

have mutations in inherited RD, which include mutations in
components of the alternative complement pathway (part of
the body’s innate immune system) that have been shown to be
associated with AMD [14,16-18]. Hence, we used a
comparative genomics approach to aid in the identification of
potentially novel disease genes.
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TABLE 2. CHARACTERIZATION OF GENES IDENTIFIED AS CANDIDATES FOR HUMAN DISEASE LOCI.

Affymetrix
gene ID

 Gene
symbol

     Mis-
regulation Animal models Probability Score

    ONL:
sage, qRT-

PCR* injury
Bright LD

#
Retina

network
160901_at Fos up rd1/rd2/LD 0.044 15 x* + 1
97540_f_at H2-D1 up rd1/rd2/LD 0.046 15 x 3
101923_at Pla2g7 down rd1/rd2/LD 0.046 15 x 2
98549_at Vtn down rd2/LD 0.019 10 x 2
98579_at Egr1 up rd1/rd2 0.132 6 x* + 1
92223_at C1qc up rd1/rd2 0.143 6 x + + 3
96020_at C1qb up rd1/rd2 0.116 6 _* + 3

103033_at C4 up rd2 0.046 5 ? + + 3
98472_at H2-T23 up rd2 0.046 5 ? + 3
94701_at Pde6b down rd1/rd2 0.179 4 x 2
102612_at Nrl down rd2 0.066 4 x 2
160894_at Cebpd up rd1/rd2/LD 0.238 3 _ + + 1
94854_g_at Gnb1 down rd2/LD 0.135 2 x 2
93120_f_at H2-K up rd2/LD 0.046 2 x + 3
98562_at C1qa down rd2 0.135 1 _ + 3
95974_at Gbp1 down rd2 0.0338 1 ? + na

103202_at Gbp3 down rd2 0.0338 1 x na
103634_at Isgf3g up rd2 0.066 1 x + 3
104669_at Irf7 down rd2 0.0611 1 _ + 3
99608_at Prdx2 down rd2 0.4691 1 ? na

Genes are identified by Affymetrix Gene ID (column 1) and gene symbol (column 2) for easy comparison with Table 1. Column
3 identifies the type of misregulation (up- or down-regulated) and column 4 documents in which animal models the misregulation
occurs. The probability of each gene to fall within the respective locus is listed in column 5; this probability multiplied by the
number of models in which the genes are differentially expressed (3, 2, or 1) produced a gene ranking score (maximum column
6). The remaining columns document whether the respective gene is present in photoreceptors based on the retina SAGE library
(column 7: x, present; -, absent; ?, no data available; *confirmed by qRT-PCR [9]), whether the gene is misregulated in retina
injury models (column 8; identified by +) or after bright light exposure (column 9; identified by +), or which genes were found
to cluster together (eye database at Genenetwork ; column 10; 3 clusters, 1-3 were identified, as well as three unclustered genes).

TABLE 3. ENZYME ACTIVITY FOR PLA2G7 IN RETINAL DEGENERATION

Genotype
treatment Control Experimental p-value

rd1 0.2753±0.01 0.1953±0.006 <0.01
rd2 0.0805±0.0035 0.027±0.0.0032 <0.001

light damage 0.123±0.015 0.059±0.0012 <0.001

Quantification of specific activity of Pla2g7 [μmol/minute/mg
of protein] in retina extracts collected from P10 rd1 , P21
rd2  mice, and 3-month old BALB/c mice after 24 h of light
damage (column 2), together with their age-matched controls
(column 3). Cytosolic levels of Pla2g7 were significantly
reduced (column 4) in all three models of photoreceptor
degeneration. Data is expressed as mean±SEM for 3-5
samples per condition.

http://www.Genenetwork.org
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Herein we have used gene expression analysis in three
independent models of photoreceptor dystrophy, which
showed key pathologies also seen in the human conditions, to
identify novel candidates for gene loci known to be associated
with inherited retinal diseases. While it would have been
beneficial to obtain retina-specific arrays for our analysis, the
U74Av2 arrays used had a present rate (i.e., genes that are
expressed in the retina) of >50%, representing >6000 genes/
ESTs. These 6,000 elements cover an estimated 50% of the
13k mammalian retinal transcriptome, as defined by Schulz
and colleagues [30] or approximately 62% of the mouse
retinal transcriptome identified by Blackshaw and coworkers
[28]. Thus, our proposed “fishing expedition” still presents
tremendous advantages when compared with a hypothesis-
driven data analysis that investigates one gene at a time, but
will likely miss roughly 50% of potential candidates.

