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Abstract 

Background: Genomic technologies can be subject to significant batch-effects which are known to reduce experi-
mental power and to potentially create false positive results. The Illumina Infinium Methylation BeadChip is a popular 
technology choice for epigenome-wide association studies (EWAS), but presently, little is known about the nature of 
batch-effects on these designs. Given the subtlety of biological phenotypes in many EWAS, control for batch-effects 
should be a consideration.

Results: Using the batch-effect removal approaches in the ComBat and Harman software, we examined two in-
house datasets and compared results with three large publicly available datasets, (1214 HumanMethylation450 and 
1094 MethylationEPIC BeadChips in total), and find that despite various forms of preprocessing, some batch-effects 
persist. This residual batch-effect is associated with the day of processing, the individual glass slide and the position 
of the array on the slide. Consistently across all datasets, 4649 probes required high amounts of correction. To under-
stand the impact of this set to EWAS studies, we explored the literature and found three instances where persistently 
batch-effect prone probes have been reported in abstracts as key sites of differential methylation. As well as batch-
effect susceptible probes, we also discover a set of probes which are erroneously corrected. We provide batch-effect 
workflows for Infinium Methylation data and provide reference matrices of batch-effect prone and erroneously 
corrected features across the five datasets spanning regionally diverse populations and three commonly collected 
biosamples (blood, buccal and saliva).

Conclusions: Batch-effects are ever present, even in high-quality data, and a strategy to deal with them should be 
part of experimental design, particularly for EWAS. Batch-effect removal tools are useful to reduce technical variance 
in Infinium Methylation data, but they need to be applied with care and make use of post hoc diagnostic measures.
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Background
Batch-effects can be defined as systematic differences 
between the measurements of different batches of experi-
ments which artificially inflate within-group variances, 
thereby reducing experimental power and potentially 
creating false positive results. While high throughput 
genomic technologies are known to exhibit batch-effects, 
it is postulated they are also present in low throughput 
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assays—it is the data resolution of high throughput tech-
nologies that offer the ability to identify and characterise 
them [1]. Batch-effects may arise from multiple factors, 
encompassing the laboratory environment, operating 
procedures, preanalytic sample variables and human fac-
tors such as fastidiousness and experience. Factors of 
particular concern to high throughput genomic technol-
ogies include: (1) sample quality, preservation and ship-
ment, (2) the choice of methods or procedures, including 
nucleic acid isolation techniques and wash/clean-up con-
ditions, (3) ambient conditions, including room tempera-
ture and ozone levels, (4) differences in scanner/other 
hardware and 5) lot-to-lot variance (discussed further in 
[2]).

In the instance of microarrays in particular, batch-
effects often arise due to intra-batch differences in fluor 
labelling efficiency, dye bias (for two colour arrays), dye 
photobleaching, pipetting accuracy, buffer salt concen-
tration, hybridisation temperature and time, array scan-
ner variability and artefacts such as air bubbles in the 
hybridisation solution. As array scanning is not instan-
taneous, a time or position effect can also arise—with 
latter samples more subject to photodegradation or the 
damaging effects of ozone. It is known that Cy5 dye is 
more prone to photobleaching [3] and ozone degrada-
tion [4, 5] than Cy3 dye. Some features on the arrays are 
more prone to batch-effects. Known susceptibility factors 
include probe GC-content, DNA secondary structure, G 
stacking [6] and melting temperature [7]. For methylation 
arrays, the efficiency of DNA bisulphite conversion also 
needs to be considered.

At a global level, methylation estimates based on the 
Illumina Infinium technology are known to have high 
assay reproducibility [8]; however, a subset of probes have 
low correlation across technical and biological replicates 
[9, 10]. As with other genomic data, Infinium Human-
Methylation450 (450K) and MethylationEPIC (EPIC) 
BeadChip arrays are subject to significant batch-effects. 
With 450K arrays, there are 12 discrete BeadChips on a 
glass slide and 8 discrete BeadChips for EPIC slides. Each 
glass slide is processed and scanned in parallel, so it is 
intuitive to define a batch structure as one slide. Best-
practice laboratory methods seek to limit batch-effects 
by processing large sets of samples from multiple experi-
mental groups together, with processing by experienced 
users employing multi-channel pipettes and/or auto-
mated liquid handlers. In a service facility, it is common 
to also process several of these slides across one day, thus 
creating a larger superset of batches by processing run 
(superbatch).

With Infinium methylation designs, probes designed 
for bisulphite-converted DNA bind to methylated and 
unmethylated alleles, which then allows for single-base 

extension with a labelled nucleotide across from 
the CpG site of interest. Subsequent staining of the 
extended template allows generation of a measurable 
fluorescence signal (Fig. 1). There are two probe types, 
Infinium I and Infinium II, which have different techni-
cal characteristics (Fig. 1). For Infinium I, the 3′ end of 
the probe is positioned directly across from the cyto-
sine to be inspected and for Infinium II, immediately 
adjacent to the cytosine. Cyanine dye channel intensi-
ties are assigned as methylated and unmethylated signal 
depending upon the given probe design. For the Infin-
ium I design probes, there are two probes in the same 
colour channel to quantify methylated and unmethyl-
ated alleles with the colour channel determined by the 
nucleotide immediately adjacent to the target cytosine 
(green fluorescing Cy3 for G/C and red fluorescing Cy5 
for A/T). The Infinium II design uses only one probe to 
quantitate methylation with single-base extension from 
the 3′ end of the probe sequence resulting in either a 
red or green signal depending on whether the query 
site was unmethylated or methylated, respectively. So, 
unlike Infinium I probes, Infinium II probes confound 
red/green channel signals with methylation meas-
urement. In addition, Infinium II probes also show a 
reduced dynamic range of measured methylation values 
as compared with Infinium I probes, presumably due to 
using a single bead for both alleles where the methyl-
ated and unmethylated signals become prone to resid-
ual emission by the other dye [11]. While Infinium II 
probes confound colour with methylation and have less 
signal dynamic range, they are far more common on 
the 450K and EPIC array designs due to their economy 
in measurement (one probe versus two probes).

It is also common for a probe sequence to span other 
CpG sites before the site under inspection. Infinium I 
probe pairs are designed assuming that all CpG sites 
spanning the probe are the same state as the meas-
ured CpG site: all methylated or all unmethylated. So, 
we could expect reduced signal at loci that are partially 
methylated. Infinium II designs use degenerate bases 
throughout the probe at CpG cytosine positions. This 
reduces bias against partial methylation at the expense 
of probe uniqueness and issues with cross-hybridisa-
tion. As such, Infinium II designs are used where there 
are fewer CpG sites traversed by a probe. This also con-
founds probe type with biology, as the Infinium I design 
will be used more often within CpG islands. Considering 
the known technical biases of 450K and EPIC data, it is 
important to undertake normalisation to account for this. 
Normalisation methods can either be within-sample or 
between-sample methods. It is also common to include 
background correction and dye-bias correction as part of 
this process.
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Even with ideal experimental design and array nor-
malisation, some residual technical noise will remain. 
It is common to use multi-variate techniques such as 
principal components analysis (PCA) to identify batch-
effects and then to use specialised batch-effect removal 
software to adjust the data [1]. Given the expectation of 
batch-effects, it is important to design an experiment 
where the experimental factor to be considered is not 
completely confounded with the batch. If so, it becomes 
very difficult to separate biological variance (experi-
mental factor) from technical variance (batch), as the 
latter must be identified, characterised and isolated to 
remove it. In an ideal situation, biological variance is 
orthogonal to technical variance which readily allows 
identification and separation.

There are caveats with batch-effect correction of meth-
ylation data. It is prudent to consider sources of sample-
wise or feature-wise biological epigenetic variance which 
is potentially unrelated to the main experimental factor. If 
the source of variance has high population prevalence, it 
will often present by chance with unequal representation 
across each batch. If the biological variance is undeclared, 
batch-effect correction methods will naïvely mistake this 
as array feature technical variance and moderate batches 
with unequal representation towards the global mean. 
In DNA methylation studies, obvious sources of sample-
wise biological variance are gender and cellular compo-
sition. In females, one of the X chromosome copies is 
inactivated [12] and there are also imprinted regions and 
other DNA gender-associated methylation differences 
on the autosomes [13]. When considering feature-wise 

Fig. 1 Infinium Methylation Assay scheme. a Infinium I assay. Two bead types correspond to each CpG locus: one bead type—to methylated (C), 
another bead type—to unmethylated (T) state of the CpG site. Probe design assumes same methylation status for adjacent CpG sites. Both bead 
types for the same CpG locus will incorporate the same type of labelled nucleotide, determined by the base preceding the interrogated ‘C’ in the 
CpG locus, and therefore will be detected in the same colour channel. b Infinium II assay. One bead type corresponds to each CpG locus. Probe can 
contain up to 3 underlying CpG sites, with degenerate R base corresponding to C in the CpG position. Methylation state is detected by single-base 
extension. Each locus will be detected in two colours. In the current version of the Infinium II methylation assay design, labelled ‘A’ is always 
incorporated at unmethylated query site (‘T’), and ‘G’ is incorporated at methylated query site (‘C’).  Reproduced with permission from Bibikova et al. 
[8]
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biological variance on methylation arrays, a key con-
sideration is genotype. This is often a result of a single 
nucleotide polymorphism (SNP) at the cytosine within 
the measured CpG site. C-to-T transversion events at 
CpG sites are the most frequent SNPs in the genome 
[14] and after bisulphite conversion, this inherited geno-
type is misrepresented as epigenetic state—an inherited 
‘T’ allele and a bisulphite-treated unmethylated ‘C’ allele 
are identical. CpG sites might also have methylation rates 
influenced by a proximal or distal SNP. These cis-acting 
DNA polymorphisms can create allele-specific DNA 
methylation (ASM) [15]. In addition, nearby DNA repeti-
tive elements may also be factors of influence and result 
in metastable epialleles, epigenetic modifications estab-
lished stochastically during early development leading 
to variable expression in genetically identical individuals 
[16]. While sources of sample-wise biological variance 
can be declared a priori to a batch-effect correction algo-
rithm, feature-wise biological variance is problematic. 
Filtering the features by lists of proximal SNPs does not 
account for unknown relationships between methylation 
state and distal SNPs, nor metastable epialleles or other 
abstruse mechanisms. To optimally apply batch-effect 
correction, we must empirically identify the features 
where the algorithm is distorting the data.

A further caveat is the choice of methylation metric. 
The quantification of methylation can be expressed as the 
log-transformed ratio of methylated over unmethylated 
signal (M) or the ratio of methylated over total (methyl-
ated plus unmethylated) signal (β) [17]. It is important 
to use M values when batch-effect correcting Infinium 
methylation data as these are unbounded. By definition, β 
is constrained between 0 and 1, and after correction there 
is no guarantee the values will still be within this range. 
M values can be batch-adjusted and then transformed 
back into the more readily interpretable β methylation 
values by a simple inverse logit transformation. With this 
transformation, very large negative and positive M values 
become asymptotic to β of 0 and 1, respectively.

To characterise batch-effects on Infinium Methyla-
tion BeadChip arrays, we took advantage of two of our 
in-house datasets studying the epigenetics of the devel-
opmental origins of health and disease (DOHaD) in 
neonates and employed two complementary correction 
methods; our batch-effect removal software, Harman 
[18], and the well-established ComBat package [19]. In 
the DOHaD space, variance due to biological phenotype 
can be subtle, which brings technical factors to the fore. 
To counter for this, cohort sizes are often relatively large. 
From the outset we planned for the identification and 
removal of batch-effects by employing a blocked experi-
mental design. The two datasets examined were, (1) 450K 
arrays run on 369 neonate peripheral bloods, part of the 

EpiSCOPE (Epigenome Study Consortium for Obesity 
primed in the Perinatal Environment) study which makes 
use of samples from the DOMInO (Docosahexaenoic 
Acid (DHA) to Optimise Mother Infant Outcome) trial 
investigating the effect of in utero fish oil exposure [20] 
and (2), 169 EPIC arrays from neonate salivas as part of 
the Body Fatness and Cardiovascular Health in Newborn 
Infants (BFiN) study, a cohort investigating newborn 
body fatness and vascular health in the offspring [21, 22]. 
For the EpiSCOPE blood samples, gender and in utero 
fish oil exposure were orthogonal to batch (slide). In the 
BFiN saliva study, the samples were partitioned across 
slides to balance representation of gender and the body 
fatness distribution.

The scale of these experiments and the careful experi-
mental design allowed a great opportunity to study the 
nature of batch-effects on Infinium Methylation arrays. 
Our blocked design allows orthogonality between bio-
logical variance and technical variance giving us the 
best opportunity to identify and eliminate batch-effects. 
Importantly, this lack of confounding allowed us to best 
identify which probes are most susceptible to batch-
effects and to characterise the factors contributing to 
them. To understand the reproducibly of our findings, 
we considered a further three large public datasets and 
for each of the five datasets, we generated sets of errone-
ously corrected and batch-effect susceptible probes and 
created a reference matrix for all 450K and EPIC probes. 
This reference matrix will allow investigators to identify 
erroneously corrected and batch-effect susceptible CpG 
probes in their own EWAS projects.

