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Background: Extensive evidence showed that gastric cancer (GC) is heterogeneous, and many studies have been fo-
cused on identifying GC subtypes based on genomic profiles. However, few studies have specifically explored the
GC classification and predicted the classification accuracy that may help facilitate the optimal stratification of GC pa-
tients responsive to immunotherapy.
Methods: Using two publicly available GC genomics datasets, we classified GC on the basis of 797 immune related
genes. Unsupervised and supervised machine learning methods were used to predict the classification.
Results:We identified two GC subtypes that we named as Immunity-High (IM-H) and Immunity- Low (IM-L), and dem-
onstrated that this classification was duplicable and predictable by analyzing other datasets. IM-H subtype was char-
acterized by greater immune cell infiltration, stronger immune activities, lower tumor purity, as well as worse
survival prognosis compared to IM-L subtype. Besides the immune signatures, some cancer-associated pathways
were hyperactivated in IM-H, including TGF-beta signaling pathway, Focal adhesion, Cell adhesion molecules
(CAMs), Calcium signaling pathway, mTOR signaling pathway, MAPK signaling pathway andWnt signaling pathway.
In contrast, IM-L presented depressed immune signatures and increased activation of base excision repair, DNA repli-
cation, homologous recombination, non-homologous end-joining and nucleotide excision repair pathways. Further-
more, we identified subtype-specific genomic or clinical features, and subtype-specific gene ontology and networks
in IM-H and IM-L subtype.
Conclusions:Weproposed and validated two reproducible immunemolecular subtypes of GC, which has potential clin-
ical implications for GC patient selection of immunotherapy.
Introduction

Gastric cancer (GC) is one of the most common malignant tumors and
the third leading cause of cancer-related death worldwide [1]. GC is com-
mon in Asian countries, especially in China [2]. Based on the molecular
characteristics of genomic profiles, The Cancer Genome Atlas (TCGA) clas-
sified GC into four subtypes: Epstein–Barr virus (EBV) associated, microsat-
ellite instable (MSI), genomically stable (GS), and chromosomal instability
(CIN) [3]. The Asian Cancer Research Group (ACRG) classifiedGC into four
subtypes: microsatellite stable (MSS)/epithelial-mesenchymal transition
(EMT), MSI, MSS/p53+, and MSS/p53 inactive [4]. Abundant evidence
showed that GC treatment faces enormous challenges as its high heteroge-
neity [5]. Zhou et al. identified a novel classification of GC microenviron-
ment, which comprised three robust non-negative matrix factorization
(NMF) based clusters with active, suppressive, and lacking immune re-
sponses, which exhibited a strong prognostic value [6]. Zeng et al. defined
pital of Nanjing Medical University, J

search Lab, School of Basic Medicine a
xiaosheng.wang@cpu.edu.cn. (X. Wan

sevier Inc. on behalf of Neoplas
).
three GC subgroups based on a tumor microenvironment score (TME)
score, which included three immunity clusters whose immune module
gene signatures interpreted the response of gastric tumors to immunother-
apies [7]. These previous efforts to classify GC might provide the basis for
developing targeted therapies for GC.

Recently, tumor immunotherapy has been successful in treating various
malignant tumors [8]. Particularly, the immune checkpoints blockade has
achieved great success in clinical malignant tumor treatment [9]. Immune
checkpoint inhibitors targeting CTLA4, PD1, or PD-L1 blockade is being
assessed in the GC immunotherapy. FDA has approved the PD1 inhibitor
pembrolizumab to treat advanced malignancies with deficient mismatch
repair (dMMR, or MSI) including the MSI subtype of GC. Thus, it is neces-
sary to consider immunotherapy for GC, as the treatment options for GC
are quite limited. Unfortunately, immunotherapeutic strategies are only
beneficial to less than 20% of cancer patients [10]. This suggests that not
all GC patients have response to immunotherapy. However, certain
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genomic features, such as tumor mutation burden (TMB) or neoantigen
load, PD-L1 expression, and deficient DNA mismatch repair, have been re-
ported to associate with cancer immunotherapeutic responsiveness
[11–15].

