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Abstract: The human fungal pathogen Candida albicans can form biofilms on biotic and abiotic
surfaces, which are inherently resistant to antifungal drugs. We screened the Chembridge Small
Molecule Diversity library containing 30,000 “drug-like” small molecules and identified 45 com-
pounds that inhibited biofilm formation. These 45 compounds were then tested for their abilities to
disrupt mature biofilms and for combinatorial interactions with fluconazole, amphotericin B, and
caspofungin, the three antifungal drugs most commonly prescribed to treat Candida infections. In
the end, we identified one compound that moderately disrupted biofilm formation on its own and
four compounds that moderately inhibited biofilm formation and/or moderately disrupted mature
biofilms only in combination with either caspofungin or fluconazole. No combinatorial interactions
were observed between the compounds and amphotericin B. As members of a diversity library, the
identified compounds contain “drug-like” chemical backbones, thus even seemingly “weak hits”
could represent promising chemical starting points for the development and the optimization of new
classes of therapeutics designed to target Candida biofilms.

Keywords: high-throughput screens; biofilms; biofilm inhibition; biofilm disruption; Candida albicans;
antimicrobial resistance; therapeutics; Chembridge Small Molecule Diversity library

1. Introduction

Candida albicans is a normal commensal of the human microbiota that asymptomati-
cally colonizes the skin, the mouth, and the gastrointestinal tract of healthy humans [1–4].
C. albicans is also one of the most common fungal pathogens of humans, typically causing
superficial mucosal infections in healthy individuals [1,5–11]. When a host’s immune sys-
tem is compromised (e.g., in patients with AIDS), C. albicans can give rise to disseminated
bloodstream infections with mortality rates exceeding 40% [1,12–15].

A notable virulence trait of C. albicans is its ability to form biofilms, multilayered,
structured communities of cells that can grow on biotic and abiotic surfaces, such as
mucosal surfaces and implanted medical devices (e.g., catheters, dentures, and heart
valves) [1,2,10,16–21]. These biofilms are often resistant to antifungal drugs at concen-
trations that are normally effective against planktonic (free-floating) cells [20–25]. The
drug-resistant nature of C. albicans biofilms frequently makes removal of biofilm-infected
medical devices the only effective option to mitigate a biofilm-based infection, which can be
especially problematic if patients are already critically ill or when device removal requires
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surgical procedures (e.g., heart valve or prosthetic replacement) [20,26,27]. Since there are
no biofilm-specific therapeutics available on the market today and only three major classes
of antifungal drugs used to treat fungal infections in humans, the development of new
therapeutics effective against C. albicans biofilms is an important and unmet medical need.

The search for new antibiofilm therapeutics has encompassed a wide range of ap-
proaches, many of which focus on compounds that have combinatorial effects with known
antifungal drugs rather than (or in addition to) compounds that affect Candida biofilms
by themselves [28–43]. One approach has focused on screening libraries of existing drugs
and/or pharmacologically active compounds that would make promising candidates for
repurposing [38–40,43,44]. A second approach has focused on targeted classes of com-
pounds (e.g., compounds with known effects on signaling pathways [28,29], compounds
with known effects on cell–cell communication [34], and secreted aspartyl protease in-
hibitors [42]) that influence specific aspects of Candida biology. In addition, compounds
that might affect Candida that are produced by other organisms (e.g., antimicrobial pep-
tides [35] and chemicals produced by plants [36,37]) are also included in this targeted
approach. A third approach has focused on screening large, chemically diverse compound
libraries to identify pharmacophores that inhibit and/or disrupt biofilms through novel
mechanisms [41,45]. Examples of this third approach taken to identify compounds with
effects against C. albicans biofilms include a screen of a 20,000 compound Chembridge
NOVACore library [45] and a screen of a 120,000 compound National Institutes of Health
Molecular Libraries Small Molecule Repository library [41]. Here, we report a screen of a
30,000 compound Chembridge Small Molecule Diversity library (a library which, we note,
has few compounds that overlap with the NOVACore library from the same commercial
vendor) for the ability of the compounds to inhibit biofilm formation and/or disrupt mature
biofilms by themselves or in combination with the known antifungal drugs fluconazole,
amphotericin B, and caspofungin.