Results
Experimental design and processing steps
For the EpiSCOPE study [20], DHA supplementation 
and gender were balanced as much as possible across the 
12 450K BeadChips on each glass slide, with these factors 
also randomly distributed over the 6 rows and 2 columns 
of 31 slides (Additional file  1: Fig. S1). Blood DNA was 
extracted from Guthrie card blood spots and the 369 
arrays were processed according to our blocking plan 
in six processing runs (superbatches) at the Australian 
Genome Research Facility (AGRF), Melbourne, Australia.

Similarly, the BFiN study [22] employed a blocked 
design over the 8 EPIC arrays on a glass slide. Apart from 
gender, the experimental factors of interest were con-
tinuous, so the samples were blocked over each slide to 
ensure (as much as possible) equal representation of gen-
der and similar body fatness distribution across the 22 
slides (Additional file 2: Fig. S2). As with the EpiSCOPE 
study, the position was randomised to avoid correlation 
with slide position. DNA was extracted from neonate 
saliva and the 169 arrays were processed in accord with 
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our blocking plan across two processing runs (super-
batches) at the Australian Cancer Research Foundation 
(ACRF) Cancer Genomics Facility, Adelaide, Australia. 
For both studies, further detail on the design and pro-
cessing is given in the methods sections here and in the 
relevant study publication.

Technical variation evident in control probes
The Infinium technology incorporates a number of con-
trol probe families to measure the efficiency and qual-
ity of the many steps in the protocol (the control classes 
are described by Illumina in their BeadArray Controls 
Reporter Software Guide document). Technical effects 
were evident across particular slides of both the Epi-
SCOPE and BFiN datasets. There was little commonal-
ity in the nature of these technical effects across the two 
datasets.

Across the EpiSCOPE 450K data, we observed slides 9 
and 17 had outlier probes for the staining controls with 
reduced fluorescence in the expected high intensity bio-
tin beads (Fig. 2a). Slide 1 exhibited rather high intensity 
staining for the target removal probes (Fig.  2b). In the 
extension controls, some arrays on slides 17, 21 and 25 
exhibited increased variances (Fig. 2c). Arrays from slides 
17 and 25 were also outliers more broadly and exhibited 
less fluorescence for the hybridisation, extension, strip-
ping, specificity and non-polymorphic controls, as well 
as the two bisulphite controls sets (Additional file 3: Fig. 
S3). Collectively, the EpiSCOPE study control probe anal-
yses show some arrays on slides 17 and 25 have increased 
variability across a wide range of control metrics. This 
suggests slides 17 and 25 will also have increased tech-
nical variance for the experimental probes, which will be 
observed as a batch-effect.

Within the BFiN EPIC data, a pronounced difference 
between each superbatch was observed. Slides 13–22 
(the entirety of superbatch 2) had large increases in inten-
sity for the Type I unmethylated control probes (Fig. 2d) 
and Type II green channel probes (Fig. 2e). These control 
probe results suggest a reduced efficiency in the bisul-
phite conversion rate in superbatch 2. Some negative 
control probes on the red and green channels also had 
high fluorescence intensity for superbatch 2 (Additional 
file  4: Fig. S4). Otherwise, the control probes exhibited 
uniformity across slides. Collectively, this suggests the 
EPIC BeadChips were of high quality and that increased 
technical variance leading to batch-effect will more likely 
be across slides 13–22. With decreased efficiency of 
bisulphite conversion, probes with many CpG sites may 
mismatch across their length and there will be a bias in 
calling very low rates of methylation, as this requires high 
conversion efficiency.

Colour balance
Across the green (Cy3) and red (Cy5) signal intensi-
ties, we observed notable dye bias on both the 450K and 
EPIC array designs. For Cy3, there was consistently lower 
mean fluorescence intensity and less variability than Cy5 
(Fig. 3).

When the same Cy3 and Cy5 mean fluorescence inten-
sity data are considered by slide, a correlation with super-
batch was also observed. We note the first EpiSCOPE 
slide in each of the six processing runs (superbatches 
A–F) typically had more or less Cy3 and Cy5 signal and 
a reduced fraction of positively detected probes (Fig. 3). 
Across the two BFiN processing runs (superbatches 
A–B), the second superbatch had less variability in Cy3 
and Cy5 signal than the first. Slides 3 and 5 had a slightly 
reduced fraction of positively detected probes compared 
to the other slides.

A bias associated with BeadChip array position on the 
glass slide was also observed (Fig. 4 and Additional file 5: 
Fig. S5). There was a distinct trend of lower fluorescence 
intensity in the first 2 or 3 rows compared to the latter 
rows. The EPIC array had reduced Cy3 and Cy5 fluores-
cence (Additional file 5: Fig. S5), while for the 450K array 
(Fig. 4), the effect was largely confined to the Cy3 chan-
nel. We also noted that for the 450K design, in which the 
slides are laid out as a matrix of six rows by two columns, 
the Cy3 channel column 1 intensities were slightly higher 
than the corresponding column 2 intensities. As the 
Sentrix scanner is scanning arrays from row 1 onwards, 
the lowered fluorescence is not consistent with photo-
degradation. Instead this could possibly be due to the 
flow-through chambers in the Infinium XStain protocol, 
where XStain reagents flow from the last row to the first 
row (Melinda Ziino, personal communication).

The position bias should particularly affect Infinium 
II probes, as unbalanced falls in cyanine dye inten-
sity will directly translate to biases in the methylated or 
unmethylated signal. The evident dye bias by array posi-
tion implies that correction for dye bias is important in 
removing a source of batch-effects and that across slides, 
experimental factors of interest should not be structured 
by rows (and columns for the 450K array design).

Preprocessing methods and the removal of position 
and dye bias
A total of 12 preprocessing methods were used to nor-
malise the Infinium BeadChip data. Some of these 
methods incorporate dye bias correction within the 
process and some can accept data previously corrected 
for dye bias. The normalisation methods fall into three 
broad groups: raw preprocessing, within-array and 
between-array methods. Raw preprocessing directly 
translates Cy3 and Cy5 intensities into methylation 



Page 6 of 28Ross et al. Clinical Epigenetics           (2022) 14:58 

and unmethylation signal, so there is no correction for 
probe design or dye bias. Within-array methods con-
sider factors such as probe type and background correc-
tion and adjust each array individually. The six methods 
used were Subset-quantile Within Array Normalisation 
(SWAN) [23], Exponential–Normal mixture signal inten-
sity background correction (ENmix) [24], Beta MIxture 
Quantile dilation (BMIQ) [25], Normal–exponential 

out-of-band convolution (noob) background and dye cor-
rection [26], SWAN performed on noob-corrected data 
(noob + SWAN) and similarly, BMIQ on noob-corrected 
data (noob + BMIQ). The between-array methods con-
sider similar factors to within-array methods but seek to 
make the set of arrays identical in statistical properties by 
conditioning the data using techniques such as quantile 
normalisation. Applying quantile normalisation results 
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in methylation arrays all scaled to have the same mean 
methylation and unmethylation signal. This large mod-
eration in signal is best suited to circumstances where 
the biological variation in DNA methylation across arrays 
is modest, with most probes invariant. When the global 

invariance assumption is not met, larger global changes 
in distribution will be lost and false positives can be 
introduced from erroneous adjustment of features. The 
five between-array methods used were standard Illumina 
preprocessing [27], Dasen [28], Dasen performed on 
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noob-corrected data (noob + Dasen), ENmix with sub-
sequent quantile normalisation (ENmix—Quantile) and 
Functional normalisation [29].

For the ten methods that process and return methyla-
tion and unmethylation channel data, we examined the 
removal of position or dye bias (Fig. 4, Additional file 5: 
Fig. S5). We found obvious bias with raw preprocessing, 

while all the other normalisation approaches greatly 
improved the data quality. The within-array normalisa-
tion SWAN method randomly selects discrete subsets of 
Type I and Type II probes with similar CpG content, per-
forms subset quantile normalisation on these subsets and 
interpolates the remaining probes to define new intensi-
ties. The SWAN method increased the methylation mean 
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Fig. 4 EpiSCOPE fluorescence intensity slide positional effect is reduced with preprocessing methods. Infinium green (Cy3 dye) and red (Cy5 
dye) fluorescent intensities are formulated into methylated (meth) and unmethylated (unmeth) signals. These meth and unmeth signals are used 
to calculate β and M values. If the 369 BeadChips in the EpiSCOPE set are grouped by row (R) and column (C) position on the glass slide, there is 
evidence that the distribution of fluorescent intensities is associated with this position. The position effect diminishes with preprocessing methods. 
For some between-array methods no variation in mean is observed, as all the BeadChips have had mean fluorescent intensities moderated to be 
the same
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signal and dispersion to be nearer that of the unmethyl-
ated channel, which removes a large amount of position 
bias. The noob method uses normal–exponential convo-
lution for background correction on DNA methylation 
arrays using the out-of-band fluorescence intensities of 
Type I probes on the array, as well as the control probes. 
This greatly increases the amount of data to model back-
ground fluorescence. The noob method was observed to 
compress the intensity data with the unmethylated sig-
nal having a mean and dispersion similar to the original 
Cy3 signal. The noob methylated and unmethylated sig-
nals appeared more uniform in comparison with SWAN-
normalised data. This equalisation removes bias as the 
formation of M values or β is less impacted by dye or 
position. The combination of SWAN and noob was subtle 
with marginally more methylated signal dispersion. The 
ENmix preprocessing method models the methylation 
signal intensity with a flexible exponential–normal mix-
ture distribution, together with a truncated normal dis-
tribution to model background noise and is an extension 
of robust multi-array-average (RMA) and noob. ENmix 
increased the mean and dispersion of the methylated sig-
nal to be more like the Cy5 signal, resulting in removal of 
much of the position bias.

For the between-array normalisation methods, we 
found Illumina preprocessing method scales all the fluo-
rescence intensities from arrays towards an array from 
row 1. This scaling removes obvious position and dye bias 
from the data with a small amount of dispersion in array 
means remaining. Dasen combines background adjust-
ment with a between-array normalisation method that is 
applied separately to methylated and unmethylated chan-
nels further subdivided into Type I and Type II probes. 
Dasen does not perform dye bias correction, so it is rea-
sonable to also normalise data previously corrected by 
noob. Dasen moderated the means of all the arrays to be 

the same so no dispersion of BeadChip means remained. 
A large difference in fluorescence intensity still existed 
between the methylated and unmethylated channel but 
this disappeared with the use of Dasen in combination 
with noob. The ENmix authors developed a quantile 
normalisation method which can be run on ENmix cor-
rected data. This hybrid ENmix-quantile normalisation 
approach, like the Dasen and noob combination, also 
equalised the methylated and unmethylated fluorescence 
intensities. Functional normalisation is typically coupled 
with prior noob background correction. The method 
extends quantile normalisation and only removes vari-
ation explained by a set of covariates associated with 
technical variation, such as the first two principal com-
ponents of Infinium control probes. This PCA-based 
approach has similarities to Harman batch-effect removal 
but is more limited in scope. Functional normalisation 
returned results similar to Illumina preprocessing; how-
ever, there was less position bias.

In summary, the use of preprocessing to remove 
probe type, background and dye bias was highly effec-
tive in removing much of the obvious glass slide position 
bias, with methylated and unmethylated signal largely 
equalised. The means of the methylated and unmethyl-
ated signals could be further moderated together using 
between-array normalisation methods.