In this study, we classified GC into two distinct subtypes by
immunogenomic profiling: IM-H and IM-L. We demonstrated the stability
and reproducibility of this classification in three independent largescale
datasets by a deep learning approach. Furthermore, we identified the
subtype-specific clinical features and molecular characters, including
genes, gene ontology, tumor mutation load (TMB), copy number alter-
ations, pathways, and networks. The identification of immune signature-
associated GC subtypes may facilitate the optimal selection of GC patients
responsive to immunotherapy.
Materials and methods

Materials

We downloaded TCGA stomach cancer (STAD) RNA-seq gene expres-
sion profiles (Level 3), gene somatic mutation matrix (Level 3), somatic
copy number segments (germline CNV removed) and clinical phenotype
data, from UCSC Xena browser (https://xenabrowser.net/datapages/).
The Asian Cancer Research Group (ACRG) dataset were obtained from
Gene Expression Omnibus (GEO) (GSE62254). We also download an addi-
tional Singapore patient cohort fromGEO (GSE15459) as testing set for ma-
chine learning (see below).
Univariate Cox proportional hazards (Coxph) regression

Based on the Coxph regressionmodel, we applied a univariate risk anal-
ysis on 797 immune genes [16] to assess the risk of these genes in GCs, and
extracted the hazard ratio (HR) and P value, where HR > 1 was considered
as a higher risk, HR<1 as a low risk. Thenwe used R package “survminer”
to visualize the Coxph results.
Unsupervised clustering

We used hierarchical clustering to divided GCs for TCGA and ACRG
datasets based on the 160 immune genes. The clustering results are ob-
tained by calculating the euclidean distance. Eventually, GC patients were
divided into high immunogenicity (IM-H) and low immunogenicity (IM-
L) substitutions.
Survival analysis

We compared overall survival (OS) and disease-free survival (DFS) time
between two groups of GC patients divided by the cluster results (IM-H ver-
sus IM-L) or gene expression levels. Kaplan-Meier survival curveswere used
to exhibit the survival differences between two groups of patients. Gene ex-
pressions above or below the median values were divided into two groups.
The log-rank test was used to evaluate the significance of survival-time dif-
ferences with a threshold of P < 0.05.

Evaluation of immune cell infiltration degree and stromal content in
GC.

ESTIMATE [17] was used to quantify immune infiltration and stromal
levels to compare the overall immune cell infiltration level and stromal
components between two groups of GC patients. In addition, we used
TIMER [18] and CIBERSORT [19] tools to analyze the 6 major immune
cells (B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages
and DC cells) and calculate the proportions of 22 human leukocyte cell sub-
sets and compared the proportions of the leukocyte cell subsets in each GC
sample.
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Evaluation of tumor purity, tumor aneuploid and TMB

ABSOLUTE [20] and ASCAT [21] algorithm were used to evaluate
tumor purity and aneuploidy levels in TCGA and ACRG dataset. Each sam-
ple finally received a tumor purity score and aneuploid quantitative score.
For each tumor sample, we determined its TMB as the total count of somatic
mutations detected in the tumor. We compared the differences in purity
and heteroploidy between IM-H and IM-L using the Mann–Whitney U test.

Gene-set enrichment analysis

We used GSEA software [22] to identify significantly pathways which
were activated in IM-H and IM-L subtype based on 186 KEGG gene sets
with the threshold of FDR<0.1. Gene sets with less than 10 geneswere fil-
tered out. The common pathways identified in both datasets were selected.

Somatic copy number alteration (SCNA) analysis

GISTIC2.0 [23] was applied to analyze copy number levels in TCGA. All
params were set as default except the “armpeel” were set to 1. We eventu-
ally obtained the copy number variation levels of each gene in each sample
(0 indicates no change in copy number,> 0 indicates copy number amplifi-
cation, < 0 indicates copy number deletion).

Weighted correlation network analysis

WGCNA [24] was used to identify the gene modules (gene ontology)
which were highly correlated with immune cell infiltration. We performed
preliminary filtering for genes with variance less than the 1/8 quantile,
then we got the best soft threshold value of 3 after “powerEstimate”, and
“minModuleSize” was set to 50 to filter out the modules with low correla-
tion. Finally we got the correlation heat map between gene modules and
the trait. We imported the highest correlation module to Cytoscape
(https://cytoscape.org/) to visualize the module network and find the
hub genes of the module. The ClueGO [25] and CluePedia [26] plug-ins
were used to analyze the relevant pathways in the module.

