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ABSTRACT
Background: Approximately 10% of adolescents worldwide are overweight or obese, hence the urgent and universal

need to elucidate possible mechanisms that lead to obesity in the adolescent population.

Objectives: We examined the hypothalamic metabolism and its relationship with physical development in obese and

eutrophic adolescents.

Methods: We performed a case-control study with 115 adolescents between 11 and 18 years of age, to compare obese

(BMI z-score ≥ 2) and nonobese individuals (eutrophic controls; BMI z-score ≤ 1). The following hypothalamic metabolite

ratios were examined as primary outcomes: glutamate/creatine (Cr), the sum of glutamate and glutamine/Cr, N-

acetylaspartate (NAA)/Cr, myoinositol/Cr, and total choline/Cr (glycerophosphocholine + phosphocholine/Cr), quantified

by magnetic resonance spectroscopy. BMI z-scores, pubertal status, and scores on the Yale Food Addiction Scale, the

Binge Eating Scale, and the Child Depression Inventory were assessed as secondary outcomes. Pearson coefficients

(r) or nonparametric Spearman correlation (rho) analyses were performed between hypothalamic metabolite ratios and

other parameters, such as BMI z-scores, physical development, food habits, depression symptoms, and serum protein

concentrations (cytokines, hormones, and neuropeptides).

Results: Adolescents with obesity showed a lower hypothalamic NAA/Cr ratio (0.70 ± 0.19) compared to their eutrophic

counterparts (0.84 ± 0.20; P = 0.004). The NAA/Cr ratio was negatively correlated with BMI z-scores (r = −0.25; P = 0.03)

and serum insulin (rho = −0.27; P = 0.04), C-peptide (rho = −0.26; P = 0.04), amylin (r = −0.27; P = 0.04), ghrelin (rho

= −0.30; P = 0.02), and neuropeptide Y (r = −0.27; P = 0.04). Also, the NAA/Cr ratio was positively correlated with

circulating IL-8 levels (rho = 0.26; P = 0.04).

Conclusions: High BMI z-scores are associated with lower hypothalamic NAA/Cr ratios. The negative correlations

found between the NAA/Cr ratio and serum cytokines, hormones, and neuropeptides suggest a broad cross-talk

linking hormonal imbalances, neurohumoral alterations, and hypothalamic functions in adolescents with obesity. J Nutr

2022;152:663–670.
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Introduction
Approximately 10% of adolescents worldwide are overweight
or obese (1), hence the urgent and universal need to address
the consequences of this disease on the physical development
of adolescents. Equivocal dietary choices lead to obesity and

comorbidities, including diabetes, cardiovascular disease, and
an increased frequency of cancers (2). Furthermore, global
forecasts predict an increasing rate of obesity, which will
negatively affect future health and economic policies (3).
Obesity in early life is associated with more health problems
in adulthood (1); thus, preventing obesity in childhood and
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adolescence is critical. However, several studies conducted in the
United States (1, 4) have reported that obesity rates remain high
and that no significant improvements were observed between
the periods of 2003–2004 and 2011–2012 (4). In Brazil, the
most recent nationwide survey conducted in 2021 by the
Ministry of Health estimated that 6.4 million children are
overweight. Of these, over 3.1 million have already evolved to
obesity (based on the BMIs of children in primary Health Care
System records). In other words, 28% of Brazilian children are
overweight and 13.2% are obese (5, 6). Interestingly, significant
differences were found among different socioeconomic classes,
with underprivileged children showing lower obesity rates
than children in higher social classes (2.5% compared with
10.6%, respectively) (7). It is well known that diet plays a
prominent role in the etiology of obesity, and appetite control
and eating behaviors involve a complex network of neural
systems. However, less is known about the role of the adolescent
hypothalamus in these processes.

The hypothalamus is associated with important basic
functions, such as the control of homeostasis, regulation of
energy balance, reproduction, and food intake (8). This brain
region is highly sensitive to peripheral metabolic mediators and
integrates various neural, hormonal, and nutritional signals (9).
Thus, the hypothalamus is critical in regulating the metabolism,
appetite, weight, and body composition (10). Studies with
MRI in obese adults reported decreased signal intensity in T2-
weighted images of the mediobasal hypothalamus, suggesting
gliosis (11), as well as decreased hypothalamic connectivity, as
measured by diffusion tensor imaging (12). However, most of
the literature focuses solely on other brain structures, like the
hippocampus.

