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Role of meteorological factors in the transmission
of SARS-CoV-2 in the United States
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Improved understanding of the effects of meteorological conditions on the transmission of
SARS-CoV-2, the causative agent for COVID-19 disease, is needed. Here, we estimate the
relationship between air temperature, specific humidity, and ultraviolet radiation and SARS-
CoV-2 transmission in 2669 U.S. counties with abundant reported cases from March 15 to
December 31, 2020. Specifically, we quantify the associations of daily mean temperature,
specific humidity, and ultraviolet radiation with daily estimates of the SARS-CoV-2 repro-
duction number (R;) and calculate the fraction of R; attributable to these meteorological
conditions. Lower air temperature (within the 20-40 °C range), lower specific humidity, and
lower ultraviolet radiation were significantly associated with increased R;. The fraction of R;
attributable to temperature, specific humidity, and ultraviolet radiation were 3.73% (95%
empirical confidence interval [eCl]: 3.66-3.76%), 9.35% (95% eCl: 9.27-9.39%), and 4.44%
(95% eCl: 4.38-4.47%), respectively. In total, 17.5% of R; was attributable to meteorological
factors. The fractions attributable to meteorological factors generally were higher in northern
counties than in southern counties. Our findings indicate that cold and dry weather and low
levels of ultraviolet radiation are moderately associated with increased SARS-CoV-2 trans-
missibility, with humidity playing the largest role.
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ARTICLE

ince first detected, the novel severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), the causative agent of

coronavirus disease 2019 (COVID-19), has produced a
major global pandemic. As of March 20, 2021, ~29.8 million
COVID-19 cases and 542 thousand deaths had been reported in
the U.S.1, more than any other country. The decreased stability of
SARS-CoV-2 in warmer temperatures, higher humidity, and
simulated sunlight in laboratory experiments2—>, and the docu-
mented seasonality of influenza®’ and infections caused by other
coronaviruses3~10, lead to the hypothesis that lower air tem-
perature, lower humidity, and lower ultraviolet (UV) radiation
are associated with increased SARS-CoV-2 transmission. Quan-
tifying this effect on a population level is needed to help inform
public health control efforts, including transmission prevention
and communication with the public!l.

Numerous preliminary studies have found either positive or
negative associations of air temperature, humidity, and UV
radiation with reported COVID-19 case numbers!2-17. However,
given the large number of undocumented SARS-CoV-2
infections!8, the variations in the lag between infection and
symptom onset, and the inconsistent lag between testing and
reporting, using daily new confirmed cases may not be optimal
for examining meteorological effects!®. As a result, a few studies
have used the reproduction number to estimate SARS-CoV-2
transmissibility?0-22. One study reported high daily air tem-
perature and high daily relative humidity (RH, the amount of
water vapor in the air expressed as a percentage of the amount
needed for saturation at a given temperature) to be associated
with a reduced daily effective reproduction number (R, the mean
number of new infections caused by a single infected person in a
population in which some individuals may no longer be suscep-
tible due to acquired immunity?3) for SARS-CoV-2 in both China
and the U.S.20. However, early studies focused on the first few of
months of the pandemic found no association between tem-
perature, humidity, or UV radiation and the basic reproduction
number (the mean number of new infections caused by a single
infected person in a population in which everyone is assumed to
be susceptible and no public health measures have been
implemented)21-22,

Early analyses, in particular, should be interpreted with
caution!l, as the range of temperature, humidity, and UV
radiation measurements during the short observation period at
the beginning of the pandemic was relatively narrow in most
studies!?~1>20-22 thus limiting the ability to detect associations
between these meteorological variables and SARS-CoV-2 trans-
mission. In addition, many previous studies (whether using
COVID-19 cases or reproduction number as the outcome) con-
trolled for no or only a few potential confounders!2-16:21.22,
which include other environmental factors, socioeconomic fac-
tors, temporal changes in population immunity, and imple-
mentation of public health interventions.

Furthermore, although most early studies found an association
between air temperature, humidity, or UV radiation and COVID-
19 incidence, the fraction of cases or deaths attributable to
meteorological conditions remains unclear. One modeling study
predicted that as long as most of the population is susceptible to
infection, any role of humidity in SARS-CoV-2 transmission
would be overwhelmed by the lack of population immunity?4,
This prediction is supported by the rapid transmission of SARS-
CoV-2 regardless of climate zone, including warmer locations
such as tropical Brazil, India, and southern states in the U.S.
during the northern hemisphere summer!. In addition, the rela-
tive importance of different meteorological factors needs further
investigation?>.