2. Materials and Methods
2.1. Media and Strains

Media were prepared in accordance with previously reported biofilm protocols [46,47].
Yeast extract peptone dextrose (YEPD) liquid media contains 2% BactoTM peptone (Difco
#211677 (Becton, Dickinson and Company, Franklin Lakes, NJ, USA)), 2% dextrose, and 1%
yeast extract (Difco #212750 (Becton, Dickinson and Company, Franklin Lakes, NJ, USA)).
YEPD plates also contain 2% agar. Biofilm assays were performed in Roswell Park Memorial
Institute (RPMI)-1640 media (containing L-glutamine and lacking sodium biocarbonate,
MP Biomedicals #0910601 (MP Biomedicals, Santa Ana, CA, USA)) supplemented with
34.5 g/L 3-(N-morpholino)propanesulfonic acid (MOPS) (Sigma #M3183 (Sigma Aldrich,
St. Louis, MO, USA)) and adjusted to pH 7.0 with sodium hydroxide before sterilizing
using a 0.22 µm filter. All biofilm assays used the previously reported SC5314-derived
strain SN425, a commonly used prototrophic a/α C. albicans standard strain, which was
created by introducing HIS1, LEU2, and ARG4 markers back into the SN152 a/α his1
leu2 arg4 strain [48]. Cells were recovered from glycerol stocks for two days at 30 ◦C on
yeast extract peptone dextrose (YEPD) plates. Overnight cultures for assays were grown
approximately 16 h at 30 ◦C in YEPD media.

2.2. Reagents

The Chembridge Small Molecule Diversity library, which consists of 30,000 “drug-like”
compounds, including diverse and target-directed compounds, was obtained by the Uni-
versity of California – San Francisco’s (UCSF’s) Small Molecule Discovery Center (SMDC)
from commercial vendors and proprietary sources. Stocks of candidate compounds (as well
as the three positive control compounds (PC12, 2-[(1,5-dimethyl-1H-pyrazol-4-yl)methyl]-7-
(4-isopropylbenzyl)-2,7-diazaspiro[4.5]decane, Chembridge Catalog #17159859; PC26, 7-(4-
isopropylbenzyl)-2-(tetrahydro-2H-thiopyran-4-yl)-2,7-diazaspiro[4.5]decan-6-one, Chem-
bridge Catalog #80527891; PC27, 7-(4-isopropylbenzyl)-2-[(2-methyl-5-pyrimidinyl)methyl]-
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2,7-diazaspiro[4.5]decan-6-one, Chembridge Catalog #61894700) from the Chembridge
NOVACore library that were hits from another high-throughput biofilm screen of a dif-
ferent Chembridge compound library [45]) were obtained directly from Chembridge
(http://www.hit2lead.com/index.asp) for follow-up testing. Working stocks of the com-
pounds were made at 20 mM in dimethyl sulfoxide (DMSO).

2.3. Biofilm Assays

The adherence inhibition, the sustained inhibition, and the disruption optical density
biofilm assays followed previously reported 384-well format standard protocols [46,47,49,50].
In brief, for the biofilm inhibition assays, compounds were added during the 90 min adher-
ence step (for the adherence and the sustained inhibition optical density biofilm assays)
and/or at the 24 h growth step (for the sustained inhibition optical density biofilm assay).
For the disruption optical density biofilm assay, a biofilm was grown for 24 h, after which
the biofilm was incubated for an additional 24 h in the presence of the compound of interest.
At the end of each assay, the media were removed from each well, and the OD600 of each
well was measured using a Tecan Infinite M1000 Pro or a Tecan M200 plate reader (Tecan
Group Ltd., Männedorf, Switzerland), taking the average of five reads per well.