The hippocampus and the hypothalamus play similar
roles in appetite control (13). Previous studies suggest that
hippocampal neurons rely on neurohormonal signals to orches-
trate a response to achieve energy balance through adaptive
behavioral outcomes (14). Several rodent studies showed that
excessive caloric intake via diets high in lipids and sugars
reduces hippocampal function, plasticity, and neurogenesis
(14–16). In humans, previous studies reported an inverse
relationship between BMI and hippocampal N-acetylaspartate
(NAA), indicating that a higher BMI is associated with
lower hippocampal NAA concentration levels (13). Recent
proton magnetic resonance spectroscopy studies also showed
that a higher BMI is associated with decreased content
of neurochemical markers of neuronal integrity (NAA) in
several brain regions, like the hippocampus (17). Moreover,
in adults with intact cognitive functions, obesity is associ-
ated with altered cerebral neurochemical profiles, increased
myoinositol (mI) levels, and decreased NAA/creatine (Cr)
and glutamate (Glu)/Cr ratios in the hippocampal region
(18, 19).
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Although previous research suggests an important associa-
tion between the hippocampal composition and obesity, little
is known about the association between the hypothalamic
metabolism [Glu/Cr, sum of glutamate and glutamine (Glx)/Cr,
NAA/Cr, mI/Cr, and glycerophosphocholine (GPC) + phospho-
choline (PCh)/Cr ratios], body weight, physical development,
and food habits in adolescents. Therefore, our aim was to assess
the hypothalamic metabolism in adolescent obesity.

We hypothesized that adolescent obesity would be associated
with a decrease in the NAA/Cr ratio in the hypothalamus,
a sign of synaptic loss and neurodegeneration. Furthermore,
we investigated the association between the hypothalamic
metabolism and BMI, physical development, and food habits
in obese and eutrophic adolescents.

Methods
Study design
This is a case-control study to evaluate the association of the
hypothalamic metabolism, body weight, physical development, and
food habits, comparing adolescents with obesity and their eutrophic
counterparts of both sexes. This study is described per the STROBE
(Strengthening the Reporting of Observational Studies in Epidemiology)
guidelines (20).

Ethics
The Institutional Review Board of the Santa Casa de São Paulo
Hospital approved the study (CAAE: 24552413.2.0000.5479). In-
formed assent and consent forms were signed by adolescents and their
parents/guardians, respectively, before the implementation of any study
protocol.

Participants
We collected data from the Childhood Obesity Outpatient Clinic of
the Santa Casa de São Paulo. Participant recruitment started in May
2015, and follow-up ended in September 2016. We included adolescents
between the ages of 11 and 18; the eutrophic group (control) had a
BMI z-score ≤ 1 and the obesity group had a BMI z-score ≥ 2. We
excluded subjects presenting neurological disorders, head trauma, or
ferromagnetic objects in the body, including orthodontic appliances that
could affect safety and/or the quality of the MRI exam. We excluded
subjects with substance dependence or abuse, as well any psychiatric
disorders diagnosed using the Kiddie Schedule for Affective Disorders
and Schizophrenia questionnaire (see flowchart in Figure 1) (21).

Anthropometric variables
Systolic and diastolic blood pressure values were measured with
a sphygmomanometer. Age at menarche was recorded for female
participants. Pubertal status was measured using the Tanner staging
system, a scale of physical development in children, adolescents, and
adults. The scale defines physical measurements of development based
on external primary and secondary sex characteristics, such as the
size of breasts and genitals, testicular volume, and the development of
pubic hair (22). To prevent adolescents from feeling uncomfortable,
Tanner staging was not performed via physical examination; instead,
participants were asked to identify figures that best resembled their
pubic development stage.