Here we investigate the association between meteorological
conditions, i.e., air temperature, specific humidity (SH; the mass

of water vapor in a unit mass of moist air [gkg~1]), and UV
radiation and SARS-CoV-2 transmission, as measured by the
reproduction number R; (the mean number of new infections
caused by a single infected person, given the public health mea-
sures in place, in a population in which everyone is assumed to be
susceptible). In this study, instead of R,, we use R, to quantify the
transmission rate of SARS-CoV-2, which removes the impact of
population immunity on disease transmission. We estimate R, in
the 2669 counties with at least 400 cumulative cases as of
December 31, 2020 and calculate the fraction of R, attributable to
temperature, SH, or UV radiation, adjusting for a wide range of
potential confounders.

Results

Distribution of meteorological factors and R,. From March 15
to December 31, 2020, a total of 19,430,010 cases of COVID-19
were reported in the 2669 study counties (Supplementary
Table 1). We estimated the county-specific R, using a dynamic
metapopulation model informed by human mobility data that
represents the transmission of SARS-CoV-2 in the U.S. (see
“Methods”). Mean daily R, averaged over all counties and days
during the study period was 1.49 and ranged from 0.45 to 6.62.
Daily air temperature, SH, and UV radiation also ranged widely
(air temperature: —22.25-39.98 °C; SH: 0.49-22.37 gkg~!; UV
radiation: 1.68-155.61 k] m~2). Cass County, Indiana had the
highest R, averaged over the study period, and Brewster County,
Texas had the lowest (Fig. 1a). Southern counties generally were
hotter than northern counties (Fig. 1b). In the eastern U.S.,
southern counties were more humid than northern counties;
western U.S. counties were drier than eastern U.S. counties, with
inland western counties generally drier than coastal western
counties (Fig. 1c). In the eastern U.S., UV radiation levels were
higher in southern counties than in northern counties; western U.
S. counties generally were exposed to higher levels of UV radia-
tion than eastern U.S. counties (Fig. 1d).

Associations between meteorological factors and R, We esti-
mated the complex non-linear and temporally delayed associa-
tions of meteorological factors with SARS-CoV-2 R, using a
generalized additive mixed model adjusting for spatiotemporal
variations in R, and potential measured confounders, described in
detail in “Methods”. We then calculated the optimum values of
temperature, SH, and UV radiation, which correspond to the
lowest R,, between the 15t and the 99th percentiles of the dis-
tribution of each meteorological variable. For temperature in the
range of 20-40°C, we found an approximately linear inverse
temperature-R; relationship (Fig. 2a), with lower air temperatures
significantly associated with increased transmission of SARS-
CoV-2. No significant associations were observed when tem-
perature was below ~10°C. Compared with the optimum tem-
perature (31.23 °C), a temperature of 20 °C was associated with a
5.15% (95% CI: 2.49-7.88%) increase of R,.

The relationship between SH and R, was non-linear (Fig. 2b).
Higher SH was significantly associated with decreased transmis-
sion, except for a stable trend from ~7 to 12 gkg~!. Compared
with the optimum value (19.21 gkg—1), the 15t percentile of the
distribution of SH (1.80 gkg™!) was associated with a 15.20%
(95% CI: 9.65-21.04%) increase of R, UV radiation level was
unrelated to SARS-CoV-2 transmission when UV radiation was
lower than ~100kJ m—2, but when above this level, an almost
linear negative association was observed between UV radiation
and R, (Fig. 2c). A UV radiation level of 100k m~2 was
associated with a 5.18% (95% CI: 2.26-8.17%) increase of R, over
the optimal level (142.78 k] m~2).
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Trends of effect estimates in the lag dimension are shown in
Supplementary Fig. 1. Sensitivity analyses showed the estimated
relationships between meteorological factors and R; to be
generally consistent under different modeling choices (Fig. 2a—c),
except for the temperature curve when the number of degrees of
freedom (df) of exposure (meteorological factors) was changed to
4, which could be a result of overfitting (Fig. 2a). The coefficient
table of other covariates in the main model is shown in
Supplementary Table 2. The R? of the main model is 0.514,
and the spatial and temporal autocorrelations are insignificant (P
values = 0.159 and 0.798 for spatial and temporal autocorrela-
tions, respectively) (Supplementary Table 3).