Deep neural network (DNN) predicts classification accuracy

To verify the accuracy of the classification results, we treat TCGAGCs as
the deep neural network training set, while ACRG and GSE15459 as the
testing set. We used the R package “TDM” [27] to standardize the mRNA
data of different platforms to make RNA-seq and microarray data compara-
ble. Those 160 immune-risk related genes were then standardized as [28]:

vrank ¼ 1
n
: rank v1ð Þ;…; rank vnð Þð Þ

Then, we set the loss function as the cross-entropy loss function (cross
entropy):

L ŷ; yð Þ ¼ −ŷ log yð Þ− 1−ŷð Þ log 1−yð Þ

ŷ was the predicted value of the model, and y was the true value of the
training set.

The random forest model and the Naive Bayes model in Weka (https://
www.cs.waikato.ac.nz/ml/) library was used to classify the GC subtypes.
We applied the Python Keras library (https://github.com/fchollet/keras)
to train and predict the deep neural network model.

Results

Landscape of the immune microenvironment phenotypes in GCs

We first applied a risk analysis on 797 immune genes and found that
160 immune genes in TCGA were significantly associated with risk and

https://xenabrowser.net/datapages/
ncbi-geo:GSE62254
ncbi-geo:GSE15459
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ncbi-geo:GSE15459
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more than half of the 160 risk-associated genes were significantly related
with the risk in ACRG (Supplementary materials, Table S1). Based on
these 160 immune genes expression level, we hierarchically-clustered GC
in two datasets (TCGA and ACRG). Interestingly, both datasets showed sim-
ilar clustering results, with two clusters being clearly separated.We defined
the two clusters as: Immunity High (IM-H) and Immunity Low (IM-L)
(Fig. 1A). Comparing the expression of risk-related genes in IM-H and IM-
L in two datasets, we found that in TCGA, 146 of 160 (91%) risk-related
genes highly expressed in IM-H subtype, 6 of 160 (4%) highly expressed
in IM-L subtype, and in ACRG, 135 of 160 (85%) risk-related genes highly
expressed in IM-H subtype, 10 of 160 (6%) highly expressed in IM-L sub-
type (student's t-test, FDR < 0.05, Fig. 1B). Moreover, the genes that are
highly expressed in IM-H group are all high-risk genes (HR > 1) in both
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datasets, and five of the six related to low-risk genes are highly expressed
in IM-L group (student's t-test, FDR < 0.05), including EZH2, ITGB4,
PHRF1, KLF5 and BRIP1 (Fig. 1B).

Then we used ESTIMATE [17] to evaluate the immune cell infiltration
level (immune score) and the matrix content level (stromal score) to com-
pare the differences of tumor microenvironment between the IM-H and
IM-L subtypes in the two datasets. We found that the immune score and
the stromal score were significantly higher in IM-H than in IM-L in both
datasets (Mann-Whitney U test, immune score: P = 3.08e-31 (TCGA), P
= 1.78e-16 (ACRG); stromal score: P = 3.40e-54 (TCGA), P = 3.27e-35
(ACRG)) (Fig. 1C).Whenwe used ABSOLUTE [20] and ASCAT [21] to eval-
uate tumor purity and tumor aneuploidy, the result showed IM-L subtype
had higher tumor purity (Mann-Whitney U test, P = 7.71e-3 (TCGA), P
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= 1.24e-4 (ACRG)) and aneuploidy (Mann-Whitney U test, P = 0.07
(TCGA), P = 5.31e-5 (ACRG)) than IM-H subtype (Fig. 1C). The above re-
sults indicated that IM-H subtype had higher immune cell infiltrate levels
and matrix contents than IM-L subtype, while IM-L subtype had more
tumor cells (higher tumor purity) than IM-H subtype.

In addition, survival analysis showed that these two subtypes had dis-
tinct clinical outcomes. The IM-H subtype likely had a worse prognosis
and the IM-L subtype likely had a better prognosis (Fig. 1D), indicating
that the degree of immune cell infiltration is negatively correlated with
prognosis in GC.