Psychological and socio-economic assessments
The Yale Food Addiction Scale (YFAS) and the Binge Eating Scale (BES)
were assessed as described by Simoes et al. (23). The Child Depression
Inventory (CDI) was assessed via a 27-item self-reported measure that
assesses the presence of subsyndrome depressive symptoms in children
and adolescents from ages 7 to 17 (24). The Brazilian Economic
Classification was employed to classify participants according to socio-
economic strata (25).
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FIGURE 1 Flowchart of the MRS study. MRS, magnetic resonance spectroscopy.

Image acquisition
Magnetic resonance spectroscopy (MRS) was performed using a 3.0T
whole-body magnet (Intera Achieva, Philips) in the Department and
Institute of Radiology at the University of São Paulo (InRad HC-
FMUSP) between 07:00 and 07:30 (the patients were in a fasted state
during the exam). The Point Resolved single voxel (PRESS) technique
was used with an echo time (TE)/ repetition time (TR) of 35/4000 ms
and 160 repetitions. The nominal voxel size of the spectrum was
2 × 2 × 2 cm3 and was located at the height of the hypothalamus, with
4 saturation bars placed within the limits of the water-voxel overlap
with NAA-voxel to reduce the effect of the chemical shift (Supplemental
Figure 1).

MRS quantification
LCModel (version 6.3) was adopted to quantify metabolite levels of
Glu, Glx, NAA, mI, total choline (Cho) as the sum of GPC and PCh, and
Cr (26). An unsuppressed water signal was used as an internal reference.
To ensure the accuracy of the measurements obtained, only metabolite
results with Cramer-Rao lower bound (CRLB) values of less than 20%
were considered (27). In the same way, spectra of low spectral resolution
(frequency width at half maximum > 0.1 ppm) and those with a signal
to noise ratio below 5 were excluded from the analysis (Supplemental
Table 1). We report metabolite concentrations as the ratio to Cr, since
absolute values are usually considered less reliable, as they are more
susceptible to partial volume effects than ratios over Cr.

Statistical methods
Data are expressed as means ± SDs. Categorical variables were analyzed
using chi-squared tests. Mammary development and gonad develop-
ment were analyzed within the respective gender categories. Normality
was checked using the Kolmogorov-Smirnov test in continuous
variables and comparisons were conducted through an ANOVA using
unpaired t-tests (parametric) or Mann-Whitney U (nonparametric)
tests, when appropriate. Pearson (parametric coefficient) or Spearman
correlations (nonparametric coefficient) were conducted to evaluate the
association between spectroscopy metabolite ratios and BMI z-scores
and BES, YFAS, and CDI scores. The data obtained in the present
study were correlated with circulating levels of cytokines, hormones,
and neuropeptides measured in the same cohort by Simoes et al. (23, 28).
Results are reported as predicted means with 95% CIs, and significance
was considered at P values < 0.05. All analyses were performed using
Graphpad Prism 7.0.

Results
Participants

Table 1 reports the characteristics of the entire cohort. A total
of 115 subjects, who were 13.9 ± 1.93 years old on average
and 52.2% of whom were female, were divided into 2 groups: a
eutrophic group (control) with BMI z-scores ≤ 1 and an obesity
group with BMI z-scores ≥ 2. Potential confounders, such as age
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TABLE 1 Anthropometrics, psychological, and socio-economic variables of the entire cohort1