Fractions of R; attributable to meteorological factors. Based on
the estimated associations of meteorological factors with R, and
daily county-specific R,, we further calculated the fraction of R,
attributable to meteorological factors (i.e., the attributable frac-
tion [AF], which can be interpreted as the fraction of R, attri-
butable to the deviation of temperature, SH, or UV radiation
from the optimum value). Across all 2669 counties over the entire
study period, the AF for temperature was 3.73% (95% empirical
confidence intervals [eCI]: 3.66-3.76%), the AF for SH was 9.35%
(95% eCI: 9.27-9.39%), and the AF for UV radiation was 4.44%
(95% eCl: 4.38-4.47%) (Supplementary Table 4). In total, the
three meteorological factors contributed to ~17.5% of R,. Com-
pared with the main model, models including each meteor-
ological factor separately resulted in higher AF for temperature
and SH, and lower AF for UV radiation (Supplementary Fig. 2).
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The AF for temperature generally was higher in the eastern U.
S. and the West Coast than in other regions (Fig. 3a). The AF for
SH showed an increasing trend from south to north in the eastern
U.S., whereas in the western U.S., the AF for SH was lower in
counties in coastal states than in counties in interior states
(Fig. 3b). The AF for UV radiation was generally higher in the
eastern U.S. than in the western U.S. (Fig. 3c) and was lowest in
the southwest. The total AF for all three meteorological factors
combined generally was higher in northern counties than in
southern counties in the eastern U.S. and was also high in most of
the western U.S. (Fig. 3d). Each meteorological factor exhibited
the highest AF in winter and the lowest AF in summer (Fig. 4).

Sensitivity analyses indicate that the AF for air temperature,
SH, or UV radiation generally remains robust when excluding
socioeconomic factors and when additionally adjusting for
smoking and obesity prevalence, long-term air pollution, climate
zones, or short-term air pollution (Supplementary Table 4).

Discussion

Using estimated reproduction numbers for 2669 U.S. counties
and controlling for temporal and spatial trends and other
potential confounders, we assessed the associations of air
temperature, SH, and UV radiation with the transmission of
SARS-CoV-2 and estimated the fractions of R, attributable to
meteorological factors. We found lower air temperature (within
the range of 20-40 °C), lower SH, and lower UV radiation to be
significantly associated with increased R,. During the study per-
iod, meteorological factors contributed to ~17.5% of R.: 3.73%,
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Fig. 1 Map of the distribution of reproduction number, air temperature, specific humidity, and ultraviolet radiation in study counties. This figure
displays the distribution of key variables averaged over the study period in 2669 U.S. counties. a The distribution of the daily reproduction number (Rp).
b The distribution of daily air temperature. € The distribution of daily specific humidity (SH). d The distribution of daily ultraviolet (UV) radiation. The

shapefile in the maps was obtained from the U.S. Census Bureau.
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Fig. 2 The associations of air temperature, specific humidity, and ultraviolet radiation with R, under different choices of model. This figure shows the
estimated exposure-response curves (meteorological factors vs. percent change in Ry) for the associations of air temperature (a), specific humidity (SH)
(b), and ultraviolet (UV) radiation (¢) with reproduction number (R;) for SARS-CoV-2, with different modelling choices: (1) main model with 95%
confidence interval (grey area): tensor product smooths to control for the temporal and spatial variations with a maximum of 30 and 200 knots (k),
respectively, and cross-basis terms for meteorological factors, which are defined by natural cubic splines with 3 df for both the exposure-response and lag-
response association, with a maximum lag of 13 days; (2) redefine the lag dimension using a natural cubic spline and 3 equally placed internal knots in the
log scale; (3) change the df to 4 in the cross-basis terms for meteorological factors in the exposure-response function; (4) change the maximum number of
knots to 25 in the flexible natural cubic spline to control time trend in the tensor product smooths.
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Fig. 3 Fractions of R; attributable to meteorological factors by county. The distribution of the fraction of reproduction number (R;) attributable to
temperature (a), specific humidity (b), ultraviolet radiation (¢), or the sum of the three meteorological factors (d) (i.e., attributable fraction [AF]) in each
county. The shapefile in the maps was obtained from the U.S. Census Bureau.
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Fig. 4 Fractions of R; attributable to meteorological factors by month. The distribution of the fraction of reproduction number (R,) attributable to
temperature, specific humidity, ultraviolet radiation, or the sum of the three meteorological factors (i.e., attributable fraction [AF]) by month in 2020.