IM-H had more active immune microenvironment compared to IM-L subtype

The tumor immune microenvironment is a complex dynamic system.
Different immune microenvironment had different effects on the immuno-
therapy response in tumor patients. In order to clarify the differences of im-
mune cells components in these two immune subtypes, we first compared
the percentage of lymphocyte infiltration according to the TCGA GC patho-
logical slides data, and found that IM-H subtype had markedly higher per-
centages of lymphocyte infiltration compared to IM-L (Mann-Whitney U
test, P=0.04, Fig. 2A).We then evaluated the differences ofmajor immune
cells by TIMER [18], and found that IM-H had much higher density of im-
mune cells, such as B cells, CD4+ T cells, CD8+ T cells, neutrophil cells,
macrophage cells and Dendritic cells (Fig. 2B, Supplementary materials,
Table S2). Furthermore, we compared the proportions of 22 leukocyte
cell subsets that were evaluated by CIBERSORT [23] between IM-H and
IM-L, and found that IM-H harbored higher proportions of B cells naïve, B
cells memory, T cells CD8, Monocytes, Macrophages M2, Mast cells resting
(Mann-Whitney U test, FDR < 0.05;). In contrast, IM-L harbored higher
proportions of Plasma cells, T cells CD4 memory resting, T cells follicular
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helper, T cells regulatory (Tregs), NK cells resting, NK cells activated, Mac-
rophages M0, Mast cells activated (Mann-Whitney U test, FDR < 0.05;
Fig. 2C, Supplementary materials, Table S3). This further demonstrates
that IM-H are associatedwith stronger immune activity andmore active im-
mune microenvironment in GC. Intriguingly, M0 macrophages that incite
inflammation had higher proportions in IM-L than in IM-H, while inflam-
mation inhibiting M2 macrophages that also encourage tissue repair had
higher proportions in IM-H. This finding indicates that the IM-L disease
state promotes inflammatory infiltrates and depresses tissue repair com-
pared to IM-H, which may promote invasion.

Identification of IM-H and IM-L subtype-specific pathways, genomic, clinical fea-
tures, gene ontology, and networks

Identification of GC subtype-specific pathways
We used GSEA to identify a number of KEGG [29] pathways enriched in

IM-H and IM-L. Typically, the immune-associated pathways were highly ac-
tive in IM-H (Fig. 3A) and included Leukocyte transendothelial migration,
ECM-receptor interaction, Fc gammaR-mediated phagocytosis, Chemokine
signaling pathway, Hematopoietic cell lineage and Cytokine-cytokine re-
ceptor interaction. This result demonstrated the elevated immune activity
in IM-H. Besides, we also identified various cancer-associated pathways
that were hyperactivated in IM-H, including TGF-beta signaling pathway,
Focal adhesion, Cell adhesion molecules (CAMs), Calcium signaling path-
way, mTOR signaling pathway, MAPK signaling pathway and Wnt signal-
ing pathway. This suggests that the activities of these cancer-associated
pathways are positively related with GC immunity. In contrast, subtype
IM-Lwas enriched in pathways related to Base excision repair, DNA replica-
tion, Homologous recombination, Non-homologous end-joining and Nucle-
otide excision repair (Fig. 3A), suggesting that the chromosome instability
phil Macrophage Dendritic
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in IM-L subtypes may be much higher than in IM-H. This indicates that the
activities of these pathways could be negatively associated with GC immu-
nity. In fact, our previous study has shown that the activity of MAPK path-
ways positively related with immune signatures, while the activity of the
mismatch repair pathway negatively correlated with immune signatures
in GC [30].

Identification of GC subtype-specific genomic and clinical features
In order to further distinguish the genomic differences between IM-H

and IM-L, we first compared and identified the genes with high mutation
rates (> 10%) in TCGA and ACRG datasets (Fig. 3B). The result showed
that TP53 had the highest mutation rate in GC, and has a significantly
higher mutation rate in IM-L than in IM-H (Fisher's exact test, P = 0.04
(TCGA), P=0.12 (ACRG)), whichwas consistent with our previous studies
that TP53 mutations inhibit tumor immunity in GC [30]. MUC16 had the
second highest mutation rate in GC and was also significantly higher in
IM-L than in IM-H (Fisher's exact test, P = 0.002 (TCGA), P = 0.04
(ACRG)). In addition, there were several genes which were identified
with a significantly higher mutation rate in IM-L than in IM-H, such as
ZFHX4, FAT3, FAT4 and PCLO. And there were some important genes
such as ARID1A and APC (Fisher's exact test, P = 0.004 (ARID1A), P =
0.001 (APC)) were more frequently mutated in IM-L than in IM-H.