The high-throughput adherence inhibition optical density biofilm assay screen of the
Chembridge Small Molecule Diversity library was robotically conducted at UCSF’s SMDC.
Compounds were included at a final concentration of 10 µM per well in 384-well plates
in the high-throughput adherence inhibition optical density biofilm assay. Compounds
were included at a final concentration of 40 µM per well in 384-well plates in the sus-
tained inhibition optical density biofilm and the disruption optical density biofilm assays.
Candidate compounds were tested at 12.5 µM in the combination sustained inhibition
optical density biofilm and the disruption optical density biofilm assays. In line with
previously reported studies [42,43], the combination sustained inhibition optical density
biofilm assays used 1 µg/mL amphotericin B, 0.125 µg/mL caspofungin, or 256 µg/mL
fluconazole. The combination disruption optical density biofilm assays used 2 µg/mL
amphotericin B, 0.5 µg/mL caspofungin, or 256 µg/mL fluconazole. These amphotericin B,
caspofungin, and fluconazole concentrations were chosen to be close to but below the
effective concentrations (as measured by OD600) in the respective assays in order to leave a
dynamic range for observing any combinatorial interactions. The sensitivity of SN425 to the
antifungal drugs amphotericin B, caspofungin, and fluconazole in the sustained inhibition
optical density biofilm and the disruption optical density biofilm assays is included in
File S3.

2.4. Candidate Compound Selection

Candidate compounds based on the results of the adherence inhibition optical density
biofilm assay high throughput screen of the 30,000 compound Chembridge Small Molecule
Diversity library were selected as follows. Separate lists of candidate compounds were
developed for those compounds with an absorbance at least two standard deviations
below that of the DMSO only controls and for those compounds with a B-score of less
than −4 [51,52]. Other factors were also included in our selection criteria prioritizations,
such as the selection of compounds with most favorable chemistries for optimizations as
well as the selection of compounds that are available for purchase from Chembridge (http:
//www.hit2lead.com/index.asp) (some compounds became unavailable for commercial
purchase during this study). In total, we selected 64 compounds, 28 from the standard
deviation list and 36 from the B-score list. Nineteen of these compounds were on both lists
for a total of 45 candidate compounds (File S2). We selected three additional compounds
available from Chembridge (PC12, Chembridge Catalog #17159859; PC26, Chembridge
Catalog #80527891; PC27, Chembridge Catalog #61894700) that were not in the Chembridge
Small Molecule Diversity library but were previously reported by Pierce and colleagues to
inhibit biofilm formation in a screen of a different Chembridge libraries (the Chembridge
NOVACore library) [45] to serve as positive controls. Data from our adherence inhibition
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optical density biofilm assay screen of the 30,000 compound Chembridge Small Molecule
Diversity library can be found in File S1. A list of the 45 selected candidate compounds can
be found in File S2.

2.5. Statistical Analysis and “Hit” Calling for the Biofilm Assays

Statistical analyses and “hit” calling for the Biofilm Assays followed previously re-
ported protocols [42,43]. For the stand-alone sustained inhibition and disruption optical
density biofilm assays, individual repeats of candidate compounds (and controls) were
performed in groups of eight wells. Between two and four repeats (16–32 total wells)
were performed for each candidate compound. Each plate had seven sets of control wells
(56 total wells) containing equivalent volumes of DMSO to the experimental wells spread
throughout the plate to reduce positional effects. For each experimental set of eight wells,
significance was evaluated relative to all of the control wells from the same plate using
Welch’s t-tests (two-tailed, assuming unequal variance). In order to correct for the multiple
comparisons performed, we then applied the Bonferroni correction with α = 0.05. All of
the comparisons for a given type of assay (e.g., all of the stand-alone sustained inhibition
optical density biofilm assays) were pooled for the multiple comparisons correction step,
giving a number of hypotheses, m, of 146 for the sustained inhibition optical density biofilm
assay and of 105 for the disruption optical density biofilm assay (for final thresholds of
3.42 × 10−4 and 4.76 × 10−4, respectively). We then determined whether each experimen-
tal repeat (1) had an average absorbance less than the average of the control wells and (2)
was significant after the multiple comparisons correction. To be considered a validated
“hit”, a compound had to satisfy both of these criteria.