9.35%, and 4.44% of R, was attributable to the deviation of
temperature, SH, and UV radiation from their optimum values,
respectively. Meteorological factors in total contributed more to
the transmission of SARS-CoV-2 in counties and months with
colder and drier weather and lower levels of UV radiation than in
counties and months with warmer, more humid weather and
higher levels of UV radiation. In December (the month with the
lowest temperature, lowest SH, and lowest UV radiation of our
study period of March-December), the AF for meteorological
factors was 20.8% (Fig. 4). Everything else being equal, we can
anticipate the highest AF during the months with colder and drier
weather and lower UV radiation in future years.

Associations of lower temperature, lower humidity, and lower
amount of UV radiation with increased COVID-19 outcomes
have been reported by many previous studies. Many multicity
analyses in China reported such negative associations!2141>, For
example, using data of daily confirmed case counts from 30
provincial capital cities of China, Liu et al. found that lower
temperature and lower absolute humidity were associated with
higher COVID-19 case counts!4. Later, with the rapid spread of
COVID-19 around the world, studies in other countries
emerged!7-26-29, and UV radiation was considered in some stu-
dies. In the early stages of this pandemic in the U.S., a state-level
study of daily COVID-19 case counts observed a declining trend
of reported cases with higher UV radiation and increasing tem-
perature up to 52°F26. Based on data from 166 countries
worldwide, another study reported that a 1°C increase in tem-
perature and a 1% increase in RH were associated with a 3.08%
and 0.85% reduction in daily new cases, respectively?8. Another
multi-country study provided evidence for a protective role of
ultraviolet-B (UVB) radiation in reducing COVID-19 deaths?.
However, many of these earlier studies were limited by short
study periods (e.g. 1-2 months), use of daily confirmed cases or
deaths across countries for which there were varying reporting
biases, failure to account for the time lag between observed
weather conditions and when cases or deaths were recorded, or
failure to account for time delays between infection acquisition
and case confirmation!®23,

By representing the transmissibility of SARS-CoV-2, the esti-
mated daily reproduction number serves as a better outcome than
daily case counts. While case counts are subject to the influence of

reporting delay and underreporting, which vary across locations
and are thus difficult to control, the reproduction number is a
direct estimate of the transmission rate of SARS-CoV-2, quanti-
fying the average number of infections caused by one infection in
the population. A small number of studies previously analyzed
the association between temperature, humidity, or UV radiation
and reproduction number?9-22:30, Wang et al. found that a 1°C
increase in temperature was associated with a reduction in the
effective reproduction number of 0.026 in China and 0.020 in the
U.S,, and a 1% increase in RH was associated with a reduction in
the effective reproduction number of 0.0076 in China and 0.0080
in the U.S.20, Adnan et al. reported a significant negative asso-
ciation between UV index (a standard measurement of the
strength of sunburn-producing UV radiation) and basic repro-
duction number in major cities of Pakistan3. These associations
are consistent with our findings but were not supported by two
studies in China that examined the basic reproduction number:
the first found no association between temperature or UV
radiation and SARS-CoV-2 transmission??; the second found no
association between absolute humidity and SARS-CoV-2
transmission?!. However, these early studies were limited by
short observation periods at the beginning of the pandemic, and
they did not account for variations of testing capacity, reporting,
human mobility, and population susceptibility in estimating
SARS-CoV-2 transmissibility.