Global methylation overview and batch‑effect model 
specification
Unsupervised learning via principal component analysis 
(PCA) was used to examine global methylation patterns 
and determine the impact of different normalisation 
methods on the data, to gauge the influence of biologi-
cal factors and to identify batch-effects (Fig. 5). Coordi-
nated increased DNA methylation due to X chromosome 
inactivation in females (reviewed in [12]) is often a large 

Fig. 5 Principal component analysis of the EpiSCOPE and BFiN data. PCA was conducted on the original raw preprocessed M values and again 
after correction via Harman or ComBat. The data are presented with the number and colour signifying BeadChip slide identifier and the bold and 
pastel shading signifying male and female gender, respectively. PCA was also conducted on noob preprocessed data and coloured by slides of note 
across processing runs (those slides highlighted in gold in Fig. 3), or estimated cellular fraction. For the EpiSCOPE data (a), dimensions 1 and 2 of 
the PCA plots show the data to separate by slide. This was particularly evident in slides 1 and 25 and less so for slides 9 and 17. Arrays from slide 5 
separated out discretely on dimension 4. The PCA plots of Harman or ComBat corrected data show the absence of data separation by slide; instead 
the corrected data show a strong separation by gender in principal dimensions 3 and 4, despite the data being limited to autosomal probes only. 
Separation of the data by DHA supplementation (experimental treatment) was not apparent in the principal components examined. b Consistent 
with the control probe findings, the 450K slides with high technical variation (slides 1, 5, 9, 17, 25) are the first arrays processed in each processing 
run. c Some separation of the data on the fourth dimension by the estimated proportion of neutrophils in the blood sample was observed. In the 
BFiN data PCA analysis (d), there was not obvious separation of the raw preprocessed data by slide identifier on dimensions 1 and 2. However, slide 
3 clearly separated out on dimension 4. Batch correction via Harman or ComBat was sufficient to remove the separation of slide 3. The PCA plots of 
noob preprocessed data illustrate the two largest factors influencing the autosomal probes; e the eigenvalues for dimension 2 showed two clouds 
of samples—one for slides 1–12 and the other, slides 13–22 and f cellular composition—with saliva samples containing a higher immune cell 
component separating out on dimension 1. Within each of these two clouds there was further structure, with samples from some slides clustering 
together. For the BFiN data, the technical (batch) variation is largely due to processing run (superbatch) and less so, the individual slides

(See figure on next page.)
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source of correlation across the samples, so to allow eas-
ier inspection of technical effects in the data, we removed 
all X and Y chromosome probes from the PCA analy-
sis. Both the PCA analysis and batch correction used M 

values. Post-correction, the M values were converted to β 
via a logit transform.

To identify and remove batch-effects using Harman 
or ComBat, a batch variable needs to be declared to the 
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algorithm, as well as sources of biological variance that 
the algorithm should seek to retain. The EpiSCOPE data 
PCA analysis illustrated that arrays are often separat-
ing in groups composed of the sets of 12 arrays on the 
same glass slide, so we may consider this to be a ‘batch’. 
The superbatch structure would be each of the six pro-
cessing runs. With the balanced design of the experi-
ment, there was a near equal representation of gender 
and DHA supplementation across each slide. For Har-
man, the experimental variable to keep was declared as 
a compound variable of gender with DHA supplementa-
tion, while with ComBat, gender and DHA supplementa-
tion were the two covariates specified in the linear model. 
For both batch-correction methods the largest source of 
technical variation to remove was slide number (Fig. 5a, 
b). A minor impact of blood cellularity could be found 
in PCA dimension 4 of the noob-normalised EpiSCOPE 
data (Fig. 5c).

The BFiN data PCA analysis showed the greatest struc-
ture in the data due to technical effects was the process-
ing run (Fig.  5d, e) and that cellular composition of the 
samples was a large source of biological variance and 
separated the data across PCA dimension 1 (Fig.  5f ). 
Harman supports only categorical factors, so this cell 
component estimate was used to cut the samples into 
two groups; low and high immune component with a 
cut point at 6% estimated immune cell fraction. The 
BFiN data also had a balanced design across the slides by 
gender. For Harman, gender and the two immune com-
ponent groups were combined as a compound variable 
specifying the biological variance to keep. With ComBat, 
gender and the immune component specified as a con-
tinuous variable were given to the linear model. Like with 
the EpiSCOPE data, for both batch-correction methods 
the source of technical variation specified to remove was 
slide number. Removing other sources of technical vari-
ance were also tested including using superbatch as the 
batch variable, or a combination of first removing vari-
ance associated with superbatch and then slide number. 
Specifying just the slide number was found to be suffi-
cient to also remove the superbatch structure (analysis 
not shown).

Removal of batch‑effects
As observed from PCA plots (Fig.  5a, d), Harman 
and ComBat were highly successful in removing the 
batch-effect across samples. Both methods removed 
the separation of the data by slide (technical variance) 
and importantly did not remove the separation of 
declared biological factors of interest (such as gender 
and cell composition). Next, for each normalisation 
method, the amount of batch correction made to indi-
vidual β values was examined as a measure of method 

performance. A β difference matrix was computed by 
taking the difference between the batch-corrected and 
original β matrixes, and then, for each individual CpG 
probe the absolute value of the interval between the 
minimum and maximum β difference was calculated. 
Large values in this maximal probe-wise β difference 
statistic highlight probes where one or more batches 
required a large amount of correction relative to oth-
ers. The distribution of the maximal probe-wise β 
difference statistic across CpG sites can be examined 
to understand the effect of the various normalisation 
methods. Further adjustment made by batch-effect 
correction software is on the residual technical vari-
ance left after preprocessing. We propose that superior 
normalisation approaches should have more probes 
with smaller maximal probe-wise β difference statistic, 
as this suggests reduced technical variance across all 
batches.

On both the 450K and EPIC array formats, Type I 
probes were found to require far less batch correction 
than Type II probes (Fig. 6). This fits with expectation, 
as Type II probes are far more prone to colour bias and 
by extension, position bias. The maximal probe-wise β 
difference statistic was used to group the probes into 
those requiring low (< 0.01 β), moderate (between 0.01 
and 0.10 β) and high (> 0.10 β) levels of adjustment 
for batch-effect on one or more slides. ComBat more 
aggressively adjusted the data with more probes in the 
high adjustment group across the two array designs and 
for all the preprocessing methods, except for the Illu-
mina preprocessing method on the EPIC array, which 
was approximately equivalent (Table 1, Fig. 6).

It is expected that normalisation methods account-
ing for bias due to factors such as colour, position and 
probe type should need less correction for variation 
across slides. The within-array preprocessing meth-
ods of ENmix, noob and the combination of noob 
and SWAN or BMIQ were effective in shifting probes 
requiring a moderate adjustment with raw preprocess-
ing to the low adjustment group (a shift from maximal 
probe-wise beta difference between 0.01 and 0.10 β 
to under 0.01 β). For the between-array methods, the 
noob and Dasen combination or the ENmix-Quantile 
methods were effective at increasing the proportion 
of probes requiring low adjustment. The use of Dasen 
(without the addition of noob) was particularly effective 
in reducing the number of probes in the high adjust-
ment group (Table 1, Fig. 6).

For the remainder of our analyses, noob-normalised 
data were used. The noob method has good perfor-
mance in correcting for batch-effect and underlies, 
or can be combined with, several other normalisation 
methods. It also makes few assumptions about the data 
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and is a within-array method, so is suitable for experi-
ments with high biological variation, where quantile 
normalisation might not be appropriate.

Identifying clustered methylation
The distribution of β at particular CpG sites may 
be modal in nature, which results in a clustered 
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Table 1 Beta differences after batch-effect removal across and datasets and preprocessing methods

Dataset Method Maximal probe‑wise β 
difference

Groups (%)

Correction Normalisation Mean Median Low Moderate High

EpiSCOPE
(450K)

Harman Raw 0.074 0.062 0.1 80.4 19.5

Illumina 0.074 0.055 0.0 81.8 18.1

noob 0.065 0.045 7.3 75.1 17.6

SWAN 0.064 0.046 0.1 85.0 14.9

noob + SWAN 0.061 0.040 8.4 75.4 16.1

Functional 0.063 0.044 7.1 77.1 15.8

BMIQ 0.073 0.062 0.1 80.8 19.2

noob + BMIQ 0.072 0.050 10.3 66.8 22.9

ENmix 0.067 0.041 8.0 73.1 18.9

ENmix-Quantile 0.059 0.038 16.6 68.8 14.7

Dasen 0.052 0.040 3.0 88.0 9.0

noob + Dasen 0.055 0.038 14.0 73.2 12.8

ComBat Raw 0.100 0.079 0.2 63.9 35.9

Illumina 0.100 0.069 0.2 68.1 31.8

noob 0.100 0.065 6.1 60.4 33.6

SWAN 0.096 0.066 0.1 69.2 30.7

noob + SWAN 0.099 0.061 5.9 61.5 32.7

Functional 0.101 0.066 4.8 62.9 32.4

BMIQ 0.102 0.082 0.2 62.9 36.9

noob + BMIQ 0.101 0.060 9.5 57.8 32.7

ENmix 0.105 0.064 8.1 58.2 33.7

ENmix-Quantile 0.094 0.052 12.8 60.2 26.9

Dasen 0.083 0.055 0.9 76.0 23.1

noob + Dasen 0.090 0.054 8.0 64.9 27.1

BFiN
(EPIC)

Harman Raw 0.065 0.060 1.8 71.6 26.6

Illumina 0.053 0.038 5.0 75.6 19.4

noob 0.049 0.034 18.6 61.2 20.2

SWAN 0.052 0.042 1.3 83.8 14.9

noob + SWAN 0.050 0.037 20.5 58.5 21.1

Functional 0.051 0.036 17.8 60.3 21.9

BMIQ 0.066 0.061 1.9 71.2 26.9

noob + BMIQ 0.055 0.038 21.3 51.5 27.2

ENmix 0.055 0.037 24.4 48.5 27.1

ENmix-Quantile 0.050 0.033 31.1 47.5 21.5

Dasen 0.041 0.033 14.7 78.1 7.2

noob + Dasen 0.045 0.032 30.1 53.9 15.9
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methylation pattern across samples. In practice, clus-
tered methylation profiles can be due to technical or 
biological factors, and batch correction should ideally 
remove the former but preserve the latter. As biological 
variance to keep is declared per sample, rather than per 
feature, batch-effect removal software is prone to erro-
neously attributing methylation clustering to technical 
factors. When the distribution of biologically relevant 
clustered methylation is unbalanced across batches, 
then batch-effect removal software will inappropriately 
seek to converge the means of each batch. It is impor-
tant to identify the CpG sites subject to such erroneous 
correction as this adjustment can profoundly destroy 
biologically meaningful clustering of the data. Which 
CpG sites naturally exhibit clustered methylation in 
populations is not well characterised, so a data-driven 
empirical approach was employed to find them.

To investigate, an optimal univariate k-means cluster-
ing method was used to identify multi-modal features in 
noob-normalised data, with each cluster having at least 5 
samples and a β difference between the cluster centroids 
of 0.1. When first defining the number of clusters for 
each probe, samples arising from slides with the great-
est batch-effects (EpiSCOPE slides 1, 5, 9, 17, 25 and 30 
and BFiN slide 3) were set aside to reduce the impact of 
technical factors inflating the number of clusters. For 
each probe, the optimal number of clusters (k) was iden-
tified using Bayesian information criterion (BIC). Next, 
the previously removed samples were added back and 
clustering was undertaken again using the previously 

determined value for k. For each multi-modal probe 
(k > 1), the association between gender, batch, superbatch 
and cell composition was examined using statistical tests 
(described in Methods). Clustered methylation can often 
be due to allele-specific methylation (ASM), so for auto-
somal CpG probes with 2 or 3 clusters, we examined if 
the assortment across clusters fit with expectations from 
population genetics by employing a test for deviation 
from Hardy–Weinberg equilibrium (HWE). For all the 
described tests, a stringent FDR-moderated cut-off of 
p = 0.001 was used for establishing associations.

For the EpiSCOPE 450K data (Additional file 6: Fig. S6), 
a total of 22,281 CpG probes were found to be clustered, 
with 19,816 CpG probes having 2 clusters and 2379 and 
86 for 3 and 4 clusters, respectively. There were 11,733 
(52.7%) of clustered probes in HWE with 6086 (27.3%) 
measuring CpG methylation at the site of a common 
SNP and another 1919 (8.6%) having the probed CpG 
site within 10  bp of a common SNP (SNP-proximal). 
As expected, often the probes in HWE also overlapped 
with those found to be SNP-mapping (4786 probes) or 
SNP-proximal (848 probes). Of the probes in HWE, 
4045 could not be linked to a nearby SNP. Another 7337 
(32.9%) probes were clustering in association with gen-
der with the great majority of these positioned on the X 
or Y chromosomes (6595 and 378 probes, respectively). 
Only 281 (1.3%) of probes clustered due to variability in 
the immune cell component, while a total of 1477 (6.6%) 
probes associated with batch and none with superbatch. 
The association with batch was expected to be low as the 

Table 1 (continued)

Dataset Method Maximal probe‑wise β 
difference

Groups (%)

Correction Normalisation Mean Median Low Moderate High

ComBat Raw 0.072 0.062 2.3 67.5 30.2

Illumina 0.056 0.039 7.3 73.4 19.3

noob 0.058 0.038 14.2 62.3 23.5

SWAN 0.059 0.044 1.9 79.0 19.2

noob + SWAN 0.058 0.039 16.6 59.8 23.7

Functional 0.060 0.040 13.7 61.0 25.3

BMIQ 0.081 0.077 2.2 62.5 35.3

noob + BMIQ 0.062 0.040 19.1 52.7 28.2

ENmix 0.062 0.039 22.3 49.4 28.4

ENmix-Quantile 0.058 0.036 25.7 48.7 25.6

Dasen 0.050 0.036 12.0 73.6 14.4

noob + Dasen 0.055 0.036 21.8 56.3 21.9
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cluster discovery stage excluded the most batch-effect 
prone slides (further details in Methods). A total of 2011 
(9.0%) of probes were cross-hybridising probes docu-
mented previously [30]. Finally, 1539 clustered probes 
could not be associated with any of the factors examined.