Furthermore, we compared somatic copy number alteration (SCNA)
levels of important mutant genes between IM-H and IM-L subtypes
(Fig. 3B). The result showed that TP53 had significantly copy number dele-
tion in both IM-H and IM-L, and the copy number deletion was markedly
higher in IM-L subtype than in IM-H subtype (Fisher's exact test, P =
5

0.008). Other genes such as SYNE1，APC and PCLO were also showed sig-
nificantly copy number deletion in IM-L subtype (P < 0.05). Moreover,
some genes such asCSMD1,OBSCN, ZFHX4, FLG and PCLOwere frequently
amplified in IM-L subtypes (P< 0.05). These results demonstrated that IM-
L subtype has a much higher frequency of genomic instability, in addition
to the higher mutation frequency.

Then we further compared the differences of clinical features between
IM-H and IM-L (Fig. 3B), including pathological stage (pStage) and
Helicobacter pylori (H. pylori) infection status, and four molecular subtypes
of gastric cancer in TCGA: genomic stable (GS), chromosomal unstable
(CIN), EB virus subtype (EBV) andmicrosatellite unstable (MSI). The results
suggested that there was no statistical significance between GC subtypes
and H. pylori infection status (Fisher's exact test, P = 0.10 (TCGA), P =
0.20 (ACRG)). In addition, there were more patients in advanced stage
(pStage was “stage iii/iv”) in IM-H subtype than patients in IM-L subtype
(Fisher's exact test, P = 0.003 (TCGA), P = 1.11e-5 (ACRG)). As most pa-
tients with advanced stage were associated with poor prognosis in IM-H
subtype, which was consistent with previous survival analysis. Among the
four molecular subtypes, EBV subtype had no obvious difference between
IM-H and IM-L subtype. Nevertheless, the GS subtype have a significantly
higher proportion in IM-H (Fisher's exact test, P = 5.95e-9 (TCGA), P =
9.05e-7 (ACRG)), while the CIN and MSI subtype has a higher proportion
in IM-L (Fisher's exact test, P = 0.001 (CIN, ACRG), and P = 3.12e-4
(MSI, TCGA), P = 0.001 (MSI, ACRG). These results implied that the ge-
nome in IM-H is more stable than in IM-L, the mutations and copy number
alterations are more frequent, and the MSI molecular subtype is much
denser in IM-L, which is related to better immunotherapy response. In
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contrast, patients with advanced stage were mainly in IM-H subtype, which
had higher genomic stability, and thus had worse clinical prognosis.

Identification of GC subtype-specific gene ontology and networks
We then performed a weighted gene co-expression network analysis of

these two datasets byWGCNA [24] and identified a series of gene modules
(gene ontology) associated with the genes which were highly expressed.
We found several gene modules that significantly differentiated GC by sub-
type, microsatellite status, H. pylori infection status, or survival time and
survival status in TCGA (Fig. 3C). According to the modules relusts, the
MEturquoise module was markedly elevated in IM-H (P = 2.0e-50, R =
0.65), while was depressed in IM-L (P = 2.0e-50, R=−0.65). Moreover,
a high expressedMEturquoise module was associated with a worse survival
prognosis in GC patients (P = 4.0e-4, R = 0.17). In addition, this module
was negatively correlated with MSI (P = 3.0e-10, R = −0.3), and posi-
tively correlated with MSS (P = 2.0e-10, R = 0.3). In ACRG, the
MEturquoise module has the highest correlation with various traits, and
the trend is highly consistent with the results in TCGA. Then, we imported
all of the genes in MEturquoise module into Cytoscape and perform path-
way analysis. By screening the pathways with the number of genes more
than 10 and P<0.05, we found that the pathwayswhichwere significantly
correlated with the MEturquoise module were mainly metabolism-related
pathways (metabolism of proteins and peptide hormone metabolism),
immune-related pathways (immune system, innate immune system and
adaptive immune system), cell signaling pathways and extracellular matrix
pathways (Fig. 3D).