We estimated R, using a dynamic metapopulation model
informed by human mobility data. This mechanistic model
accounted for unreported infections, reporting delays, and
county-to-county movement. Previous estimates of R, using
reported cases did not consider underreporting of infections. Our
approach mitigates this limitation by additionally modeling the
transmission of unreported infections and estimating the ascer-
tainment rate—the fraction of all infections that are confirmed
cases, and the relative contagiousness of those unreported infec-
tions. Further, reported incidence is a lagged indicator of disease
transmission due to the delay from infection acquisition to
laboratory confirmation. We corrected for this lag using a
reporting delay model informed by line-list data from the U.S.
Lastly, R, used in previous studies is determined by both the local
transmission rate and population susceptibility: R, =R, xs,
where s is the fraction of the total population susceptible to
infection. Analyses using R, are complicated by the variation of
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population susceptibility across U.S. counties. To address this
issue, we explicitly estimated the population susceptibility in each
county, and removed its influence in the calculation of R3! (see
“Methods”). The model estimating population susceptibility has
been validated against independent seroprevalence study data3!.
Thus, our estimates account for spatial heterogeneity in popula-
tion immunity.

Another strength of our study was adjustment for a wide range
of demographic and socioeconomic factors in the main analysis,
as well as for smoking and obesity, air pollution, and climate zone
in sensitivity analyses. We also thoroughly controlled for spatially
and temporally heterogenous unmeasured confounders, such
as implementation of and compliance with public health
measures’!, by simultaneously controlling for temporal and
spatial variations (Supplementary Fig. 3) and including smooths
of random effects to further account for unmeasured state- and
county-level confounding (see “Methods”). This approach
accounted for substantial differences in the epidemic curves
among states and counties (Supplementary Fig. 4).

Our findings for air temperature and SH are supported by
laboratory evidence on the stability of SARS-CoV-2 as a function
of temperature and humidity. It has been reported that the virus’
half-life in human nasal mucus and sputum is shorter under
conditions of higher temperature and RH than under conditions
of lower temperature and RH2. Similar findings were reported by
other studies testing virus stability in virus transport medium?, in
aerosols>2, and on various surfaces32. Further, the SARS-CoV-2
half-life was found to be longer at lower temperatures, and at
both 22°C and 27°C, the half-life decreased as RH increased
from 40 to 65% but increased as RH increased from 65 to 85%33.
This result is roughly consistent with the non-linear relationship
between SH and R; observed in our study (Fig. 2b), in which there
was a stable trend of R; from 7 to 12 gkg—! of SH superimposed
on the overall decreasing trend. In addition to being mediated by
effects on the virus itself, the associations between temperature
and humidity and SARS-CoV-2 transmissibility may be mediated
by human airway antiviral defenses. Inhalation of cold and dry air
can impair mucociliary clearance, a crucial mechanism for the
elimination of inhaled pathogens3*. Further, during the colder
winter months people spend more time indoors, which may
facilitate virus transmission®®. During these months, whether
indoors or outdoors, people are exposed to less UV radiation
from the sun, which modulates the immune system3637,

UV radiation may affect transmission of SARS-CoV-2 through
impacts on the virus and on immune function?. It has been
shown that higher levels of UV radiation, particularly ultraviolet-
C radiation (UV light with wavelengths between 200 and 280
nm), can inactivate RNA viruses?>. In experimental studies,
exposure to simulated sunlight resulted in rapid inactivation of
infectious SARS-CoV-2 on different surfaces* and in aerosols’.
Furthermore, UV radiation can indirectly influence SARS-CoV-2
transmission through its impact on the synthesis of vitamin D
and other UV-induced mediators of immune function3°.

We estimated that a total of ~17.5% of R; was attributable to
the three meteorological factors combined. This estimate is con-
sistent with a previous modelling study, which found that weather
(temperature, RH, and UV radiation) explained 17% of the var-
iation in COVID-19 growth rate (i.e., the exponential increase in
cases)38. We found that SH contributes more to SARS-CoV-2
transmission than temperature, which is consistent with studies
of influenza3®40. SH is more strongly associated with the
observed seasonality of influenza in temperate regions than either
temperature or RH%3%. In developed countries, such as the U.S.,
people spend ~90% of their time indoors*!, especially during
winter3®, Although indoor temperature is usually controlled,
indoor humidity generally is not, and closely mirrors outdoor

levels#2-44, perhaps explaining why ambient outdoor SH is more
strongly associated with SARS-CoV-2 transmission than ambient
outdoor temperature. In addition, the large discrepancy between
indoor and outdoor temperature and the high correlation
between indoor and outdoor humidity explain why ambient
outdoor temperature showed no association with SARS-CoV-2
transmission when lower than 20 °C in the main model (Fig. 2a),
but showed a monotonically decreasing trend in the model
excluding the other two meteorological factors (Supplementary
Fig. 2). However, it remains unclear whether SH (versus tem-
perature) is the causative modulator of SARS-CoV-2 transmission
or is simply a useful indicator of the indoor environment and the
combined effects of temperature and RH.