To identify novel genes, we carefully filtered the genes
that matched human RD loci to eliminate false positives,
resulting in 20 potential gene candidates. These genes were
ranked to focus on genes that have a low probability of falling
within a region of interest by chance. To corroborate the
potential for these 20 identified genes to be part of the
molecular signature of photoreceptors and potentially prime
candidate genes for human disease, the genes were further
characterized based on their known retinal expression
patterns. First, the list of genes was entered into the eye
database at Genework to determine which genes would be
correlated based on gene expression in the eye, within the
BXD strains of mice along with the mouse diversity panel.
Three subnetworks were identified (Table 2, column 10); a

photoreceptor-specific network (Pla2g7, Gnb1, Pde6β, Vtn,
and Nrl), transcription factors (Fos, Egr1, and Cebpδ), and
one specific for immune-response (H2-D2, C1qβ, C1qc, H2-
K, C1qα, C4, H2-T23, Isgf3g, and Irf7), as well as three
unassociated genes (Gbp1, Gbp3, and Prdx2). Second, to
determine whether these genes were expressed in the normal
photoreceptors, we examined whether they were expressed in
the outer nuclear layer (rods and cones) as assessed by
Blackshaw and colleagues [28] using a mouse retina SAGE
library or our own quantitative RT–PCR data on mouse ONL
[9] (Table 2, column 7). All but one of the genes that were
identified in at least two out of three models were found to be
present in the photoreceptors, for a total of 13 out of 20. Three
out of 20 genes were found to be absent, and no information
was available for the remaining four out of 20 genes. Third,
this set of 20 genes was compared with genes identified to be
misregulated under unique retinal injury conditions such as
diabetes [32], ischemia-reperfusion injury [33], retinal tears
[34], elevation of intraocular pressure [35], laser-induced
injury [36], photoreceptor degeneration induced by a
photoreceptor-specific cadherin knockout [37], as well as a
model of bright-light damage [37] (Table 2, columns 8 and 9).
As expected, more extensive overlap was observed with
bright-light-damage-induced genes, as one of our models was
the constant, low-light-induced photoreceptor cell death
model (C1qα, C4, Gbp1, H2-K1, H2-T2B, Irf7, Isgf3g, and
Nrl); however, few genes were found to overlap with the
general retinal injury models (diabetes: none; ischemia-
reperfusion injury: none; retinal tears: Egr1, Fos, C1qβ, and
Cebpδ; elevation of intraocular pressure: Egr1, Cebpδ; laser-

Figure 2. Pla2g7 localization.
Immunohistochemistry was performed
in juvenile C57BL/6 (P17) frozen
sections (A), using no primary antibody
conditions as the negative control (B).
Pla2g7 was found to be localized
throughout the retina. Relatively
elevated levels were found in the
photoreceptor inner and outer segments,
whereas moderate staining was found in
the two plexiform layers, as well as the
inner nuclear layer (INL) and the retinal
ganglion cell (RGC) layer. For each
image, the corresponding DIC image is
provided. The following abbreviations
were used: retinal pigment epithelium
(RPE), outer segments (OS), inner
segments (IS), outer nuclear layer
(ONL), outer plexiform layer (OPL),
inner nuclear layer (INL), inner
plexiform layer (IPL), and RGC: retinal
ganglion cells (RGC). Scale bar in (A)
represents 20 μm.
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induced injury: none) or with the photoreceptor cadherin
knockout (C4 and Cebpδ). Thus, it appears that the
transcription factors Fos, Egr1, and Cebpδ are induced during
general retinal injury, as is the complement system (C4 and
C1qβ). In summary, the final list of genes should have a high
potential of detecting photoreceptor-specific disease genes.