The distribution for the 80,752 clustered probes in the 
BFiN EPIC data was 76,041, 4588 and 123 for clusters of 
2, 3 and 4, respectively (Additional file 7: Fig. S7). A large 
proportion were linked to variability in the immune cell 
component, with 48,762 (60.4%) probes associated. A 
total of 69,001 (85.4%) clusters were in HWE. We expect 
this high proportion is not due to a link with ASM but is 
due to the small number of samples with a high immune 
cell content. With 48,491 (99.4%) of the cell component-
associated probes having two clusters and largely a small 
number of samples in the second cluster, we can expect 
that HWE will be upheld as the data will have a distri-
bution similar to that for a rare allele. Consistent with 
this expectation, almost all probes associated with cellu-
lar component are in HWE (48,528 in total). There were 
10,703 and 6160 probes at the site of a common SNP or 
SNP-proximal, respectively, with strong overlap with the 
clustering SNP-associated probes in the EpiSCOPE data, 
with 4530 of 6086 (74.4%) common SNP probes and 984 
of 1919 (51.3%) SNP-proximal probes also clustering in 
the BFiN data. A total of 8304 probes in HWE could not 
linked to a nearby SNP, which is around twice the number 
in the EpiSCOPE data. For the 10,386 (12.7%) of probes 
clustering in association with gender, 9723 and 439 
probes were on the X or Y chromosomes, respectively, 
and 5,630 (76.7%) were also associated with gender in 
the EpiSCOPE data. Only 2 probes associated with batch 
(slide number), whereas 1481 associated with superbatch. 
A total of 1813 were cross-hybridising probes, and 476 
remaining probes could not be associated with any of the 
factors considered.

Evaluating batch correction for each probe
While several biological factors were found to be associ-
ated with the phenomenon of multi-modal methylation, 
these factors cannot be used with certainty to identify 
all erroneously adjusted probes. For example, well-stud-
ied metastable epialleles such as nc886 have a robust 
imprinting-like clustering pattern but are not associated 
with a proximal SNP, nor parent-of-origin such as with 
imprinting [20, 31].

To better characterise the biologically relevant cluster-
ing set, we employed an empirical technique to evaluate 
the performance of batch-effect removal algorithms on 
individual probes. The intention of batch-effect correc-
tion is to remove technical variance; it follows that if the 
process is working correctly, a reduction in the sample 

variance (or standard deviation) of features should be 
observed after correction. A simple reduction in total 
variance cannot be used as a metric, as batch correction 
may highly disrupt biologically meaningful clustering but 
will reduce the overall dispersion of the data. Instead, the 
metric needs to be generalised for probes with either a 
unimodal or multi-modal distribution. For this purpose, 
we created a cluster-aware dispersion metric.

For the CpG features which form a multi-modal distri-
bution, partial sums of squares were computed for each 
individual cluster using the dispersion from the mean 
for the members of a given cluster. The partial sums of 
squares were then collated across clusters to form a 
sample variance (as described in Methods). This modi-
fied calculation of sample variance will account for both 
the removal of assumed technical variance by Harman 
or ComBat and the preservation of a biologically mean-
ingful clustering pattern. The log-base-2 of the ratio of 
sample variance precorrection over post-correction (log-
variance ratio, LVR) was used as an empirical measure 
that batch correction was performing on multi-modal 
probes as intended. An LVR > 0 signifies that variance 
was inflated for a given probe after the application of the 
Harman or ComBat methods, whereas an LVR < 0 dem-
onstrates that batch-effect correction is reducing the var-
iance as intended.

We observed that in instances of unintended removal 
of biologically meaningful methylation clustering (Fig. 7), 
such as arising from ASM (examples being probes 
cg25465065 and cg15544633), batch correction reduced 
the overall dispersion of the data (resulting in a smaller 
standard deviation) but greatly increased the LVR statis-
tic above 0. However, in cases where the clustering had a 
biologically meaningful association with gender (such as 
probe cg00455876), the prior declaration of gender to the 
batch-effect algorithm as variance to preserve was suffi-
cient to keep the LVR near 0. We also uncovered more 
complex methylation clustering associations with both 
gender and genetics (cg15410402). Despite the batch cor-
rection algorithm seeking to preserve gender-associated 
variance, the dual associations led to erroneous correc-
tion and an LVR above 0.

In instances where a probe had batch-effects removed 
as intended, both the overall standard deviation (SD) 
was lower, as well as the LVR falling below 0. Figure  8 
provides various examples of the type of batch-effects 
discovered in the data. These include probes with obvi-
ous batch-effects in both the 450K and EPIC data 
(cg01381374), to those limited predominantly to one 
of the sets (cg22256960), to slide-based batch-effects 
in one but showing a positional batch-effect in both 
(cg27298252), and clustering associated with both gender 
and batch-effect (cg04294190).
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Fig. 7 Biologically meaningful methylation clustering. Some probes with biologically meaningful methylation were erroneously corrected. Four 
example probes are illustrated. Each scatter plot compares methylation across slides (X axis) with the methylation β value (Y-axis). The datapoints 
are from each of the 369 Beadchip arrays, with the data sorted and coloured by slide number. The panel is ordered column-wise from left to right 
as original, Harman-corrected and ComBat-corrected data. It was observed that the standard deviation (SD) of the data remained the same or less; 
however, the log-variance ratio (LVR) was elevated considerably above 0. The mean β shift (Shift) is the mean change in β across all the 369 arrays 
induced by erroneous batch correction. The mapping of common SNPs falling within CpG sites can be used to identify CpG sites which should 
not be batch corrected. An example of this the probe cg25465065, which has the common C/T SNP rs3768276 positioned at the cytosine and 
as expected, the frequencies in each cluster are consistent with expectations of the Hardy–Weinberg equilibrium. However, the methylation as 
measured by probe cg15544633 on chromosome 2 is clustered to two groups: intermediate methylation and no methylation. This clustering is not 
in Hardy Weinberg equilibrium (p = 9.520 ×  10−9), yet the clustering is likely influenced by genetics as the common SNP rs2516834 is immediately 
adjacent to the assayed CpG site. In the example with the Y chromosomal probe cg00455876, there is clearly a higher methylation state in males 
and this is clustering is still apparent after batch correction as gender was declared as biological variance to preserve. However, more complex 
gender associations may arise, in which batch-effect correction performs poorly. One of the alleles for the X chromosomal cg15410402 probe is 
inactivated in females, but the methylation state in males is complex, with almost half of the males having intermediate methylation and half no 
methylation. This may well be due to an interaction between gender and genetics, likely due to the influence of the commonly deleted sequence 
5’-GGA GCT AGG CCG  (rs66532084) 12 bp upstream from the measured CpG site
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The above examples illustrate the need for a discovery-
based approach. We found the LVR statistic was particu-
larly useful at identifying CpG sites having biologically 
relevant clustered methylation that should not be sub-
jected to batch-effect correction (erroneously corrected 
probes). When applying the LVR statistic to identify 
probes prone to batch-effect (batch-effect susceptible 
probes), we found that fully methylated or unmethyl-
ated CpG sites often had very small corrections made to 
them by Harman or ComBat, but given the initial small 
variance, this resulted in large changes in ratio. The LVR 
statistic was combined with the mean difference between 
corrected and uncorrected data to correlate changes 
in variance and shifts in beta values (Figs.  7, 8). A shift 
in beta cut-off was introduced to focus towards those 
probes with a large shrinkage in LVR and an appreciable 
difference to β after correction.

To classify erroneously corrected and batch-effect 
susceptible probes, we used a cut-off of 50% variance 
increase (log2(1.5), LVR = 0.584) or decrease (log2(1/1.5), 
LVR =  − 0.584), respectively, and mean β shifts of at least 
0.01. How these cut-offs interacted with known clustered 
methylation associations was also characterised (Fig. 9). 
As anticipated, modal probes with a known common 
SNP at the measured CpG site often had LVRs much 
greater than 0 and larger mean β shifts. In the intersec-
tion between the 427,274 probes shared across the Epi-
SCOPE and BFiN datasets, there were 31,449 erroneously 
corrected and 7,478 batch-effect susceptible probes com-
mon to both datasets.

Validation
Analysis of our unconfounded high-quality 450K and 
EPIC data established two sets of probes: one that was 
prone to batch-effect and another erroneously modified 
by batch-effect algorithms. It is useful to further explore 
the generality of these sets. Inclusion of further data from 
different studies and geographies may allow discovery 
of methylation clustering associated with less common 
SNPs or certain populations, and batch-effect suscep-
tible probes needing significant correction in multiple 
datasets. To explore the universality of our findings, we 
searched for additional large 450K and EPIC datasets 
with these selection criteria: (1) hundreds of samples and 
an EWAS design, (2) with raw IDAT files in the public 
domain, having (3) the original Illumina Sentrix identifi-
ers to enable the study of slide and positional effects, with 
(4) the experimental variable(s) and gender made known, 
such that biological variance to preserve can be declared 
to the batch-effect software, also (5) with reasonably 
subtle phenotype to make technical factors obvious and 
finally (6) the slide identifier and biological phenotype 
not being overly confounded.

For the 450K array validation set, we selected an 845 
participant (657 women and 188 men) methylation sub-
study of peripheral blood as part of the European Prospec-
tive Investigation into Cancer and Nutrition (EPIC-Italy), 
a molecular epidemiology project on diet and cancer [32]. 
For EPIC array validation, we selected two US originat-
ing datasets: 536 EPIC arrays prepared from buccal DNA 
samples from infants born less than 30  weeks postmen-
strual age, as part of the Neonatal Neurobehavior and 
Outcomes in Very Preterm Infants (NOVI) Study [33], 
and 392 arrays from cord blood and peripheral blood at 
7 years old from 196 children, as part of the Urban Envi-
ronment and Childhood Asthma (URECA) study [34]. In 
the NOVI dataset, two arrays were removed: one with a 
truncated and corrupted IDAT file and another had > 5% 
failed probes. What remained were data from 235 female 
and 299 male neonates. The URECA data also had one 
array removed due to > 5% failed probe count leaving data 
from a total of 192 female and 199 male children.

The 450K EPIC-Italy cohort was divided across 72 
slides. The control probes suggested a reduction in the 
quality of the data after slide 28, with many slides show-
ing unfavourable control probe intensities across the 
broad range of sample dependant and independent con-
trol sets (Additional file 8: Fig. S8). The NOVI array set 
was spread across 78 EPIC slides and had good results 
for the sample independent controls, but high signal in 
a subset of green negative control probes and a number 
of outlier fluorescent intensities in the specificity I and 
II controls. Collectively, this suggests some non-specific 
extension (Additional file  9: Fig. S9). The URECA data 
were composed of 49 slides with a well-balanced design, 
having gender and tissue split evenly across arrays. The 
control probes generally signified high quality, except for 
three slides (Additional file 10: Fig. S10).

PCA was used to identify slides subject to batch-effect 
and the influence of biological factors, such as cell com-
position. As before, when identifying the optimal k for 
each CpG probe cluster, the most batch-effect prone 
slides were excluded for this step. In total, 3, 19 and 25 
slides were set aside for cluster identification in the 
URECA, EPIC-Italy and NOVI datasets, respectively. 
During batch-effect correction, the biological factors of 
interest for the EPIC-Italy dataset were specified as gen-
der and neutrophil composition, for NOVI, gender and 
the proportion of immune component cells and URECA, 
gender and tissue source (cord or peripheral blood). In 
each of the three cases, the batch-effect variable specified 
was the slide identifier.

Universality across datasets
The combination of mean β shift and LVR was used to 
identify probes shifted substantially by batch correction 
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and also exhibiting appreciable decreases in LVR (batch-
effect susceptible) and increases in LVR (erroneously 
corrected) (Additional file 11: Fig. S11). The same mean 

β shift of 0.01 and 50% change in LVR cut-offs as the Epi-
SCOPE and BFiN data were employed.

