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Abstract 

Objective:  Ultraviolet radiation is known for its antimicrobial properties but unfortunately, it could also harm 
humans. Currently, disinfection techniques against SARS-CoV-2 are being sought that can be applied on air and 
surfaces and which do not pose a relevant thread to humans. In this study, the bacteriophage phi6, which like SARS-
CoV-2 is an enveloped RNA virus, is irradiated with visible blue light at a wavelength of 455 nm.

Results:  For the first time worldwide, the antiviral properties of blue light around 455 nm can be demonstrated. With 
a dose of 7200 J/cm2, the concentration of this enveloped RNA virus can be successfully reduced by more than three 
orders of magnitude. The inactivation mechanism is still unknown, but the sensitivity ratio of phi6 towards blue and 
violet light hints towards an involvement of photosensitizers of the host cells. Own studies on coronaviruses cannot 
be executed, but the results support speculations about blue-susceptibility of coronaviruses, which might allow to 
employ blue light for infection prevention or even therapeutic applications.
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Introduction
Since December 2019, a new coronavirus capable of 
causing the severe pulmonary infection CoVid-19 has 
been spreading worldwide, and is therefore referred to as 
SARS-CoV-2 (severe acute respiratory syndrome corona-
virus). As the number of infected and fatalities continues 
to rise, with more than 100 million infections and more 
than 2 million fatalities at the beginning of February 2021 
[1], disinfection options are being sought to contain the 
further spread of the virus. Chemical disinfectants, heat, 
and ultraviolet radiation are successful against the virus 
[2–6], but can also be harmful to humans.

In recent years, visible blue and violet light has been 
employed to inactivate bacteria and fungi without par-
ticularly harming human cells [7–16]. The mechanism 
of action, which is similar for prokaryotic and eukaryotic 
cells, is based on endogenous photosensitizers naturally 

occurring in these microorganisms, such as porphyrins 
or flavins [17–23]. These photosensitizers absorb vis-
ible light of specific wavelengths and generate so-called 
reactive oxygen species (ROS) in the presence of oxygen, 
including 1O2, O2

*−, H2O2 and HO*, which attack and kill 
the cells from inside.

Initial studies reveal that violet light with a wavelength 
of 405 nm has an inactivating effect on viruses [24–26]. 
This is even true for the bacteriophage phi6, which, like 
the SARS-CoV-2 virus, is an enveloped RNA virus [27]. 
Therefore, it is hoped that SARS-CoV-2 is also sensitive 
to violet light.

Studies on the effect of blue, non-violet light on any 
viruses do not exist so far, although this wavelength range 
(450–470 nm) has advantages over violet light. It is even 
less harmful to human cells [9–11, 28] and exhibits a 
higher penetration depth into human tissue, which might 
lead to future local therapies that try to fight coronavi-
ruses in the human body, if coronaviruses exhibit a sen-
sitivity to visible light. At least, some local blue or violet 
illumination applications have been investigated for the 
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treatment of bacterial or fungal infections, e. g. as ther-
apy for acne [29, 30], Helicobacter pylori infections in the 
stomach [31], vaginal infections [32] and for the preven-
tion of ventilator-associated pneumonia [33].

Unfortunately, we are not allowed to work with coro-
naviruses in our laboratory. Therefore, in the study pre-
sented here, experiments on the inactivation of phi6—as 
a non-pathogenic coronavirus surrogate—are performed 
with 455 nm blue light and compared to the results of a 
previous 405 nm investigation [27].

Main text
Method
Irradiation setup
The description of the irradiation setup is presented 
schematically in Fig. 1. Two glass beakers containing a 
virus-containing solution are kept at approximately 20 
°C using a temperature-controlled water bath. One of 
the samples is irradiated from above by an array of 16 
(4 × 4) 455 nm LEDs of RP-Technik GmbH (Rodgau, 
Germany). A hollow pyramid with reflective coating at 
the inside provides a homogeneous irradiance of up to 
50 mW/cm2 in the sample plane at a distance of 28 cm. 
The emission spectrum of the employed 455 nm LEDs 
is given in Fig. 2, together with the emission spectrum 
of the 405 nm LED employed by Vatter et al. in a for-
mer study [27] and the absorption of known bacte-
rial photosensitizers. This illustrates that at least for 
bacteria 405 nm and blue 455 nm irradiation involve 
different photosensitizers. The second beaker glass is 
shielded from light and serves as a control.