Candidate genes for retinal disease: Twenty genes passed our
stringent selection criteria. Two out of the 20 genes confirmed
monogenic loci associated with photoreceptor degeneration,
which are typically named for the one gene carrying mutations
responsible for disease (i.e., NRL and PDE6B), demonstrating
that our method is able to identify previously characterized
human retinal disease genes, and thus confirming the validity
of our approach. Fourteen genes were identified that fell
within the boundaries of the monogenic locus for which the
responsible gene has already been identified, and are thus
considered innocent bystanders: Locus (identified gene)
TULP1 (H2-D1, H2-K, C4, H2-T23), RDS/RP7 (Pla2g7);
GUCA1A (Pla2g7), GUCA1B (Pla2g7), NRL (C1qc and
Isgf3g), UNC119 (Vtn), PDE6A (Egr1), MCDR2 (Pde6β),
ABCA4 (Gbp1 and Gbp3), R9AP (Prdx2), TEAD1 (Irf7). The
eight remaining genes are potential candidates for mapped
disease loci (Table 1). After subtracting those genes that were
determined to be injury-related genes (Fos, C1qβ, Cebpδ, and
Egr1), four potential genes remained. One of those genes was
differentially expressed in three models (Pla2g7), two genes
in two models (C1qc and Gnb1), and one additional gene
(C1qα) was expressed in one of our models (rd2) and the
bright-light-damage model [37]. These four genes are further
discussed immediately below.

PLA2G7 (phospholipase A2, group VII), the top-ranked
gene, is localized within the BCMAD locus, a dominant form
of macular dystrophy. Pla2g7, which is expressed specifically
in mouse photoreceptors, was downregulated in all three
mouse models of RD. One activity of the enzyme PLA2G7 is
to hydrolyze oxidized phospholipids, which are known to be
generated in photoreceptors during normal light exposure.
Deficiency of plasma PLA2G7 has been shown to increase the
risk of vascular disease due to its antiinflammatory properties,
and its ability to control levels of oxidative stress and lipid
peroxidation [7]. Variants in PLA2G7 have also be found to
be associated with the risk of asthma [38]. Three
nonsynonymous polymorphisms appear to be associated with
disease, the R92H, A379V, and I198T variants [39]. All three
have decreased substrate affinity of PAF, which could prolong
the half-life of this highly inflammatory protein [38]. Herein,
we found that tissue and plasma levels of Pla2g7 might be
differentially regulated; retinal degeneration was only
associated with tissue, but not plasma levels of this enzyme.
In a parallel study, we have confirmed that plasma levels of
PLA2G7 appear not to be associated with a higher risk of
AMD, as assessed in a population of the Rotterdam study
[40].

GNB1 (guanine nucleotide binding protein, beta 1), the
beta-subunit of rod-specific transducin, is localized to the
LCA9 and RP32 loci. RP32, a locus for autosomal recessive
retinitis pigmentosa, is located between 1p13.3 and 1p21.2,
and marks a severe version of RP [41]. The LCA9 locus
involved in autosomal recessive Leber congenital amaurosis,
has been mapped to 1p36 by linkage mapping [42]. Gao and
colleagues have recently reported an association of GNB1
intronic variants with autosomal recessive RP, as well as
autosomal recessive cone-rod dystrophy [43]. On the other
hand, Kitamura and colleagues have identified the Gnb1 gene
as the site of mutation responsible for autosomal dominant
Rd4, and have demonstrated that haploinsufficiency is the
cause of disease [44]. This would tend to rule out GNB1 as the
gene responsible for autosomal recessive LAC9 and RP32.