A total of 427,160 probes were cross-examined across 
the five datasets; this constitutes 452,453 probes common 
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Fig. 8 Examples of probes exhibiting obvious batch-effect. In some instances, probes had clear batch-effects which were corrected by application 
of Harman or ComBat. The panel layout is consistent with that in Fig. 7, with four examples of batch-effect prone probes illustrated. After batch 
correction, the SD was typically reduced and the computed LVR was considerably less than 0. Typically, as is the case with cg01381374, the 
particular influence of these probes on the data was idiosyncratic to the dataset. In other instances, there was high technical variance in one dataset 
but not the other. In the case of cg22256960, the batch-effect is limited to the EPIC superbatch 2 data. The example of cg27298252 highlights 
that batch-effect can be found both across arrays and by the position in the array. In particular, the EPIC data illustrate clear positional bias. The 
cg04294190 probe demonstrates that both technical and biological factors can contribute to methylation clustering. In this case, the data are 
clustered both by gender and within the 450K data, by slide number
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to all the datasets, less the 25,293 multi-modal distrib-
uted probes having a strong association (p = 0.001) with 
cell composition in one or more of the datasets. This cell 
composition set was removed as erroneous correction 
due to unbalanced within-batch sample cell composi-
tion is particular to each study and driven by the nature 
of the biosample. In particular, the BFiN saliva samples 
and NOVI buccal swabs are a mixture of epigenetically 
distinct immune and non-immune cells, resulting in a 
large increase in probes having a multi-modal distribu-
tion. While the cell composition differences were mod-
elled and declared to the batch-effect algorithm, this may 
not be sufficient to prevent erroneous correction in all 
instances.

Lists of batch-effect susceptible and erroneously cor-
rected probes were generated and compared across data-
sets. In total, 229,681 (53.8%) of probes are batch-effect 
susceptible in at least one of the datasets; however, only 
15,094 (3.5%) are batch-effect susceptible in at least 4 
of 5 datasets and 4,649 (1.1%) in all datasets examined 
(Table 2). The number of batch-effect susceptible probes 
unique to one of the datasets was proportional to the size 
of the dataset and the quality of the data control probe 
metrics (Additional file  12: Fig. S12). The high-quality 

BFiN dataset only had 17,922 such probes with 3169 
(17.7%) unique to that dataset.

A much smaller set was found for erroneously corrected 
probes, with 8,755 probes (2.0%) in at least one of the data-
sets, 1620 (0.4%) erroneously corrected in at least 4 of 5 
datasets and 856 (0.2%) in all datasets examined (Table 2, 
Additional file 13: Fig. S13). Overwhelmingly, the errone-
ous adjustment of probes is related to multi-modal CpG 
site methylation arising from the influence of a genetic 
variant at the CpG site (see SNP-associated multi-modal 
probes in Additional files 6, 7: Figs. S6, S7). As such, it is 
expected that the identification of erroneously corrected 
probes is a function of (1) cohort size, (2) genetic distinct-
ness of the population and (3) quality of the array data.

There were 992 probes unique to URECA, despite it 
having less than half of the cohort size of EPIC-Italy. The 
URECA cohort was composed of 75% African Ameri-
can, 20% Hispanic and 4% admixed participants. African 
ancestry populations are known to have more genetic 
diversity than non-African populations [35]. The 968 and 
571 unique probes in the EpiSCOPE and BFiN cohorts 
are high given the cohort size. There were also another 
1,490 probes shared exclusively between EpiSCOPE and 
EPIC-Italy (Additional file 13: Fig. S13).
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and b BFiN datasets, the change in variance after batch correction (expressed as log-variance ratio) relative to the degree of batch correction 
(expressed as mean β shift) was plotted. The same data were then highlighted for clustered probes which were modal in distribution. These modal 
probes were in turn subdivided into probes which were modal and associated with imprinting, a single nucleotide polymorphism at the measured 
CpG site, cellular component and batch-effect. The vertical lines are plotted at LVR of 0.584 and − 0.584 and the horizontal line at a mean β shift of 
0.01



Page 20 of 28Ross et al. Clinical Epigenetics           (2022) 14:58 

The NOVI cohort is relatively large (n = 534) and has 
a multi-ethnic genetic background with 22% African 
American, 7% Asian and 7% Hawaiian or Pacific Islander 
background. However, the number of unique probes 
(144) was the lowest of all the five cohorts (Additional 
file  13: Fig. S13). We posit this is due to data quality 
and use of buccal cell biosamples, with the large vari-
ances in the data masking some genetic effects on the 
data. In support of this notion, we note that NOVI had 
the highest number of probes (359) not shared with the 
four other cohorts. This can be interpreted as the clusters 
being harder to identify.

Finally, we note that of 856 probes common to all the 
datasets, according to dbSNP v151, 768 (89.7%) of these 
are directly at the site of a SNP and another 20 (2.3%) 
have the measured CpG site within 10 bp of a SNP.

Lists of troublesome probes
With large EWAS designs, we suggest that beta val-
ues should be characterised empirically for clustering 
and for changes in variance before and after batch cor-
rection using the LVR statistic. However, this approach 
is not suitable for small studies as sufficient arrays are 
required to identify clusters. The need for larger data-
sets is magnified for ASM-associated clustering involving 
SNPs with small minor allele frequencies. Therefore, we 
provide reference matrices containing the LVR statistic 
and mean β differences (rounded to 4 decimal places) for 
all the arrays examined in this study (Additional file 15: 
Table  S1). This list comprises data from 1214 450K and 
1094 EPIC arrays from regionally diverse and multi-ethic 
populations across Australia, the USA and Italy and span-
ning multiple commonly collected biosamples (blood, 
buccal cells and saliva). This reference matrix will allow 

investigators to identify erroneously corrected and batch-
effect susceptible CpG probes in their study, particularly 
for rarer SNPs in the population under inspection. For 
ease of use, this matrix is also distributed as part of the 
HarmanData package available on Bioconductor and can 
be called directly into an R session.

The nature of probes more subject to batch‑effects
Four factors were considered for batch-effect suscep-
tibility: cross-hybridisation due to highly homologous 
sequences, Infinium design (Type I or II), the number of 
CpG sites internal to the probe and probe melting tem-
perature (Tm).

Previously, Chen et al. identified a list of 29,233 probes 
in the 450K design which are highly homologous with 
47–50 bases matching to a cross-reactive target [30]. 
Often this is a result of probes targeting repetitive 
genomic sequences or genes that have pseudogenes or 
homologous genes [36]. In a related exercise, Benton 
et  al. mapped probe sequences to the human genome 
using BOWTIE2 [37] and identified 33,457 probes 
aligning greater than once [38]. There is a large overlap 
between the Chen and Benton set, with 21,361 probes 
shared between the sets. Both of these were overlapped 
with the sets of probes considered as batch-effect suscep-
tible (Table 2). While these sets were minor contributors 
to the total number of probes batch-effect susceptible 
in 1–3 datasets, cross-hybridisation and multi-mapping 
were a large factor in probes batch-effect susceptible in 
4 or 5 datasets and constituted 39.7% and 35.4%, respec-
tively, of the 4649 probes found in all datasets.

Infinium design also held some influence. Type I and 
II probes constituted 1748 (37.6%) and 2901 (62.4%), 
respectively, of the probes universally considered batch-
effect susceptible, whereas they were 27.4% and 72.6% of 

Table 2 Batch-effect susceptible and erroneously corrected probes across datasets

Set Total probes Number of datasets considered as batch‑effect susceptible, total and percentage

n 0 1 2 3 4 5

Batch-effect susceptible

All common probes 427,160 197,479 (46.2) 121,657 (28.5) 65,881 (15.4) 27,049 (6.3) 10,445 (2.4) 4649 (1.1)

Cross-hybridising 26,796 7446 (27.8) 5761 (21.5) 4692 (17.5) 3956 (14.8) 3097 (11.6) 1844 (6.9)

Multi-mappers 30,543 9092 (29.8) 6947 (22.7) 5575 (18.3) 4253 (13.9) 3032 (9.9) 1644 (5.4)

Type I 117,436 65,934 (56.1) 27,564 (23.5) 12,228 (10.4) 6445 (5.5) 3517 (3) 1748 (1.5)

Type I (≤ 2 internal CpG) 31,528 13,656 (43.3) 8528 (27) 4518 (14.3) 2779 (8.8) 1449 (4.6) 598 (1.9)

Type II 309,724 131,545 (42.5) 94,093 (30.4) 53,653 (17.3) 20,604 (6.7) 6928 (2.2) 2901 (0.9)

Type II (0 internal CpG) 131,010 43,578 (33.3) 42,855 (32.7) 27,389 (20.9) 11,862 (9.1) 3785 (2.9) 1541 (1.2)

Tm < 70 °C 7961 671 (8.4) 1426 (17.9) 2214 (27.8) 2424 (30.4) 1095 (13.8) 131 (1.6)

Erroneously corrected

All common probes 427,160 418,405 (98.0) 8755 (2.0) 5202 (1.2) 2860 (0.7) 1620 (0.4) 856 (0.2)



Page 21 of 28Ross et al. Clinical Epigenetics           (2022) 14:58  

the total set of 427,160 probes. There is a significant bias 
towards Type II probes being batch-effect susceptible in 
all sets (Fisher exact p < 2.2e−16). Interestingly, the sets 
were enriched for those Type I probes having 2 or less 
internal CpG sites and Type II probes having no internal 
CpG sites (Table 2).

A relationship between sensitivity to a batch-effect and 
probe melting temperature (Tm) could also be found for 
the EpiSCOPE and NOVI datasets in particular (Fig. 10). 
While most probes have an in silico determined Tm 
of ~ 75  °C, the 7,961 probes (from the set of 427,160) 
with a Tm of less than 70  °C show high between-batch 
correction. The limitation to the EpiSCOPE and NOVI 
datasets might be due to factors such as a difference in 
salt concentration in the hybridisation buffer, the oven 
set temperature or fluctuations from that, or the length 
of hybridisation time. Interestingly, for the EpiSCOPE 
set, the sets requiring the most correction were the first 
set processed each day (communication with service 
provider).

In summary, probe batch-effect susceptibility is multi-
factorial in nature and was strongly associated with all 
the four factors examined. We note the low Tm set is 
largely different to the cross-hybridisation and multi-
mapping sets, with only 198, 98 and 414 probes shared 
between the Benton, Chen and all sets, respectively. The 
set of batch-effect susceptible probes described here has 
overlap with the previously published sets described by 
Chen et al. and Benton et al. but is discrete.

Findings of false positive probes in published EWAS 
studies
To gauge the impact in the literature of batch-effects on 
the outcomes of EWAS studies, a search was conducted 
across PubMed for appearances of the 4649 probes iden-
tified as batch-effect prone in all the 5 studies examined 
here. The R library easyPubMed (2.13) was used to query 
titles and abstracts in PubMed [39] for the term ‘EWAS’ 
in conjunction with one of these probe identifiers. In 
total, 3 studies were found.

In an EWAS considering Parkinson’s disease, Moore 
et  al. [40] listed cg11963436 as one of the top-12 loci 
and interestingly found the locus to also replicate using 
Sequenom EpiTYPER for 219 individuals. We observe 
this probe to show profound batch-effects in the Epi-
SCOPE and URECA data (Additional file  14: Fig. S14). 
Another EWAS from Chen et  al. [41] considering 
reduced kidney glomerular filtration rate in 567 HIV-
positive and 117 HIV-negative men describe cg18368637 
as one of the top-3 loci. For this probe, there are obvious 
batch-effects across the 5 datasets we examined (Addi-
tional file 14: Fig. S14). Finally, in a recently published re-
analysis of existing gestational diabetes mellitus (GDM) 

EWAS data, Liu et  al. [42] found cg22385669 to be one 
of 62 significant CpG methylation sites and 1 of the 6 
probes in their SVM model predicting GDM occurrence. 
This probe has a more subtle batch-effect than the previ-
ous two examples but is still readily apparent (Additional 
file 14: Fig. S14).

All three examples had batch-effects readily observable 
via visual examination in the 5 datasets considered here. 
This illustrates the importance of plotting β ordered and 
coloured by slide number as a diagnostic to find poten-
tially spurious associations.

Discussion
The Illumina HumanMethylation array is a popular epi-
genomic technology, and certainly the technology of 
choice for EWAS given the coverage, cost per unit and 
overall accuracy of the methylation calls. However, there 
are known small subsets of probes which are problematic 
and may give rise to false positive or negative associa-
tions [30, 38].

Using high-quality data with a balanced-block design 
from the EpiSCOPE and BFiN cohorts, this study sought 
to identify which probes are prone to batch-effects, to 
investigate the factors that contribute to batch-effects 
and to characterise the effects of various preprocessing 
steps and batch-effect procedures. We found that batch-
effects are predominantly linked to larger processing 
batches but using slide identifier as a batch variable is 
sufficient to capture and correct for batch-effect. Despite 
the arrays being run in service facilities by experienced 
operators using liquid handler robotics, multi-channel 
pipettes and other methods to control for uniformity, 
some batch-effects are persistent. There is also technical 
variance associated with position on each slide, but this 
can be largely managed by appropriate preprocessing 
methods.