Characteristics Eutrophic,2 n = 59 Obese,3 n = 56 Missing values, n P value

Age, y 14.2 (± 1.91) 13.6 (± 1.91) 0 0.09
Sex, male/female 26/33 29/27 0 0.41
Blood pressure, mm Hg
Systolic 107 (± 8.44) 122 (± 14.3) 11 <0.001
Diastolic 74.2 (± 10.4) 76.3 (± 14.0) 12 0.17
Age at menarche, y 11.7 (± 1.27) 11.5 (± 1.12) 7 0.52
Mammary development 7 0.17 —
Stage 2 3 (10%) 1 (4%) —
Stage 3 11 (38%) 8 (33%) —
Stage 4 13 (45%) 8 (33%) —
Stage 5 2 (7%) 7 (29%) —
Gonad development 13 0.07 —
Stage 1 0 (0%) 1 (5%) —
Stage 2 3 (13%) 5 (26%) —
Stage 3 10 (44%) 3 (16%) —
Stage 4 5 (22%) 9 (47%) —
Stage 5 5 (22%) 1 (5%) —
Pubic hair development 20 0.35 —
Stage 1 3 (6%) 0 (0%) —
Stage 2 8 (15%) 7 (16%) —
Stage 3 20 (39%) 13 (30%) —
Stage 4 16 (31%) 15 (35%) —
Stage 5 5 (10%) 8 (19%) —
Psychological assessments
CDI score 10.3 (± 5.44) 10.1 (± 5.32) 0 0.85
YFAS score 1.67 (± 1.89) 2.29 (± 1.75) 0 0.02
BES score 6.81 (± 6.17) 10.3 (± 6.49) 0 0.001
Socio-economic classification 0 0.87 —
Upper class 1 (2%) 2 (4%) —
Middle class 31 (53%) 28 (50%) —
Lower class 27 (46%) 26 (46%) —

1Data are presented as means (± SDs). Significance between the groups was tested using a chi-squared test for categorical variables and an unpaired t-test or Mann-Whitney
U test for continuous variables. BES, Binge Eating Scale; CDI, Children Depression Inventory; YFAS, Yale Food Addiction Scale.
2Eutrophic participants presented BMI z-scores ≤ 1.
3Obese patients presented BMI z-scores ≥ 2.

and sex, presented no differences in the distribution between
groups (P > 0.05). Adolescents with obesity presented with
higher systolic blood pressure (122 ± 14.3 mmHg) compared to
their eutrophic counterparts (108 ± 8.44 mmHg; P < 0.001).
No differences were found regarding pubic hair development
(P = 0.35), mammary development (P = 0.17), or gonad
development (P = 0.07). The average menarche age among
females was 11.6 ± 1.19 years. Adolescents with obesity showed
higher scores on the YFAS (P = 0.02) and the BES (P = 0.001),
indicating addictions to high-fat and/or high-sugar foods and
eating disorders, respectively, when compared to normal weight
controls.

Hypothalamic metabolite levels in adolescents

Out of a total of 115 spectra obtained, only 74 spectra (37
per group) fulfilled the established quality criteria and were
considered for further analysis. The high number of excluded
low-quality spectra (n = 41) is related to the location of the
hypothalamus, which is very difficult to shim (homogenization
of the B0 magnetic field) and will often lead to a nonoptimal
equipment adjustment. MRS quality parameters, such as the
frequency width at half maximum, signal to noise ratio, and
CRLB for each metabolite, were calculated (Supplemental Table
1), and no differences in terms of MRS quality were observed
between groups.

TABLE 2 Results of proton magnetic resonance spectroscopy in the hypothalamus of the entire cohort1

Ratios Eutrophic,2 n = 37 Obese,3 n = 37 P value

Glu/Cr 1.05 (± 0.17) 1.03 (± 0.32) 0.85
Glx/Cr 1.73 (± 0.36) 1.78 (± 0.41) 0.59
NAA/Cr 0.84 (± 0.20) 0.70 (± 0.19) 0.004
mI/Cr 0.96 (± 0.18) 0.99 (± 0.16) 0.49
GPC + PCh/Cr 0.34 (± 0.04) 0.33 (± 0.03) 0.19

1Data presented as Mean (± SD). Significance between the groups was tested using Unpaired T test. Cr, creatine; Glu, glutamate; Glx, sum of glutamate and glutamine; GPC,
glycerophosphocholine; mI, myo-inositol; NAA, N-acetylaspartate; PCh, phosphocholine.
2Eutrophic participants presented BMI z-scores ≤ 1.
3Obese patients presented BMI z-scores ≥ 2.
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FIGURE 2 BMI z-score correlations to NAA/Cr ratio within the entire
cohort. Significant differences were tested using Pearson coefficients
(r) within the entire cohort [eutrophic (n = 37) and obese (n = 37)]. Cr,
creatine; NAA, N-acetylaspartate; r, correlation coefficient.