In the sensitivity analyses, after adjusting for long-term PM, s,
the estimated AF for temperature increased by about 40% (Sup-
plementary Table 4), indicating that long-term PM, s acted as a
confounder for temperature effects. This result is consistent with
a recent study that found increased COVID-19 mortality asso-
ciated with increased long-term exposure to PM, 5*°. In contrast,
the fraction of R, attributable to SH or UV radiation remained
stable after adjusting for long-term PM, 5. Although it is unclear
why long-term PM, s would serve as a confounder for tempera-
ture, but not for SH or UV radiation, this result does suggest that
SH and UV radiation are more robust predictors than
temperature.

Several limitations of this study should be noted. First, this is
an ecological rather than an individual-level study, thus making
the study susceptible to the ecological fallacy. Second, due to data
limitations, we were unable to explore potential heterogeneity of
associations of meteorological factors with R, for different var-
iants of SARS-CoV-2. Future studies are needed to investigate
this potential heterogeneity, as knowledge of differing meteor-
ological impacts across variants may inform prevention strategies.

Our findings indicate that cold and dry weather and low levels
of UV radiation are moderately associated with increased SARS-
CoV-2 transmissibility in the U.S., with absolute humidity (i.e.,
SH) playing the greatest role. More extensive public health
interventions are needed to mitigate the increased transmissibility
of SARS-CoV-2 in winter months.

Methods

Data collection. We extracted hourly air temperature and SH from the North
America Land Data Assimilation System project®, a near real-time dataset with a
0.125° % 0.125° grid resolution. We spatially and temporally averaged these data
into daily county-level records. SH is the mass of water vapor in a unit mass of
moist air (gkg~!). Daily downward UV radiation at the surface, with a wavelength
of 0.20-0.44 um, was extracted from the European Centre for Medium-Range
Weather Forecasts ERA5 climate reanalysis?’.

Other characteristics of each county, including geographic location, population
density, demographic structure of the population, socioeconomic factors,
proportion of healthcare workers, intensive care unit (ICU) bed capacity, health
risk factors, long-term and short-term air pollution, and climate zone were
collected from multiple sources. Geographic coordinates, population density,
median household income, percent of people older than 60 years, percent Black
residents, percent Hispanic residents, percent owner-occupied housing, percent
residents aged 25 years and over without a high school diploma, and percent
healthcare practitioners or support staff were collected from the U.S. Census
Bureau®. Total ICU beds in each county were derived from Kaiser Health News*.
The prevalence of smoking and obesity among adults in each county was obtained
from the Robert Wood Johnson Foundation’s 2020 County Health Rankings®. We
extracted annual PM, 5 concentrations in the U.S. from 2014 to 2018 from the
0.01° % 0.01° grid resolution PM, 5 estimation provided by the Atmospheric
Composition Analysis Group®!, and calculated average PM, 5 levels during this 5-
year period for each county to represent long-term PM, 5 exposure (Supplementary
Fig. 5). Short-term air quality data during the study period, including daily mean
PM, 5 and daily maximum 8-h Os, were obtained from the United States
Environmental Protection Agency®2. We categorized study counties into one of five
climate zones based on the guide released by U.S. Department of Energy>?
(Supplementary Fig. 6).

The county-level COVID-19 case and death data were downloaded from the
John Hopkins University Coronavirus Resource Center!. The U.S. county-to-
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county commuting data were available from the U.S. Census Bureau®3. Daily
numbers of inter-county visitors to points of interest (POI) were provided by
SafeGraph4.

Data ethics. SafeGraph utilizes data from mobile applications of which users
optionally consent to provide their anonymous location data.