Across the two studies, we identified sets of batch-
effect prone probes, the optimal preprocessing steps to 
reduce batch-effects and the factors that may have con-
tributed to the technical variance observed in the data. 
The nature of the batch-effect was different in each data-
set, with many of the troublesome probes not overlap-
ping. To validate and further generalise our observations, 
we considered a further three large EWAS datasets from 
the literature. Consideration of all five datasets confirmed 
that the nature of the batch-effect was different in each 
experiment; however, there was a consistent set of 4,649 
batch-effect prone probes that needed a high amount of 
correction. Alarmingly, we found three published EWAS 
studies that had reported one of these batch-effect prone 
probes as a top CpG site of interest.

For future studies, to assist investigators in eliminat-
ing batch-effect prone probes we provide reference data 
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characterising the batch-effects observed across the 
2308 450K and EPIC arrays investigating in this current 
study. This reference data will have utility for anybody 

undertaking an EWAS. Acknowledging that the exact 
character of batch-effects is unique to each study, trou-
blesome probes are not provided as a final list, rather a 

Fig. 10 The influence of probe melting temperatures on batch-effect. For each of the five studies and two probe types (I and II), the relationship 
between probe oligonucleotide melting temperature (Tm) and batch correction (mean β shift) was examined. A subset of Type II probes in the 
EpiSCOPE and NOVI study data were observed to require more batch correction when the probe Tm is low
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set of reference data specifying the moderation required 
for each probe across each of the five studies consid-
ered here. This matrix will allow simple identification of 
probes commonly exhibiting high levels of technical vari-
ance across multiple studies, including new studies.

Also, as part of this investigation, we also uncovered 
and characterised a set of probes which should not be 
batch-effect corrected. These erroneously corrected 
probes have biologically meaningful clustering of meth-
ylation which cannot be declared a priori to current 
batch-effect removal tools, and this biological variance 
is erroneously attributed as technical variance. While it 
is common to remove probes associated with SNPs [12], 
we demonstrate that empirical measures are needed to 
identify all probes with biological variation that should 
be preserved and provide a statistic to undertake this. 
This statistic takes the clustering into account, and after 
batch-effect correction, the statistic is applied a poste-
riori to determine the sets of erroneously corrected and 
batch-effect susceptible probes. This procedure can be 
undertaken for any study, with the limitation that the 
study must be of sufficient size for the clusters to be iden-
tified. Smaller studies can instead filter on our list. We 
also suggest the list is a useful reference to discover novel 
regions in the epigenome with profound methylation 
clustering due to biological factors other than a proximal 
SNP or association with gender, such as metastable epial-
leles [20, 31].

This work also illustrates a process to minimise techni-
cal variation in methylation data. In agreement with prior 
recommendations, we suggest the first and foremost step 
to address this is careful study design, where the biologi-
cal factors of interest are distributed across batches [1]. 
Next, an optimal preprocessing method should be used 
to remove as much technical variation as possible. We 
find noob to be a good generalisable choice which makes 
little assumptions on the data. If a between-array nor-
malisation suits the study design, Dasen is particularly 
effective in reducing the proportion of probes requiring 
a high amount of downstream correction, with ENmix-
Quantile, and noob in combination with Dasen, for 
increasing the proportion of probes requiring very little 
correction. In deciding whether to perform within-array 
or between-array normalisation methods, it is possible to 
use an empirical testing framework such as Quantro [43].

Many comparisons of Infinium preprocessing methods 
exist in the literature. The value of this current compari-
son is the focus on technical variance in an EWAS con-
text. EWAS often consider subtle biological phenotypes 
with small effect sizes, so technical variation (batch-
effects) can be particularly troublesome. In studies with 
large between-group effects, such as cancer and normal 

tissue, some batch-effect can be tolerated as the biologi-
cal variance is much greater than the technical variance. 
The metric used to compare preprocessing methods was 
maximal probe-wise β difference, a measure of residual 
technical variance remaining after processing. There was 
some overlap with the findings of previous comparisons. 
Shiah et  al. compared 11 preprocessing methods on a 
large 450K prostate cancer dataset and considered tech-
nical replicate variances and differences, within-batch 
clustering and inter-array correlations. They found Dasen 
and noob to be preprocessing methods which minimised 
technical differences [44]. Liu and Siegmund [45] com-
pared 9 methods across 4 datasets and found the com-
binations of noob with SWAN or BMIQ were optimal 
within-array methods and functional normalisation, 
subset quantile normalisation (SQN) and Dasen optimal 
between-array methods. Recently, another comparison 
of 8 methods across 2 datasets found ENmix and noob 
offered the highest correlation between duplicates, low-
est absolute differences and smallest deviations from true 
methylation levels [46].

If batch-effect correction is to be employed after 
preprocessing, then multi-variate visualisation, such 
as PCA or multidimensional scaling, should be used 
to understand global patterns in the data and deter-
mine the largest sources of covariance. Also, as rec-
ommended by others [47], cell-composition analysis, 
if possible, should be undertaken on the methylation 
data. Uncovered sources of biological variance from 
these analyses will inform specification of the batch-
effect correction model. After batch-effect correction, 
the corrected data should be compared with the origi-
nal data at a probe-wise level to determine the set of 
erroneously corrected probes. For this set, it is appro-
priate to use the original data instead of corrected data. 
We present LVR, a statistic that robustly identifies erro-
neously corrected probes. Finally, we provide examples 
of the effects of inappropriate correction, and inci-
dences in the literature of likely false positive results 
due to the absence of batch-effect correction.

We show that the ComBat and Harman batch-effect 
removal methods are largely comparable at the global 
scale. ComBat offers advantages in more complex model 
specification and allows for multiple categorical or ordi-
nal variables, whereas Harman only allows a single cate-
gorical variable. Harman can remove or preserve multiple 
factors in one pass using compound variables. In princi-
ple, Harman should preserve more biological variance as 
it optimises for maximal preservation of biological vari-
ation when removing batch-effect. Consistent with the 
conservatism of Harman, we find that ComBat has more 
probes with maximal probe-wise β difference in the high 
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moderation set (> 10% β moderation between batches). 
Over-correction can potentially introduce false posi-
tive findings. It has been found that while ComBat could 
remove contrived batch-effects introduced into randomly 
generated data, it also resulted in profound inflation of 
Type I error in certain use cases. In balanced or random 
designs, the degree of false positive results was reduced 
by increasing sample numbers. However, the unbalanced 
simulation showed increasing false positive results with 
increasing sample size [48]. This is also in agreement 
with earlier cautionary work advocating that ComBat can 
introduce false positive results with uneven study designs 
[49]. Harman has not been tested in such comparisons.

Given the caveats and potential shortcomings identi-
fied here of applying batch-effect correction to EWAS 
data, some investigators may dismiss the use of batch-
effect correction. However, if no correction is applied, 
this leaves a study open to false positives as a result of 
batch-effect. Investigators might consider using post hoc 
analyses, such as Cook’s distance (Cook’s D), instead of 
batch-effect correction to identify spurious associations 
driven by outlier datapoints with high leverage. Cook’s 
D is particularly effective at identifying spurious asso-
ciations as a result of rare ASM events due to the large 
β change within individuals harbouring that SNP. How-
ever, batch-effects are typically more subtle with smaller 
changes in β and all the arrays within a batch moving as a 
group. Therefore, some spurious associations are likely to 
be missed by Cook’s D and other diagnostic tests which 
detect highly influential observations.

Conclusions
Illumina Infinium BeadChips are empowering large epi-
genome-wide association studies in human populations. 
The technology is largely robust, but not ideal. We find 
that despite utilising various forms of bias removal and 
normalisation, some batch-effects persist. This residual 
batch-effect is associated with the day of processing, the 
individual glass slide and the position of the array on the 
slide. The individual array features most affected differed 
substantially across each of the five datasets considered. 
We also find probes that are erroneously adjusted by the 
correction procedure. We provide reference matrices of 
(1) CpG probes which are prone to high technical vari-
ance (batch-effect) and (2) CpG probes which are erro-
neously adjusted by batch-effect removal approaches. In 
addition, we suggest workflows and statistics which can 
help identify these two sets of probes in any moderately 
sized study.

While it is important to limit technical variance and 
false positive results in a study, batch-effect removal 
approaches should be used with some caution and employ 

post hoc diagnostics to understand the impact of the cor-
rection and identify any erroneous correction of particu-
lar sets of probes. The best time to consider the control of 
technical factors is during the experimental design phase. 
If a study highlights differential methylation in probes 
requiring substantial correction, these putative CpGs 
should be validated by a second independent methylation 
quantification approach, such as next generation sequenc-
ing, pyrosequencing or MALDI-TOF mass spectrometry.

Methods
Participant characteristics and data acquisition
Participant characteristics for DOMInO samples in 
the EpiSCOPE study with 450K methylation data are 
described in detail elsewhere [20], as is the EPIC meth-
ylation study of Body Fatness and Cardiovascular Health 
in Newborn Infant samples [22]. Some of the EpiSCOPE 
phenotype and methylation data are also present on the 
NCBI Gene Expression Omnibus (GEO) service with 
accession GSE89278. EPIC-Italy, NOVI and URECA 
study data can be downloaded from GEO with accessions 
GSE51032, GSE128821 and GSE132181, respectively.

Sample preparation and processing
The EpiSCOPE HumanMethylation450 (450K) arrays 
were processed by the Australian Genome Research 
Facility Ltd (AGRF). DNA extracted from Guthrie card 
blood spots was bisulphite converted by the Zymo EZ 
DNA Methylation kit (Zymo Research, Orange, CA, 
USA). All arrays with hybridised for 18  h at 48  °C with 
the oven temperature monitored with data loggers to 
ensure there were no temperature fluctuations during 
the hybridisation step. All arrays were scanned with same 
Illumina iScan® System. Extension and staining steps of 
the bead chip protocol were performed with a Tecan liq-
uid handler robot.

The BFiN cohort isolated DNA from infant saliva sam-
ples collected at birth using the Oragene OG-250 kit 
(Genotek). DNA was bisulphite converted and Human 
MethylationEPIC (EPIC) arrays processed at the Aus-
tralian Cancer Research Foundation (ACRF) Cancer 
Genomics Facility in Adelaide, South Australia.

For EPIC-Italy samples [50], DNA was extracted from 
buffy coats or blood cell fractions via the QIAsymphony 
DNA Midi Kit (Qiagen, Crawley, UK) with 500  ng of 
DNA bisulphite converted using the Zymo EZ-96 DNA 
Methylation-Gold Kit and 450K arrays processed by the 
Human Genetics Foundation (HuGeF) in Turin, Italy.

In the NOVI study [33], genomic DNA was extracted 
from buccal swab samples, collected near term-equiv-
alent age in neonates, using the Isohelix Buccal Swab 
system (Boca Scientific). DNA samples were plated 
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randomly across 96-well plates and the DNA converted 
using the Zymo EZ DNA Methylation kit and EPIC arrays 
processed by the Emory University Integrated Genomics 
Core.

The URECA [34] samples were from frozen paired cord 
blood mononuclear cells (CBMCs) and peripheral blood 
mononuclear cells (PBMCs) at age 7 and DNA extracted 
using a Qiagen AllPrep kit (QIAGEN, Valencia, CA) with 
EPIC arrays run at the University of Chicago Functional 
Genomics Facility (UC-FGF).

Preprocessing
All of the Infinium methylation data across the pro-
jects was reprocessed for this current work from raw 
IDAT files, with data analysis performed in the R statis-
tical computing environment (4.0.3). All the scripts for 
the entire analysis are available in a Github repository 
(https:// github. com/ Jason R055/ Batch_ corre cting_ methy 
lation_ data). The EPIC-Italy and NOVI study originat-
ing data were downloaded from the Gene Expression 
Omnibus (GEO), with the Bioconductor GEOquery 
library (2.58.0) used to download the phenotype data 
and the raw IDAT files downloaded via FTP. All files 
were preprocessed and normalised using Bioconductor 
(3.12). The binary IDAT files were read into R using minfi 
(1.36.0) with preprocessing via the raw, SWAN, noob, 
Illumina and Functional normalisation methods imple-
mented in minfi, the Dasen and BMIQ methods from the 
package wateRmelon (1.34.0) and ENmix from ENmix 
(1.26.6). Cell composition estimates as the authors of the 
EpiDISH package (2.6.0) used this for their reference gen-
eration. The ‘epidish’ method within the EpiDISH library 
was used to estimate the fractions of immune and epi-
thelial component of the blood, saliva and buccal sam-
ples. We used the blood fraction and epithelial, fibroblast 
and immune component reference files supplied by the 
authors in their paper [51]. BMIQ-normalised data were 
used as input as this was consistent with the reference 
files.