Fig. 1  Scheme of the illumination setup

Fig. 2  455 nm LED emission spectrum, with additional spectrum of the 405 nm LED of [27] and typical bacterial (!) photosensitizer absorption 
spectra [34] for comparison
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Microbiological experiments
Test virus is the bacteriophage phi6 (DSM 21518), 
which is multiplied by its host bacterium Pseudomonas 
syringae (DSM 21482). For the experiments, approxi-
mately 1.5 × 107 viruses or plaque forming units (PFU) 
per ml of a phosphate buffered saline (PBS) solution 
are prepared. Samples are drawn for 0 h, 8 h, 16 h, 
24 h, 32 h and 40 h of irradiation. At the end of each 
irradiation experiment, a double agar overlay plaque 
assay is performed: small volumes of the irradiated 
and non-irradiated virus samples are first mixed with 
Pseudomanas syringae and then poured as a liquid 
agar layer onto solid agar plates. In the absence of rep-
licable viruses, bacteria will multiply in the agar and 
provide detectable turbidity. However, existing phi6 
can infect and lyse bacteria. This creates holes/plaques 
in the agar turbidity from which the concentration of 
replicable phi6 in the samples and thus the disinfec-
tion effect of the 455 nm radiation can be calculated 
[27, 35].

Results
At least three technical replicates were performed of 
each individual irradiation dose up to 7200 J/cm2 over a 
period of up to 40 h and each series of measurements was 

executed three times. Typical results for an non-irradi-
ated and an irradiated virus sample with the double agar 
overlay plaque assay are illustrated in Fig.  3. The differ-
ence in the number of plaques—and therefore viruses—
between non-irradiated and irradiated sample is evident. 
Figure 3b reveals the quantitative results. The phi6 con-
centrations in the non-irradiated samples hardly changed 
during the 40 h duration of the experiment, but in the 
irradiated samples the virus concentration was success-
fully reduced by more than three orders of magnitude 
after 7200 J/cm2 at 455 nm. The necessary log-reduction 
dose is about 2130 J/cm2 at 455 nm—compared to a log-
reduction dose of approximately 430 J/cm2 at 405 nm 
according to Vatter et al. [27].

Discussion
For the first time, it could be demonstrated that the 
enveloped RNA virus phi6 is sensitive to visible blue light 
with a wavelength of 455 nm. The sensitivity is about 
5 times lower than its 405 nm sensitivity, which was 
observed in a previous study [27]. This ratio is a typical 
sensitivity ratio known for pseudomonads and bacteria in 
general between these wavelengths [36, 37].

Nevertheless, the virus sensitivity to visible light is 
unexpected. In bacteria the presence of endogenous 

Fig. 3  Results of the 455 nm irradiation of phi6 samples. a Example photographs of virus solution on agar plates. After 24 h the viruses have 
created visible plaques in the bacterial lawn. Top: non-irradiated sample, bottom: same sample after 2880 J/cm2 at 455 nm. b Evolution of phi6 
concentration in plaque forming units (PFU) per ml as a function of the 455 nm irradiation dose. The former 405 nm results [27] are added for 
comparison. Each value represents the average of at least three independent experiments and the error bars depict the standard deviation of these 
single measurements
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photosensitizers like porphyrins and flavins is well 
known, because they are results of the bacterial metab-
olism. The virus however exhibits no metabolism and 
should not need or produce such photosensitizers. Even 
if it contains one photosensitizer this should be effec-
tive either at 405 nm or 455 nm—but not at both wave-
lengths. The fact that the virus concentration is reduced 
at both wavelengths and the sensitivity ratio between 455 
and 405 nm, which is similar to the above mentioned typ-
ical bacterial ratios, gives room for the speculation that 
the virus unintentionally takes along the bacterial pho-
tosensitizers of its host (Pseudomomas syringae) when it 
assembles its envelope.

Conclusion
Whether the more important SARS-CoV-2 also contains 
photosensitizers and exhibits photoinactivation sensitiv-
ity towards blue or visible light is unknown so far, but 
there are hints that this coronavirus might at least con-
tain porphyrins [38], which would possibly result in a 
sensitivity towards 405 nm irradiation. The advantage of 
a 455 nm light sensitivity could be the higher penetration 
depth of blue light in human tissue compared to violet 
light in a—speculative—future antiviral therapy.

Limitations
Coronaviruses and phi6 are both enveloped RNA viruses, 
and phi6 has often been applied as coronavirus surrogate 
in the past, but so far there is no prove for any sensitiv-
ity of coronaviruses towards blue or violet light. Unfor-
tunately, our lab does not have the required security 
clearance for coronavirus experiments.
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