We extracted and analyzed all the genes in the MEturquoise module
(Supplementary materials, Table S4, Fig. S1,), and selected the key genes
of the module by setting a weight threshold of 0.38, and finally identified
44 hub genes, including three transcription factor (TF) genes (HAND2,
FHL1, LMO1), two oncogenes (MYH11 and LMO1), and a protease-related
gene (MYLK), where LMO1 is not only a transcription factor but an onco-
gene. To further study the relationship between these five key genes and
immune subtypes, we compared the relationship between the expression
level of these five genes and two immune subtypes. The results showed
that the patients with high expression of these genes were accounted for a
significantly higher proportion in the IM-H subtype (Fisher's exact test, P
= 6.21e-25 (HAND2), 1.53e-33 (FHL1), 3.21e-9 (LMO1), 5.71e-28
(MYH11), 5.84e-36 (MYLK)) (Fig. 3E).

Class prediction of GC subtypes based on immune-related genes profiling

In order to verify the reliability and accuracy of the classification perfor-
mance, we first constructed a deep neural network with TCGA dataset as
the training set, ACRG and another gastric cancer dataset as the verification
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set. The results showed that the model accuracy was about 90% in the
TCGA training dataset and 91% in the ACRG test dataset(Fig. 4A). We
then predicted the GSE15459 dataset separately and divided 192 patients
into two types: IM-H and IM-L. The ESTIMATE results showed that IM-H
subtype had a significantly higher immune score and IM-L subtype had a
significantly lower immune score (Mann-Whitney U test, P = 1.47e-12,
Fig. 4B). Then we compared the clinical outcomes between IM-H and IM-
L patients in GSE15459 after prediction, and we found that IM-H subtype
which was predicted based on the deep neural network model had a
worse survival prognosis than the predicted IM-L subtype (P = 0.045,
Fig. 4C). In addition, we used random forest (RF) and Naïve Bayesian
models for the same training to compare the performance of other classi-
fiers in the weka library. The results showed that in the random forest
model, the accuracy of the training dataset (TCGA) and the test dataset
(ACRG) were 92% and 79%, and in the naive Bayes model the accuracy
were 90% and 77% (Fig. 4A). Compared the above results, the deep neural
network model has significantly higher accuracy than the other two com-
monly used models in the Weka library, but the overall model accuracy is
relatively high, suggesting that the characteristic value used for classifica-
tion in this experiment can be applied to many different datasets, and had
universal applicability. These results demonstrate that the immunogenomic
profiling-based classification of GC is stable and predictable.

Discussion

Anumber of prior studies have identifiedGC subtypes on the basis of ge-
nomic profiling [6,7]. However, very few studies have investigated the clas-
sification based on immune risk genes and verified the reliability and
accuracy of the classification. To fill the gaps in knowledge of GC, we fo-
cused on identifying immune-related GC subtypes using immune-related
genes that were screened significantly related to prognosis through a risk
regression model, and identified the subtype-specific clinical features and
molecular characters (Fig. 5). Our results show that GC could be classified
into two stable subtypes: IM-H and IM-L. Moreover, we confirmed that
this classification was duplicable and predictable. The IM-H GC subtype
was enriched not only in immune signatures, but also in many cancer-
associated pathways including TGF-beta signaling pathway, Focal adhe-
sion, Cell adhesion molecules (CAMs), Calcium signaling pathway, mTOR
signaling pathway, MAPK signaling pathway and Wnt signaling pathway
(Fig. 3A). This is in accordance with our previous study showing that vari-
ous immune signatures positively correlatedwith theMAPK, focal adhesion
and Calcium signaling pathways in GC [30]. In contrast, the IM-L GC sub-
type was impoverished in immune signatures but enriched in base excision
repair, DNA replication, homologous recombination, non-homologous end-
joining and nucleotide excision repair (Fig. 3A). It is reasonable that the
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mismatch repair pathway activity was negatively correlated with immune
activity in cancer, as deficient mismatch repair often results in elevated
tumor immunity [31]. Strikingly, we found that the cell cycle and pyrimi-
dine metabolism signaling pathway were enriched in IM-L subtype GC.
This observation is in line with previous studies that cell cycle inhibitors in-
crease tumor immunogenicity [32]. Overall, these findings showed poten-
tial positive or negative associations between signaling pathways
activities and immune activities in GC.