Small sets of probe values were also moderated to han-
dle particular rare edge cases. For example, it is possible 
for raw, Illumina, Dasen and Functional normalisation to 
produce values of exactly 0 for one or both of the methyl-
ated (Meth) and unmethylated (Unmeth) signals. When 
processed into betas (β = Meth/(Unmeth + Meth)) or M 
values (M = log2(Meth/Unmeth)), Meth = 0 yields β = 0 
and M =  − ∞, and Unmeth = 0 yields β = 1 and M = ∞. 
If both Meth and Unmeth signals are 0, then β and M are 
recorded as missing. The other preprocessing methods 
slightly moderate 0 values, yielding β approximating to 
0 or 1 and non-infinite M values. For consistency across 
the preprocessing steps, values were modified to eliminate 

the generation of infinite M values. After normalisation, β 
were extracted and shifted from exactly 0 or 1, to approxi-
mate 0 or 1 by the ‘shiftBetas’ function in Harman. If both 
Meth and Unmeth signals were 0, these were changed 
to β = 0.5, such that M = 0 when transformed using the 
‘logit2’ function of minfi. Missing β were also converted to 
β = 0.5 and upon logit transformation will become M-val-
ues of 0. This is consistent with the approach of SWAN. 
A very small amount (sd = 1e−8) of random normally 
distributed noise was also added, as features having every 
M-value exactly 0 will terminate ComBat with an error 
due to the variance also being 0. This strategy was also 
used for the EPIC array probe cg06180910, which was 
found to have every M value being 0.

Batch correction
For batch correction, the R implementation of Harman 
(1.18.0) and the ComBat function in the Bioconductor 
library sva (3.38.0) were applied to data resulting from 
each normalisation method. For each, the default set-
tings were used. For Harman, the default confidence limit 
of 0.95 implies that Harman will remove technical vari-
ance across each slide, with the probably of also remov-
ing biological variance arising from gender and treatment 
effects on DNA methylation constrained to 0.05. Harman 
corrected PCA values were transformed back into cor-
rected M matrices using the ‘reconstructData’ function. 
For both Harman and ComBat, the returned corrected 
M matrices were transformed into β values using the 
‘ilogit2’ function in minfi.

Detection of modal CpG probes
An optimal univariate clustering method provided in the 
‘Ckmeans.1d.dp’ R library (4.3.3) was used to discover 
multi-modal features. In the initial cluster discovery 
step, to reduce the impact of technical effects inflating 
the number of clusters for each array feature, samples 
from the 450K slides 1, 5, 9, 17 and 25 were removed 
and similarly, slides 14–22 left out for the EPIC data. The 
Bayesian information criterion (BIC) statistic was used 
to select the two most optimal cluster numbers (k). The 
data were then re-clustered with the top two values of 
k and specifying that each cluster must have at least 5 
samples with a minimum distance between cluster cen-
troids of 10% methylation (β difference of 0.1). The larg-
est value of k meeting these criteria was retained. A total 
of 8 and 11 CpG probes on the 450K and EPIC arrays, 
respectively, had computed optimal values of k above 4. 
These were manually recoded as k = 4. Clustering was 
then repeated with the inclusion of all samples and using 
the optimal value of k for each probe.

https://github.com/JasonR055/Batch_correcting_methylation_data
https://github.com/JasonR055/Batch_correcting_methylation_data
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Statistical testing of corrected data
Modal CpG probes were examined for associations with 
several biological factors and batch-effect. To examine 
the association between cell composition and clustering, 
a simple linear model was used on the estimated propor-
tions of neutrophils for blood data and total immune sys-
tem cells for saliva or buccal swab data. The associations 
between clustering and gender, batch and superbatch 
were examined with Fisher exact tests. In the instance of 
superbatch and 450K data, Chi-square tests with simu-
lated p values were used instead due to the computa-
tional limitations of Fisher exact on larger contingency 
tables. For autosomal CpG probes on with 2 or 3 clusters, 
departure from Hardy–Weinberg equilibrium was also 
examined using an exact test from the ‘HardyWeinberg’ R 
library (1.7.1). The p values for each test were moderated 
for multiple testing using the false discovery rate (FDR) 
procedure of Benjamini and Hochberg [52] implemented 
in the R method ‘p.adjust’. A conservative FDR-moder-
ated p value < 0.001 was used to classify a probe as asso-
ciated with a factor. This cut-off was determined after 
visual examination of the distributions of the returned 
p values. Modal probes were further annotated as being 
on chromosome X or the site of a common single nucleo-
tide polymorphism (SNP). The ‘snp151Common’ table 
from UCSC was used for SNP annotation. This is table 
of SNPs from dbSNP (version 151) having a minor allele 
frequency of at least 1% in any of five super-populations. 
Also, matches to the list of potentially cross-hybridising 
as determined by Chen et al. [30] were recorded.

The sample variance in β for each probe was calculated 
for the original and Harman and ComBat corrected data. 
In instances where the methylation data for a given probe 
were clustered (k > 1), the sample variance was calculated 
by adding together the sum of squares for each cluster 
and then dividing by the total number of samples, less 
one.

Estimation of probe melting temperature
The ‘calcTm’ function within the Bioconductor ‘HELP’ 
library (1.48.0) was used to estimate the melting tem-
perature (Tm) for each probe in the 450K and EPIC 
designs. This function uses the nearest-neighbour melt-
ing temperature estimates of Allawi et  al. [53] but does 
not also include correction for mono- or divalent cation 
concentrations.

Infinium I has A and B probes, and the Tm for each was 
calculated and averaged. Infinium II probes will contain 
a degenerate R (purine) base opposite cytosine in a CpG 
context. So, Tms were calculated where all R bases were 
A or G, respectively. From these two Tm values, an aver-
age probe Tm was calculated.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13148- 022- 01277-9.

Additional file 1: Figure S1. EpiSCOPE study blocking plan. Across the 31 
slides, 29 were completely balanced for gender with 6 male (coloured in 
powder blue) and 6 female (pink) replicates, while slides 30 and 31 were 
partially balanced with 5 females to 7 males and 5 females to 4 males, 
respectively. With regards to DHA supplementation, slides 1–23 and slide 
30 were completely balanced with 6 replicates having DHA supplementa-
tion (square) and 6 controls (circle), with slides 24–29 having 5 controls 
to 7 DHA supplemented and slide 31, 5 controls to 4 DHA supplemented. 
Within a slide, the samples order was randomised to avoid correlation of 
position with gender or DHA supplementation.

Additional file 2: Figure S2. Body Fatness in Newborns (BFiN) study 
blocking plan. Across the 22 slides, 15 were completely balanced for gen-
der with 4 male (coloured in powder blue) and 4 female (pink) replicates. 
Slides 5, 6, 13, 14, 19 were partially balanced with 5 females and 3 males, 
while slide 12 had 3 females and 5 males. Slide 22 had the 3 remaining 
samples. The blocking was also structured by percentage bodyfat. As this 
variable is continuous, the samples were mapped to yield approximately 
equivalent distributions across slides. On the figure, the lowest, middle 
and upper tertiles of percentage bodyfat are represented by a downward-
facing triangle, a lozenge and upwards-facing triangle, respectively. Within 
a slide, the samples order was randomised to avoid correlation of position 
with gender or percentage bodyfat.

Additional file 3: Figure S3. Full set of control probes for the EpiSCOPE 
study. Further detail on the controls is provided by Illumina in the BeadAr-
ray Controls Reporter Software Guide document.

Additional file 4: Figure S4. Full set of control probes for the BFiN study. 
Further detail on the controls is provided by Illumina in the BeadArray 
Controls Reporter Software Guide document.

Additional file 5: Figure S5. BFiN fluorescence intensity slide positional 
effect is reduced with preprocessing methods. Infinium green (Cy3 dye) 
and red (Cy5 dye) fluorescent intensities are formulated into methylated 
(meth) and unmethylated (unmeth) signals. These meth and unmeth sig-
nals are used to calculate β and M values. If the 169 Beadchips in the BFiN 
set are grouped by row (R) position on the glass slide, there is evidence 
that the distribution of fluorescent intensities is associated with position. 
As for the EpiSCOPE dataset, this effect diminishes with preprocessing 
methods (see Fig. 4).

Additional file 6: Figure S6. EpiSCOPE modal probe associations. Each 
probe identified as having a modal distribution within the EpiSCOPE data 
was tested for association with various factors. This upset plot groups the 
probes significant for each factor and by their most numerous intersec-
tions across factors. The factors considered were superbatch (Super), 
estimated cell composition (Cell), chromosome X or Y location (ChrX, 
ChrY), remaining batch-effect after the most batch-effect prone slides 
were removed (Batch), a common single nucleotide polymorphism at the 
CpG site (SNP) or within 10 bp proximal (SNP_10 bp), cross-hybridisation 
prone (Crosshyb), gender (Gender) and probes in Hardy-Weinberg equilib-
rium (HWE). A proportion of modal probes could not be associated with 
any factor considered (Unknown). The two most common intersections 
were modal probes on the X chromosome and associated with gender 
(presumably as a result of X chromosome inactivation) and CpG sites at 
the site of a common SNP having ratios consistent with the Hardy–Wein-
berg principle for expected allele frequencies.

Additional file 7: Figure S7. BFiN modal probe associations The upset 
plot for BFiN data. Refer to Additional file 6: Fig. S6 for further description 
of the factors.

Additional file 8: Figure S8. Full set of control probes for the EPIC-Italy 
study. Further detail on the controls is provided by Illumina in the BeadAr-
ray Controls Reporter Software Guide document.

https://doi.org/10.1186/s13148-022-01277-9
https://doi.org/10.1186/s13148-022-01277-9
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Additional file 9: Figure S9. Full set of control probes for the NOVI study. 
Further detail on the controls is provided by Illumina in the BeadArray 
Controls Reporter Software Guide document.

Additional file 10: Figure S10. Full set of control probes for the URECA 
study. Further detail on the controls is provided by Illumina in the BeadAr-
ray Controls Reporter Software Guide document.

Additional file 11: Figure S11. Log-variance ratio and mean β shift plots 
for all five datasets. Refer to Fig. 9 for further description of the plots. The 
panels are the data from EpiSCOPE (a), BFiN (b) as presented in Fig. 9, as 
well as EPIC-Italy (c), NOVI (d), and URECA (e).

Additional file 12: Figure S12. Intersection of batch-effect susceptible 
probes across the five datasets. The upset plot presents the number of 
batch-effect susceptible probes per dataset as well as their intersections. A 
total of 4649 probes were common to all datasets.

Additional file 13: Figure S13. Intersection of erroneously corrected 
probes across the five datasets. The upset plot presents the number of 
erroneously corrected probes per dataset as well as their intersections. A 
total of 856 probes were common to all datasets.

Additional file 14: Figure S14. Three batch-effect susceptible probes 
reported as top EWAS findings. The three probes, (cg11963436, 
cg18368637, cg22385669), show obvious batch-effect in all the five 
datasets considered. Each scatter plot compares methylation across slides 
(X axis) with the methylation β value (Y-axis). The datapoints are the total-
ity of the arrays from each study, sorted and coloured by slide number. 
The panel is ordered column-wise from left to right as original, Harman-
corrected and ComBat-corrected data. In each instance, the standard 
deviation (SD) of the data was reduced, the log-variance ratio (LVR) was 
considerably below 0 and the mean β shift (Shift) was greater than 0.01.

Additional file 15. Table S1. Reference log-variance ratio and mean β 
shift values for the five datasets.

Acknowledgements
We thank Yi Jin Liew for critical reading of the manuscript. We also thank 
the Australian Genome Research Facility (AGRF), Melbourne, Australia, and 
the Australian Cancer Research Foundation (ACRF), Adelaide, Australia, for 
conducting the Illumina Infinium BeadChip work and accommodating our 
request for a particular run order of the samples. We especially thank Melinda 
Ziino (AGRF) for her generous responses to our questions and her technical 
insights on array processing.

Author contributions
JPR and YO conceptualised and JPR undertook the current study. PLM and SvD 
conceptualised and ran the EpiSCOPE study. MP and MRS conceptualised and 
ran the BFiN study. SvD and MP designed the randomised layout to control 
batch-effects. SvD and YO analysed the EpiSCOPE data and highlighted the 
issue of erroneously corrected probes. JPR performed the data analysis and 
wrote the manuscript. All authors read and approved the final manuscript.

Funding
This current study was supported by CSIRO Health and Biosecurity. The 
EpiSCOPE study was supported by the Science and Industry Endowment 
Fund (RP03-064) and Diabetes Australia. The BFiN study was supported by a 
National Heart Foundation of Australia Future Leader Fellowship.

Availability of data and materials
The EpiSCOPE datasets analysed during the current study are available at the 
Gene Expression Omnibus (GEO) under accession GSE89278. For the BFiN 
study, the data are not available as the participants have not consented to this. 
GEO accessions for the three validation datasets are presented in the meth-
ods. Output data and methods for this work are available on Bioconductor via 
the Harman and HarmanData packages.

Declarations

Ethics approval and consent to participate
The data in this study are covered under prior ethics approvals.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Human Health Program, Health and Biosecurity, CSIRO, Sydney, Australia. 
2 Charles Perkins Centre, The University of Sydney, Sydney, Australia. 3 Sydney 
Medical School, The University of Sydney, Sydney, Australia. 4 Sydney Institute 
for Women, Children and Their Families, Sydney Local Health District, Sydney, 
Australia. 5 Clinical Insights and Analytics Unit, South Eastern Sydney Local 
Health District, Sydney, Australia. 