For the combination sustained inhibition and disruption optical density biofilm assays,
compounds (and controls) were again tested in groups of eight wells, and two distinct
groups of controls were included on each plate. The first set of controls were wells where
the candidate compound but no known antifungal drug was included. The second set of
controls were wells where the antifungal drug but no candidate compound was included.
In both cases, we used the same concentration of candidate compound or antifungal drug
as was used in the experimental wells. Controls were included for all candidate compounds
and antifungal drugs being tested on a given plate. In general, a single set of eight wells was
included for each experimental or control condition on a given plate. Statistical analysis
was performed using Welch’s t-test and the Bonferroni correction as described above
with the following modifications. Each experimental condition was compared to both the
relevant antifungal drug control and the relevant candidate control (e.g., a compound CB01
plus caspofungin experiment was compared to the CB01 only control and the caspofungin
only control from the same plate). All of the same comparisons for a given assay (e.g.,
all of the antifungal drug comparisons for the combination sustained inhibition optical
density biofilm assay) were pooled for the multiple comparisons correction step, giving a
number of hypotheses, m, of 144 for both the antifungal drug and the candidate compound
comparisons in both the sustained inhibition and the disruption optical density biofilm
assays (for a final threshold of 3.47 × 10−4). To be considered a validated combination
hit, a given experimental condition had to have (1) an average absorbance less than the
averages of both sets of relevant control wells and (2) remain significant after the multiple
comparisons correction for both sets of comparisons.

Data and statistics for the stand-alone and the combination biofilm assays are compiled
in File S3. The chemical properties of the “hit” compounds (including molecular weights,
polar surface area, logP, logSW, the number of rotatable bonds, and the numbers of H-
bond acceptors and donors) that were available at the ChemBridge Online Chemical Store
(www.hit2lead.com) are also included in File S3.

3. Results

The Chembridge Small Molecule Diversity library of 30,000 “drug-like” compounds
covering a wide range of chemical scaffolds, diverse chemical backbones, chemotypes, and
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pharmacophores was robotically screened for compounds that inhibit C. albicans biofilm
formation. This screen used the adherence inhibition optical density biofilm assay [46,47]
(Figure 1a), where the compound of interest was added during the 90 min initial step of
biofilm formation and then washed out (along with unadhered cells). The biofilm was
then allowed to develop for 24 h in the absence of the compound. In total, 45 candidate
compounds were then selected for further evaluation in secondary assays (Figure 1b,
Files S1 and S2).

The 45 candidate Chembridge compounds (as well as the three positive control
Chembridge compounds previously reported to inhibit biofilm formation that were not
present in the 30,000 compound Small Molecule Diversity library [45]) were then eval-
uated for antibiofilm activity in the sustained inhibition optical density biofilm assay
and the disruption optical density biofilm assay [46,47]. In the sustained inhibition op-
tical density biofilm Assay, the compounds were added to the media during both the
90 min adherence step and the 24 h growth step of biofilm formation (Figure 1a). In the
disruption optical density biofilm assay, a biofilm was grown for 24 h, after which the
biofilm was incubated for an additional 24 h in the presence of the compound (Figure 1a).
Other than the three positive controls (PC12, 2-[(1,5-dimethyl-1H-pyrazol-4-yl)methyl]-7-
(4-isopropylbenzyl)-2,7-diazaspiro[4.5]decane, Chembridge Catalog #17159859; PC26, 7-(4-
isopropylbenzyl)-2-(tetrahydro-2H-thiopyran-4-yl)-2,7-diazaspiro[4.5]decan-6-one, Chem-
bridge Catalog #80527891; PC27, 7-(4-isopropylbenzyl)-2-[(2-methyl-5-pyrimidinyl)methyl]-
2,7-diazaspiro[4.5]decan-6-one, Chembridge Catalog #61894700) [45], none of the com-
pounds tested inhibited biofilm formation throughout the duration of biofilm development
(Figure 1c and Figure S1a). We do not fully understand why some compounds showed
significant inhibition in the adherence inhibition optical density biofilm assay but not in
the sustained inhibition optical density biofilm assay, but these different assays may be
sensitive to different compound parameters such as solubility, stability, and pH depen-
dence. Given the lack of a biofilm inhibition phenotype in the sustained inhibition optical
density biofilm assay, we were surprised to find that one of the 45 compounds (CB17,
1-[2-(2-methylphenoxy)-3-pyridinyl]-N-(3-pyridinylmethyl)methanamine, Chembridge
Catalog #80338143) disrupted mature C. albicans biofilms on its own at the same concen-
tration (Figure 1d,e and Figure S1b). See File S3 for names and chemical properties of
this compound.