IM-H had significantly stronger immune cell infiltration and immune ac-
tivities. e.g. higher immune score and stroma score (Fig. 1C). When we used
TIMER to calculate the density of immune cell subsets in GC, we found that B
cells, CD8 T cells, CD4 T cells, Neutrophil cells, Macrophages and Dendritic
cells tended to be present in significantly higher numbers in IM-H than in
IM-L (Mann–Whitney U test, P< 0.05) (Fig. 2C). This finding confirmed el-
evated tumor immune activity in IM-H. TMBhas been associatedwith clinical
response to immunotherapy [12]. Gene mutations may yield neoepitopes
that can be recognized by immune cells [33] and were associated with anti-
tumor immune response [10]. Several cancer types with high TMB have
shown positive response to immune checkpoint blockade treatment [34],
then we compared TMB between IM-H and IM-L in TCGA, and found that
IM-L had higher TMB than IM-H (Mann-Whitney U test, P = 1.78e-09).
This suggests that the differential immunogenicity between the GC subtypes
can be attributed to TMB and neoantigens. The correlations of TMBwith im-
mune cell activities and function in GC should be elucidated in future studies.

Furthermore, we found higher clonal heterogeneity in IM-L, as estimated
by ABSOLUTE [20], than in IM-H (Fig. 1C). Consistent with previous studies,
clonal heterogeneity was shown to have a significant negative correlation
with tumor immunity [35]. We further compared SCNA levels of important
mutant genes between IM-H and IM-L subtypes (Fig. 3B). We found several
genes showed frequently amplified or deleted in IM-L subtype, suggesting
that IM-L subtype has a much higher frequency of genomic instability, such
as MUC 16, FAT3, FAT4, and PCLO. Studies have shown that patients with
MUC16mutations were associatedwith a better prognosis in GC, and had po-
tential value for predicting anti-PD-1 therapy [36],whichwas consistentwith
ourfindings that IM-L has a better prognosis than IM-H. Besides, the lower ex-
pression of FAT3 and FAT4 genes is associated with worse overall survival in
GC [37], and the inactivation of PCLO significantly promotes themigration of
cancer cells in liver cancer [38]. These findings demonstrated that IM-H had
lower levels of SCNAs compared to IM-L, supporting the notion that high
tumor aneuploidy correlates with reduced tumor immune infiltration [39].

Furthermore, we compared the differences of clinical characters be-
tween IM-H and IM-L subtype. Our findings showed that GS subtype had
a significantly higher proportion in IM-H while CIN and MSI subtype had
a significantly higher proportion in IM-L. Chromosomal instability has a
strong correlation with tumor immunotherapy response [40], and micro-
satellite instability status could be as additional predictive biomarker of re-
sponse to immunotherapy. These results suggested that IM-L may have a
better immunotherapy response than IM-H.

In addition, we extracted and analyzed all the genes in theMEturquoise
module and found five important genes (HAND2, LMO1, MYH11, MYLK
7

and FHL1) which accounted for a significantly higher proportion in the
IM-H subtype. HAND2 can regulates interleukin 15 (IL15), a key immune
factor required for the activation and survival of uterine natural killer
(uNK) cells [41]. LMO1 overexpression in GC could be as one of new
markers of poor prognosis [42]. The proteins encoded byMYH11were up-
regulated in node-positive GC tissues [43].MYLK overexpression in stroma
cells may regulate GC cells proliferation, apoptosis, invasion andmigration
[44]. Most of these findings were consistent with results from previous
studies. The contradiction was that the patients with low FHL1 expression
tumor showed significantly shorter survival (P < 0.05) than those with
high FHL1 expression tumors [45]. It might be related to the microenviron-
ment of the two subtypes, and further research is needed.

Presently, immunotherapy for GC is an active area of investigation
[46]. However, some preliminary immunotherapy clinical trials have
not shown significant improvement in GC patients (personal communi-
cation). Thus, the classification of GC based on the immune signature
may help to stratify GC patients to identify those who respond to immu-
notherapy. It is conceivable that patients with an IM-H subtype of GC
would be more likely to respond to anti-CTLA4 treatment than patients
with IM-L subtype, since CTLA4 is more highly expressed in IM-H GC
(Mann-Whitney U test，P = 1.29e-8 (TCGA)，P = 0.0035 (ACRG), and
CTLA4 expression would be a predictive biomarker for the response to
CTLA4-directed immunotherapy.
Conclusions

We proposed and validated two reproducible immune molecular sub-
types of GC, which has potential clinical implications for GC patient selec-
tion of immunotherapy. In addition, TMB may be associated with
immune activities in GC.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tranon.2020.100888.
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