Received: 28 February 2022   Accepted: 10 April 2022

References
 1. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, 

Geman D, Baggerly K, Irizarry RA. Tackling the widespread and criti-
cal impact of batch effects in high-throughput data. Nat Rev Genet. 
2010;11:733–9.

 2. Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, 
Shi T, Tong W, Shi L, Hong H, et al. A comparison of batch effect removal 
methods for enhancement of prediction performance using MAQC-II 
microarray gene expression data. Pharmacogenomics J. 2010;10:278–91.

 3. von der Haar M, Preuss JA, von der Haar K, Lindner P, Scheper T, Stahl F. 
The impact of photobleaching on microarray analysis. Biology (Basel). 
2015;4:556–72.

 4. Fare TL, Coffey EM, Dai H, He YD, Kessler DA, Kilian KA, Koch JE, LeProust E, 
Marton MJ, Meyer MR, et al. Effects of atmospheric ozone on microarray 
data quality. Anal Chem. 2003;75:4672–5.

 5. Branham WS, Melvin CD, Han T, Desai VG, Moland CL, Scully AT, Fuscoe 
JC. Elimination of laboratory ozone leads to a dramatic improvement in 
the reproducibility of microarray gene expression measurements. BMC 
Biotechnol. 2007;7:8.

 6. Fasold M, Stadler PF, Binder H. G-stack modulated probe intensities on 
expression arrays—sequence corrections and signal calibration. BMC 
Bioinform. 2010;11:207.

 7. Kitchen RR, Sabine VS, Simen AA, Dixon JM, Bartlett JMS, Sims AH. Relative 
impact of key sources of systematic noise in Affymetrix and Illumina 
gene-expression microarray experiments. BMC Genomics. 2011;12:589.

 8. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, 
Schroth GP, Gunderson KL, et al. High density DNA methylation array with 
single CpG site resolution. Genomics. 2011;98:288–95.

 9. Bose M, Wu C, Pankow JS, Demerath EW, Bressler J, Fornage M, Grove ML, 
Mosley TH, Hicks C, North K, et al. Evaluation of microarray-based DNA 
methylation measurement using technical replicates: the Atherosclerosis 
Risk In Communities (ARIC) Study. BMC Bioinform. 2014;15:312.

 10. Dugué P-A, English DR, MacInnis RJ, Jung C-H, Bassett JK, FitzGerald LM, 
Wong EM, Joo JE, Hopper JL, Southey MC, et al. Reliability of DNA meth-
ylation measures from dried blood spots and mononuclear cells using 
the HumanMethylation450k BeadArray. Sci Rep. 2016;6:30317.

 11. Dedeurwaerder S, Defrance M, Bizet M, Calonne E, Bontempi G, Fuks 
F. A comprehensive overview of Infinium HumanMethylation450 data 
processing. Brief Bioinform. 2014;15:929–41.

 12. Patrat C, Ouimette JF, Rougeulle C. X chromosome inactivation in human 
development. Development. 2020;147:dev183095.



Page 28 of 28Ross et al. Clinical Epigenetics           (2022) 14:58 

 13. Singmann P, Shem-Tov D, Wahl S, Grallert H, Fiorito G, Shin SY, Schramm K, 
Wolf P, Kunze S, Baran Y, et al. Characterization of whole-genome autoso-
mal differences of DNA methylation between men and women. Epigenet 
Chromatin. 2015;8:43.

 14. Mugal CF, Ellegren H. Substitution rate variation at human CpG sites 
correlates with non-CpG divergence, methylation level and GC content. 
Genome Biol. 2011;12:R58.

 15. Tycko B. Allele-specific DNA methylation: beyond imprinting. Hum Mol 
Genet. 2010;19:R210-220.

 16. Dolinoy DC, Das R, Weidman JR, Jirtle RL. Metastable epialleles, imprint-
ing, and the fetal origins of adult diseases. Pediatr Res. 2007;61:30R-37R.

 17. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM. Comparison 
of Beta-value and M-value methods for quantifying methylation levels by 
microarray analysis. BMC Bioinform. 2010;11:587.

 18. Oytam Y, Sobhanmanesh F, Duesing K, Bowden CJ, Osmond-McLeod M, 
Ross J. Risk-conscious correction of batch effects: maximising informa-
tion extraction from high-throughput genomic datasets. BMC Bioinform. 
2016;17:1–17.

 19. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for 
removing batch effects and other unwanted variation in high-through-
put experiments. Bioinform (Oxf, Engl). 2012;28:882–3.

 20. van Dijk SJ, Peters TJ, Buckley M, Zhou J, Jones PA, Gibson RA, Makrides 
M, Muhlhausler BS, Molloy PL. DNA methylation in blood from neonatal 
screening cards and the association with BMI and insulin sensitivity in 
early childhood. Int J Obes (Lond). 2018;42:28–35.

 21. Dissanayake HU, McMullan RL, Kong Y, Caterson ID, Celermajer DS, Phang 
M, Raynes-Greenow C, Polson JW, Gordon A, Skilton MR. Body fatness and 
cardiovascular health in newborn infants. J Clin Med. 2018;7:270.

 22. Phang M, Ross J, Raythatha JH, Dissanayake HU, McMullan RL, Kong Y, 
Hyett J, Gordon A, Molloy P, Skilton MR. Epigenetic aging in newborns: 
role of maternal diet. Am J Clin Nutr. 2020;111:555–61.

 23. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array 
normalization for illumina infinium HumanMethylation450 BeadChips. 
Genome Biol. 2012;13:R44.

 24. Xu Z, Niu L, Li L, Taylor JA. ENmix: a novel background correction method 
for Illumina HumanMethylation450 BeadChip. Nucleic Acids Res. 
2016;44:e20.

 25. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-
Cabrero D, Beck S. A beta-mixture quantile normalization method for 
correcting probe design bias in Illumina Infinium 450 k DNA methylation 
data. Bioinformatics. 2013;29:189–96.

 26. Triche TJ Jr, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD. 
Low-level processing of Illumina Infinium DNA Methylation BeadArrays. 
Nucleic Acids Res. 2013;41:e90.

 27. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen 
KD, Irizarry RA. Minfi: a flexible and comprehensive Bioconductor pack-
age for the analysis of Infinium DNA methylation microarrays. Bioinfor-
matics. 2014;30:1363–9.

 28. Pidsley R, Wong CCY, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-
driven approach to preprocessing Illumina 450K methylation array 
data. BMC Genomics. 2013;14:293.

 29. Fortin JP, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ, Green-
wood CM, Hansen KD. Functional normalization of 450k methylation 
array data improves replication in large cancer studies. Genome Biol. 
2014;15:503.

 30. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, 
Gallinger S, Hudson TJ, Weksberg R. Discovery of cross-reactive probes 
and polymorphic CpGs in the Illumina Infinium HumanMethylation450 
microarray. Epigenetics. 2013;8:203–9.

 31. Carpenter BL, Zhou W, Madaj Z, DeWitt AK, Ross JP, Grønbæk K, Liang 
G, Clark SJ, Molloy PL, Jones PA. Mother–child transmission of epige-
netic information by tunable polymorphic imprinting. Proc Natl Acad 
Sci. 2018;115:E11970–7.

 32. Palli D, Berrino F, Vineis P, Tumino R, Panico S, Masala G, Saieva C, Salvini 
S, Ceroti M, Pala V, et al. A molecular epidemiology project on diet and 
cancer: the EPIC-Italy prospective study .Design and baseline charac-
teristics of participants. Tumori. 2003;89:586–93.

 33. Everson TM, Marsit CJ, Michael O’Shea T, Burt A, Hermetz K, Carter BS, 
Helderman J, Hofheimer JA, McGowan EC, Neal CR, et al. Epigenome-
wide analysis identifies genes and pathways linked to neurobehavioral 
variation in preterm infants. Sci Rep. 2019;9:6322.

 34. McKennan C, Naughton K, Stanhope C, Kattan M, O’Connor GT, Sandel 
MT, Visness CM, Wood RA, Bacharier LB, Beigelman A, et al. Longitu-
dinal data reveal strong genetic and weak non-genetic components 
of ethnicity-dependent blood DNA methylation levels. Epigenetics. 
2020;16:1–15.

 35. Campbell MC, Tishkoff SA. African genetic diversity: implications for 
human demographic history, modern human origins, and complex 
disease mapping. Annu Rev Genomics Hum Genet. 2008;9:403–33.

 36. Chen YA, Choufani S, Ferreira JC, Grafodatskaya D, Butcher DT, Weksberg 
R. Sequence overlap between autosomal and sex-linked probes on the 
Illumina HumanMethylation27 microarray. Genomics. 2011;97:214–22.

 37. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9:357–9.

 38. Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths 
L, Hoffman EP, Stubbs RS, Macartney-Coxson D. An analysis of DNA 
methylation in human adipose tissue reveals differential modification of 
obesity genes before and after gastric bypass and weight loss. Genome 
Biol. 2015;16:8.

 39. Roberts RJ. PubMed Central: the GenBank of the published literature. Proc 
Natl Acad Sci U S A. 2001;98:381–2.

 40. Moore K, McKnight AJ, Craig D, O’Neill F. Epigenome-wide association 
study for Parkinson’s disease. Neuromolecular Med. 2014;16:845–55.

 41. Chen J, Huang Y, Hui Q, Mathur R, Gwinn M, So-Armah K, Freiberg MS, 
Justice AC, Xu K, Marconi VC, Sun YV. Epigenetic associations with 
estimated glomerular filtration rate among men with human immunode-
ficiency virus infection. Clin Infect Dis. 2020;70:667–73.

 42. Liu Y, Geng H, Duan B, Yang X, Ma A, Ding X. Identification of diagnos-
tic CpG signatures in patients with gestational diabetes mellitus via 
epigenome-wide association study integrated with machine learning. 
Biomed Res Int. 2021;2021:1984690.

 43. Hicks SC, Irizarry RA. quantro: a data-driven approach to guide the choice 
of an appropriate normalization method. Genome Biol. 2015;16:117.

 44. Shiah YJ, Fraser M, Bristow RG, Boutros PC. Comparison of pre-processing 
methods for Infinium HumanMethylation450 BeadChip array. Bioinfor-
matics. 2017;33:3151–7.

 45. Liu J, Siegmund KD. An evaluation of processing methods for Human-
Methylation450 BeadChip data. BMC Genomics. 2016;17:469.

 46. Xu Z, Niu L, Taylor JA. The ENmix DNA methylation analysis pipeline for 
Illumina BeadChip and comparisons with seven other preprocessing 
pipelines. Clin Epigenet. 2021;13:216.

 47. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in 
epigenome-wide association studies. Genome Biol. 2014;15:R31–R31.

 48. Zindler T, Frieling H, Neyazi A, Bleich S, Friedel E. Simulating ComBat: how 
batch correction can lead to the systematic introduction of false positive 
results in DNA methylation microarray studies. BMC Bioinformat. 2020;21:271.

 49. Price EM, Robinson WP. Adjusting for batch effects in DNA methylation 
microarray data, a lesson learned. Front Genet. 2018;9:83.

 50. Campanella G, Polidoro S, Di Gaetano C, Fiorito G, Guarrera S, Krogh V, 
Palli D, Panico S, Sacerdote C, Tumino R, et al. Epigenetic signatures of 
internal migration in Italy. Int J Epidemiol. 2015;44:1442–9.

 51. Teschendorff AE, Breeze CE, Zheng SC, Beck S. A comparison of 
reference-based algorithms for correcting cell-type heterogeneity in 
Epigenome-Wide Association Studies. BMC Bioinformat. 2017;18:105.

 52. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical 
and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 
1995;57:289–300.

 53. Allawi HT, SantaLucia J Jr. Thermodynamics and NMR of internal GT 
mismatches in DNA. Biochemistry. 1997;36:10581–94.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Batch-effect detection, correction and characterisation in Illumina HumanMethylation450 and MethylationEPIC BeadChip array data
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Experimental design and processing steps
	Technical variation evident in control probes
	Colour balance
	Preprocessing methods and the removal of position and dye bias
	Global methylation overview and batch-effect model specification
	Removal of batch-effects
	Identifying clustered methylation
	Evaluating batch correction for each probe
	Validation
	Universality across datasets
	Lists of troublesome probes
	The nature of probes more subject to batch-effects
	Findings of false positive probes in published EWAS studies

	Discussion
	Conclusions
	Methods
	Participant characteristics and data acquisition
	Sample preparation and processing
	Preprocessing
	Batch correction
	Detection of modal CpG probes
	Statistical testing of corrected data
	Estimation of probe melting temperature

	Acknowledgements
	References