Given the previous reports suggesting antibiofilm synergies between known antifun-
gal drugs and certain drug classes, we next tested our initial 45 candidate compounds
for their abilities to inhibit biofilm formation (using the sustained inhibition optical den-
sity biofilm assay and/or to disrupt mature biofilms (using the disruption optical density
biofilm assay) when combined with sub-inhibitory concentrations of amphotericin B, caspo-
fungin, or fluconazole (Figure 2 and Figures S2 and S3). Three compounds disrupted mature
biofilms in the presence of caspofungin (CB14, 2,2′-({[2-(ethylsulfonyl)-1-(3-phenylpropyl)-
1H-imidazol-5-yl]methyl}imino)diethanol, Chembridge Catalog #10068182; CB36, N-[2-({2-
[3-(1-azocanyl)-2-hydroxypropoxy]-4-methoxybenzyl}amino)ethyl]acetamide, Chembridge
Catalog #29059737; CB40, 1-{3-[5-(1,3-benzodioxol-5-yl)-1,3,4-oxadiazol-2-yl]propanoyl}-4-
(2-ethoxyphenyl)piperazine, Chembridge Catalog #35558198) (Figure 2a and Figure S2a).
One of these compounds (CB36) also inhibited biofilm formation in the presence of caspo-
fungin (Figure 2b and Figure S3a). In addition, a fourth compound (CB06, N-(2,3-dihydro-
1,4-benzodioxin-6-yl)-1-[3-(1H-pyrazol-4-yl)propanoyl]-3-piperidinamine, Chembridge
Catalog #22164746) inhibited biofilm formation in the presence of fluconazole (Figure 2c
and Figure S3b). As noted above, none of these compounds had effects on biofilms on their
own in this assay. Chemical properties of these compounds can be found in File S3. We
also note that the positive control compounds PC12, PC26, and PC27 all disrupted mature
biofilms in the presence of caspofungin, PC12 disrupted mature biofilms in the presence of
fluconazole, and PC26 inhibited biofilm formation in the presence of fluconazole (Figure 2
and Figures S2 and S3).
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Figure 1. Screen of the Chembridge 30,000 “drug-like” member library for compounds with the
ability to inhibit C. albicans biofilm formation. (a) Overview of the adherence inhibition, the sustained
inhibition, and the disruption optical density biofilm assays. (b) Comparisons of the differences from
the mean (in units of standard deviation, x-axis) and the B-score (y-axis) for the entire library screened
at a concentration of 10 µM in the adherence inhibition optical density biofilm assay. The 45 candidate
hits that were pursued further are indicated in red, and all other compounds are indicated in black.
(c,d) Statistically significant hits, positive controls, and additional selected candidates from the (c)
stand-alone sustained inhibition optical density biofilm assay and the (d) stand-alone disruption
optical density biofilm assay; compounds were included at concentrations of 40 µM. In both panels,
the mean OD600 readings with standard deviations are shown. Significant differences from the
DMSO solvent control, as determined by Welch’s t-test (two-tailed, assuming unequal variance) with
the Bonferroni correction, are indicated for α = 0.05 (*) or mixed results (&). In the cases of PC12
(2-[(1,5-dimethyl-1H-pyrazol-4-yl)methyl]-7-(4-isopropylbenzyl)-2,7-diazaspiro[4.5]decane, Chem-
bridge Catalog #17159859) and PC27 (7-(4-isopropylbenzyl)-2-[(2-methyl-5-pyrimidinyl)methyl]-2,7-
diazaspiro[4.5]decan-6-one, Chembridge Catalog #61894700) in the disruption optical density biofilm
assay, only one of the two repeats performed met the significance threshold. Data within a chart were
taken from the same plate. (e) Structure of compound CB17 (1-[2-(2-methylphenoxy)-3-pyridinyl]-
N-(3-pyridinylmethyl)methanamine, Chembridge Catalog #80338143) disrupted mature C. albicans
biofilms on its own at a concentration of 40 µM.
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Figure 2. Combination screening of candidate compounds with the antifungal drugs caspofungin and fluconazole. (a)
combination disruption optical density biofilm assay and (b) combination sustained inhibition optical density biofilm
assay with caspofungin. For each compound, wells with caspofungin (+ caspofungin) are indicated in yellow, and wells
without caspofungin (− caspofungin) are indicated in red. (c) Combination sustained inhibition optical density biofilm
assay with fluconazole. For each compound, wells with fluconazole (+ fluconazole) are indicated in grey and wells without
fluconazole − fluconazole) are indicated in blue. Mean OD600 readings with standard deviations are shown, significant
differences from the compound without antifungal drug controls (e.g., PC12, − caspofungin), as determined by Welch’s
t-test (two-tailed, assuming unequal variance) with the Bonferroni correction, are indicated for α = 0.05 (*). Significant
differences from the antifungal drug without compound control (e.g., DMSO, + caspofungin), determined by the same
statistical analysis, are indicated for α = 0.05 (#). Data from different plates are separated by two vertical lines on the
x-axis, and DMSO solvent controls are shown for each plate. Candidate compounds were included at concentrations of
12.5 µM in each of these assays. (d) Structures of compounds CB06 (N-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[3-(1H-pyrazol-
4-yl)propanoyl]-3-piperidinamine, Chembridge Catalog #22164746), CB14 (2,2′-({[2-(ethylsulfonyl)-1-(3-phenylpropyl)-1H-
imidazol-5-yl]methyl}imino)diethanol, Chembridge Catalog #10068182), CB36 (N-[2-({2-[3-(1-azocanyl)-2-hydroxypropoxy]-
4-methoxybenzyl}amino)ethyl]acetamide, Chembridge Catalog #29059737), and CB40 (1-{3-[5-(1,3-benzodioxol-5-yl)-1,3,4-
oxadiazol-2-yl]propanoyl}-4-(2-ethoxyphenyl)piperazine, Chembridge Catalog #35558198) inhibited and/or disrupted
C. albicans biofilms in combination with at least one of the known antifungal drugs tested.