An exploratory analysis considering the entire cohort
demonstrated that adolescents with obesity presented
lower NAA/Cr ratios relative to eutrophic adolescents
(P = 0.004; Table 2). Glu/Cr, Glx/Cr, mI/Cr, and GPC + PCh/Cr
ratios did not present differences between groups.

Significant differences in hypothalamic levels of NAA,
as well as the BMI z-scores of the entire cohort, were
considered for correlation analyses, which showed significant
negative linearity between BMI z-scores and the NAA/Cr ratio
(P = 0.03), indicating that lower hypothalamic levels of NAA
are associated with increased BMI z-scores (Figure 2). However,

no correlations were found between the hypothalamic NAA
content and physical development, food habits, or depression
symptoms (Supplemental Table 2).

Relationship between circulating factors and
hypothalamic metabolites

To evaluate the cross-talk between serum protein concen-
trations and central metabolites, correlation analyses were
performed for NAA/Cr and circulating cytokines, hormones,
or neuropeptides (Table 3). There was a negative correlation
between the NAA/Cr ratio and insulin (rho = −0.27;
P = 0.04; Figure 3A), C-peptide (rho = −0.26; P = 0.04;
Figure 3B), amylin (r = −0.27; P = 0.04; Figure 3C), and
ghrelin (rho = −0.30; P = 0.02; Figure 3D). Furthermore, the
NAA/Cr ratio was negatively correlated with the neuropeptide
concentration (neuropeptide Y; r = −0.27; P = 0.04; Figure 3E)
and positively correlated with cytokine levels (IL-8; rho = 0.26;
P = 0.04; Figure 3F). No other correlations were detected
between NAA/Cr and circulating factors.

Discussion

To the best of our knowledge, this is the first study evaluating
the relationship of the hypothalamic metabolite composition
(Glu/Cr, Glx/Cr, NAA/Cr, mI/Cr, and GPC + PCh/Cr ratios)
with body weight, physical development, and food habits in
adolescents. Higher BMI z-scores were associated with lower
NAA/Cr ratios in the hypothalamus, a brain area that has been
deemed crucial for weight homeostasis.

TABLE 3 Serum protein levels and NAA/Cr ratio correlations within the entire cohort1

NAA/Cr rho P value
r

Serum hormones
Insulin — − 0.27 0.04
Leptin — − 0.07 0.61
C-peptide — − 0.26 0.04
Amylin − 0.27 — 0.04
Glucagon — − 0.19 0.15
GLP-1 − 0.11 — 0.43
GIP — − 0.12 0.36
Ghrelin — − 0.30 0.02
Serum neuropeptides
α-MSH — 0.26 0.08
β-Endorphin — 0.18 0.22
Neurotensin — 0.16 0.24
Oxytocin — 0.13 0.36
Orexin — 0.13 0.36
MCH — 0.04 0.75
NPY − 0.27 — 0.04
Serum cytokines
L1β — 0.07 0.59
IL-6 — 0.08 0.57
IL-8 — 0.26 0.04
IL-10 — 0.06 0.66

1Significant differences were tested using Pearson coefficients (r) or nonparametric Spearman correlation (rho) within the entire cohort [eutrophic (n = 37) and obese (n = 37)].
α-MSH, α-melanocyte-stimulating hormone; Cr, creatine; GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like peptide-1; MCH, melanin-concentrating hormone; NAA,
N-acetylaspartate; NPY, neuropeptide Y.
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FIGURE 3 NAA/Cr ratio, cytokines, hormones, and neuropeptides’ significant correlations within the entire cohort. (A) Serum insulin and
hypothalamus NAA/Cr ratio correlation; (B) serum C-peptide and hypothalamus NAA/Cr ratio correlation; (C) serum amylin and hypothalamus
NAA/Cr ratio correlation; (D) serum ghrelin and hypothalamus NAA/Cr ratio correlation; (E) serum neuropeptide Y and hypothalamus NAA/Cr ratio
correlation; and (F) serum IL8 and NAA/Cr ratio correlation. Significant differences were tested using Pearson coefficients (r) or nonparametric
Spearman correlation (rho) within the entire cohort [eutrophic (n = 37) and obese (n = 37)]. Significance was considered at a P value < 0.05. Cr,
creatine; NAA, N-acetylaspartate.