Complement component 1, q subcomponent, alpha and c
polypeptides (C1qα and C1qc), which are upregulated in
retinal degeneration, are also localized to the LCA9 and RP32
loci. C1qα and C1qc are part of the complement component
C1q, which is an element of the classical complement pathway
of innate immunity. The complement pathway is one of the
major means by which the body recognizes foreign antigens
and pathogens as well as tissue injury, ischemia, apoptosis,
and necrosis (reviewed in [45]). However, in addition to
important roles in normal host responses to self and foreign
antigens, the complement system is increasingly recognized
to be causally involved in tissue injury during ischemic,
inflammatory and autoimmune diseases (reviewed in [46]).
Recent genetic evidence has identified variations in the
complement inhibitory protein factor H (also known as CFH)
[14,16-18], as well as variations in the genes for complement
factor B, C2, and C3 [17,47], as major risk factors for the
disease. However, it is unclear how misregulation of the
complement system leads to the observed pathology. In mouse
models of retinal disease, eliminating C1qα neither alters the
course of photoreceptor degeneration in the rd1 mouse [48],
nor changes the development of choroidal neovascularization
triggered by laser photocoagulation of Bruch’s membrane
[49].
Conclusion: We have shown that the comparative genomics
approach verified existing RD genes as well as identified
novel RD candidate genes. This approach may be useful for
focusing the search for novel genes in both RD and other
diseases for which there are appropriate mouse animal
models. Further studies are now needed to provide more
evidence of the functionality, role, and relevance of these
genes. Those studies should include sequencing of the human
genes in patients with the appropriate diagnosis as well as the
generation of appropriate knockout mouse strains, or
elimination/activation of the targeted gene or pathway by
pharmacological or molecular means. We hope to test these
and other hypotheses that were generated in an unbiased and
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rational strategy that we systematically developed in this
report.
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Appendix 1: Experimental data on which the selection of genes listed in
Table 1 of the manuscript is based.

A: Gene expression data for genes that are differentially
regulated in the three mouse models of retinal dystrophy—
rd1 mouse, rd2 mouse, and light-damage (LD) in the albino
mouse—as identified by DChip analysis. Gene expression
data for the experimental and control group at the two
experimental time points are listed as follows: columns 2–5
rd1 mouse at postnatal days 6 and 10 (P6, P10); columns 8–
11 rd2 mouse, P14, and P21; and columns 14–17 BALB/c
control and BALB/c LD at 24 h and 48 h of LD. Each value
represents the average of two replicates. B: Differences in
gene expression levels (fold change) and respective difference

of the mean (Δ mean) between experimental retinas and their
age-matched controls. Rd1 retinas were analyzed from
postnatal day (P) P6, P10], rd2 retinas from P14, P21, and
light-damaged retinas (LD) after 24 and 48 h of light exposure.
Gene expression analysis contains procedures for strong
control of false discovery rate (FDR). As indicated in the
legend to Table 1, the Affymetrix Gene ID and the gene
symbol represents the common denominator for table
identification in Table 1 and Table 2 as well as Appendix 1,
and Appendix 2.

Appendix 2: Gene ontology analysis for differentially regulated genes found
in unsolved locations.

Gene ontology terms that are associated with the
differentially regulated genes found in unsolved locations
(tabulated in Table 1-i.e., experimental list) were analyzed.
Over-represented terms for the biologic processes describing
these identified genes were determined by comparing them
with the reference genes (i.e., all the genes present on the

entire array minus the experimental list). The top GO
identifications (GO ID; column 1) and GO terms (column 2)
are listed to characterize as many genes possible with
significant GO terms. The genes represented by those GO
terms (column 3), as well as the corresponding p-values
(column 4) are listed.

The print version of this article was created on 29 August 2008. This reflects all typographical corrections and errata to the
article through that date. Details of any changes may be found in the online version of the article.

http://www.molvis.org/molvis/v14/a194/app-1.pdf
http://www.molvis.org/molvis/v14/a194/app-2.pdf
http://www.molvis.org/molvis/v14/a194