4. Discussion

Starting from an initial screen of a 30,000 compound diversity library and following
standard high-throughput screening procedures for hit identification [53], we identified
four compounds capable of inhibiting biofilm formation and/or disrupting mature biofilms
in combination with caspofungin or fluconazole and a fifth compound capable of disrupting
mature C. albicans biofilms on its own. As members of a diversity library, the identified
compounds contain “drug-like” chemical backbones that represent promising chemical
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starting points for the development and the optimization of new classes of therapeutics
designed to target Candida biofilms. For example, all compounds within this library have
low molecular weights, low polar surface areas, and are predicted to be soluble and
capable of crossing membranes. Given the distinct structures of our specific individual
and combination hits, these compounds are likely to display broad ranges of biological
activities and should provide multiple amenable opportunities for structural elaboration.
Thus, even seemingly “weak” hits have the potential to become potent hits upon chemical
optimizations [53–55]. Therefore, even compounds we identified with relatively minor
yet significant antibiofilm effects on their own (e.g., CB17) have promise. In addition, our
combination results indicate potent effects for certain compounds (e.g., CB06, CB14, CB36,
CB40) in combination with fluconazole and caspofungin, suggesting that these compounds
are a priority for future chemical optimizations.

In addition to identifying several promising antibiofilm compounds, our results illus-
trate the degree to which the experimental setup for biofilm formation can affect compound
efficacy. One example is our identification of several compounds with efficacy in com-
bination with known antifungal drugs, where the combined effect is dependent on the
assay conditions. A second example is our identification of compounds that disrupt mature
biofilms but that do not inhibit biofilm formation (either on their own or in combination
with known antifungal drugs). Given these findings, drug efficacy testing that focuses solely
on one aspect of biofilm formation (e.g., inhibition of initial biofilm formation) may overlook
promising compounds that may be broadly effective against mature biofilms, and vice versa.
Thus, multiple testing parameters of compounds against different stages of biofilm forma-
tion are useful in identifying the most promising compounds for therapeutic development.