The NAA/Cr ratio is considered an indicator of functional
integrity, neuronal density, and overall brain activity (29).
Consequently, a decrease in the NAA/Cr ratio is considered a
sign of synaptic loss and neurodegeneration (29). The NAA
presence is high in neurons, since it is an active component
of various processes, including myelination, myelin repair,
lipid metabolism, osmoregulation, and neuronal signaling (30).
NAA is also a key component of the regulation of the
oligodendrocyte metabolism during brain development and in
situations involving brain damage. The findings thus suggest
that obese adolescents may be at risk of developing impairments
in these processes, with possible long-term consequences.

The finding that high BMI z-scores were associated with
lower NAA/Cr ratios corroborates studies reporting that the
pathogenesis of obesity involves increased adiposity, which
is linked to progressively compromised weight loss capacity
(31, 32). The impaired connectivity and hypothalamic gliosis
observed among obese individuals may possibly contribute to
cognitive dysfunction, weight gain, and metabolic disease (33–
35). The literature stresses that decreased NAA/Cr ratios may
function as a marker for the reduction of neuronal dysfunction
and dopaminergic neurotransmission, which are involved in
the regulation of memory, attention, learning, and executive
functioning (36, 37). Spectroscopic studies in obese adolescents
demonstrated lower levels of NAA and Cho in relation to
their eutrophic counterparts, but no significant differences
were observed in Cr, NAA/Cr, or Cho/Cr in the frontal
lobe and hippocampus (38). These findings are noteworthy,
as alterations frequently associated with obesity, such as
insulin resistance, may also be related to lower NAA (39).
Similarly, our data demonstrate a negative correlation between
NAA/Cr and insulin. Furthermore, C-peptide (released during

insulin cleavage) and amylin were also negatively correlated
with NAA/Cr, indicating that increased circulating hormone
concentrations could contribute to the severity of hypothalamic
impairments (lower NAA/Cr ratios) in patients with higher
z-scores. Nonetheless, the specific mechanism driving such a
disruption is unknown (40, 41). We hypothesize that insulin
resistance leads to increased levels of circulating cytokines, with
the potential to cross the blood-brain barrier and modulate
NAA concentrations. The same can be postulated in regard to
augmented levels of circulating glucose (18). We also describe a
positive correlation between IL-8 and NAA/Cr ratios.

The relevance of the present study resides in demon-
strating that patients with higher BMI z-scores also show
signs of an altered hypothalamic metabolism, as inferred
by lower NAA/Cr ratios. Considering the hypothalamus
as the major center of appetite control and metabolism
regulation, the correlations found between NAA/Cr and serum
cytokines, hormones, and neuropeptides may suggest an in-
tricate cross-talk, linking hormonal imbalances, neurohumoral
alterations, and hypothalamic functions in adolescents with
obesity.

A previous report (42) suggests that lower metabolite ratios
associated with higher BMIs may not reflect real physiological
changes, but rather the lower quality of the spectrum in the
presence of thicker layers of subcutaneous fat. In our study,
we showed that the MRS qualities for both groups were
comparable, reinforcing the idea that our findings represent real
metabolic changes. In agreement with this, a recent in vitro
study also showed that the presence of a fat layer does not affect
MRS quantification (43).

While our study fills a gap in the literature, it has the
limitations that are usually associated with an observational
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design. Firstly, our metabolite measurements were not vali-
dated through agreement across different measurements, thus
introducing potential measurement bias. Secondly, we did not
follow the participants longitudinally to evaluate whether these
associations could be modified over time. Thirdly, the described
correlations may be considered relatively weak. Nevertheless,
the novelty consists of a comprehensive and concomitant
analysis of variables within the same population, thus achieving
clinical relevance. Finally, although our sample was among the
largest in the literature, the final number of participants can be
deemed relatively small. This fact can be explained by the rigid
quality control applied to our MRS data, which left us with
only 74 samples out of 115 participants, which is considered
acceptable for further data analysis. Future studies should take
this reduction into consideration when planning data collection,
as image quality can be affected by the surrounding body tissue
and cerebrospinal fluid.
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