Supplementary Materials: The following are available online at https://www.mdpi.com/2309-608
X/7/1/9/s1. File S1, Screen of the Chembridge 30,000 “drug-like” member library for compounds
with the ability to inhibit C. albicans biofilm formation in the adherence inhibition optical density
biofilm assay. Differences from the mean (in units of standard deviation) and the B-score for the
entire library screened at a concentration of 10 µM are provided. File S2, Identities of the 45 candidate
compounds selected based on the initial adherence inhibition optical density biofilm assay as well
as the three positive controls. Differences from the mean (in units of standard deviation) and the
B-score are indicated for these compounds. File S3, Compiled data and statistics from the stand-
alone and combination sustained inhibition and disruption optical density biofilm assays. For each
compound, the average OD600, average OD600 of relevant control(s), and value(s) for Welch’s t-test
versus the relevant control(s) are provided. Whether the average OD600 was below the average OD600
of the relevant control(s) and whether the difference from the relevant control(s) remains significant
following the Bonferroni Correction (α = 0.05) are indicated. The chemical properties of the “hit”
compounds (including molecular weights, polar surface area, logP, logSW, the number of rotatable
bonds, and the numbers of H-bond acceptors and donors) that were available at the ChemBridge
Online Chemical Store (www.hit2lead.com) are also included. Figure S1, Additional results from the
(a) stand-alone sustained inhibition and the (b) stand-alone disruption optical density biofilm assays.
Mean OD600 readings with standard deviations are shown, significant differences from the DMSO
solvent control, as determined by Welch’s t-test (two-tailed, assuming unequal variance) with the
Bonferroni Correction, are indicated for α=0.05 (*) or mixed results (&). In the cases of CB36 and CB40
in the sustained inhibition optical density biofilm assay, only one of the two repeats performed met
the significance threshold. In the case of CB40 in the disruption optical density biofilm assay, only
two of the four repeats performed met the significance threshold. Data within a chart are all taken
from the same plate on the same day. Figure S2, Additional results from the disruption optical density
biofilm assay combination screening of candidate compounds with the antifungal agents caspofungin,
fluconazole, and amphotericin B. Combination disruption biofilm assays with (a) caspofungin, (b)
fluconazole, and (c) amphotericin B. In panel a, wells with caspofungin (+ caspofungin) are indicated
in yellow and wells without caspofungin (− caspofungin) are indicated in red. In panel b, wells with
fluconazole (+ fluconazole) are indicated in grey and wells without fluconazole (−fluconazole) are
indicated in blue. In panel c, wells with amphotericin B (+ amphotericin B) are indicated in orange
and wells without amphotericin B (− amphotericin B) are indicated in green. Mean OD600 readings
with standard deviations are shown, significant differences from the compound without antifungal
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agent controls (e.g., CB6, − caspofungin), as determined by Welch’s t-test (two-tailed, assuming
unequal variance) with the Bonferroni Correction, are indicated for α = 0.05 (*). Significant differences
from the antifungal agent without compound control (e.g., DMSO, + caspofungin), determined by
the same statistical testing, are indicated for α = 0.05 (#). Candidate compounds were included at
a concentration of 12.5 µM. Data from different plates are separated by two vertical lines on the
x-axis, DMSO solvent controls are shown for each plate. Figure S3, Additional results from the
sustained inhibition optical density biofilm assay combination screening of candidate compounds
with the antifungal agents caspofungin, fluconazole, and amphotericin B. Combination sustained
inhibition assays with (a) caspofungin, (b) fluconazole, and (c) amphotericin B. In panel a, wells with
caspofungin (+ caspofungin) are indicated in yellow and wells without caspofungin (− caspofungin)
are indicated in red. In panel b, wells with fluconazole (+ fluconazole) are indicated in grey and
wells without fluconazole (− fluconazole) are indicated in blue. In panel c, wells with amphotericin
B (+ amphotericin B) are indicated in orange and wells without amphotericin B (− amphotericin
B) are indicated in green. Mean OD600 readings with standard deviations are shown, significant
differences from the compound without antifungal agent controls (e.g., CB6, − caspofungin), as
determined by Welch’s t-test (two-tailed, assuming unequal variance) with the Bonferroni Correction,
are indicated for α=0.05 (*). Significant differences from the antifungal agent without compound
control (e.g. DMSO, + caspofungin), determined by the same statistical tests, are indicated for α=0.05
(#). Candidate compounds were included at a concentration of 12.5 µM. Data from different plates
are separated by two vertical lines on the x-axis, DMSO solvent controls are shown for each plate.
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