Estimation of reproduction number. We estimated the daily reproduction
number (R,) in all 3142 U.S. counties using a dynamic metapopulation model
informed by human mobility data31:°>. R, is the mean number of new infections
caused by a single infected person, given the public health measures in place, in a
population in which everyone is assumed to be susceptible. In the metapopulation
model, two types of movement were considered: daily work commuting and
random movement. During the daytime, some commuters travel to a county other
than their county of residence, where they work and mix with the populations of
that county; after work, they return home and mix with individuals in their home,
residential county. Apart from regular commuting, a fraction of the population in
each county, assumed to be proportional to the number of inter-county commu-
ters, travels for purposes other than work. As the population present in each county
is different during daytime and night-time, we modelled the transmission dynamics
of COVID-19 separately for these two time periods, each depicted by a set of
ordinary differential equations (Supplementary Notes).

To account for case underreporting, we explicitly simulated reported and
unreported infections, for which separate transmission rates were defined. Recent
studies from several countries indicate that asymptomatic cases of COVID-19,
which are typically unreported, are less contagious than symptomatic cases”®~>%.
Studies on the early transmission of SARS-CoV-2 in China!® and the U.S.% also
showed that undocumented infections are less transmissible than documented
infections.

In order to reflect the spatiotemporal variation of disease transmission rate and
reporting, we allowed transmission rates and ascertainment rates to vary across
counties and to change over time. The transmission model simulated daily
confirmed cases and deaths for each county. To map infections to deaths, we used
an age-stratified infection fatality rate (IFR)! and computed the weekly IFR for
each county as a weighted average using state-level age structure of confirmed cases
reported by the U.S. Centers for Disease Control and Prevention. We further
adjusted for reporting lags using an observational delay model informed by a U.S.
line-list COVID-19 data record®2.

For the period prior to March 15, 2020, we used commuting data from the U.S.
census survey to prescribe the inter-county movement in the transmission model*S.
Starting March 15, the census survey data are no longer representative due to
changes in mobility behavior following the implementation of non-pharmaceutical
interventions. We, therefore, used estimates of the reduction of inter-county
visitors to POI (e.g., restaurants, stores, etc.) from SafeGraph®* to account for the
change in inter-county movement on a county-by-county basis. Because there is no
direct relationship between population-level mobility patterns and COVID-19
transmission rates®3, we did not model local transmission rate as a function of
inter-county mobility. Instead, the SafeGraph data were only used to inform the
change of population mixing across counties.

To infer key epidemiological parameters, we fitted the transmission model to
county-level daily cases and deaths reported from March 15, 2020 to December 31,
2020. The estimated reproduction number was computed as follows:

R, =BD[a+ (1 — a)y], 1)

where f is the county-specific transmission rate, y is the relative transmissibility of
unreported infections, « is the county-specific ascertainment rate, and D is the
average duration of infectiousness. Note 8 and « were defined for each county
separately and were allowed to vary over time. Unlike previous studies using
effective reproduction number

R, =pD[a+ (1 — a)uls, @

where s is the estimated local population susceptibility, we used reproduction
number R, to exclude the influence of population susceptibility on disease
transmission rate.

D, u, Z (the average latency period from infection to contagiousness), and a
multiplicative factor adjusting random movement (6) were randomly drawn from
the posterior distributions inferred from case data through March 13, 202090:

D =3.56 (3.21-3.83), u = 0.64 (0.56-0.70), Z = 3.59 (95% CI: 3.28-3.99), and
0 =0.15 (0.12-0.17). Z and 6 are used in ordinary differential equations used to
model transmission dynamics (Supplementary Notes).

The daily transmission rate § and ascertainment rate  were estimated
sequentially for each county using the ensemble adjustment Kalman filter
(EAKF)%4, Specifically, parameters f3; and a; for county i were updated each day
using incidence and death data. We used the estimates on day t — 1 as the prior
parameters on day ¢, and then updated the priors to posteriors using the EAKF and
observations. The posteriors are the estimated parameter values on day t. To ensure
a smooth parameter estimation, we imposed a +30% limit on the daily change of
parameters 3; and a;. Other smoothing constraints were tested and the results were
similar. To avoid possible inaccurate estimation for counties with few cases, we

inferred R, in the 2669 U.S. counties with at least 400 cumulative confirmed cases
as of December 31, 2020 (Supplementary Fig. 7).

Statistical analysis. All statistical analyses were conducted with R software
(version 3.6.1) using the mgcv and dinm packages.

Association between meteorological factors and R;. Given the potential non-
linear and temporally delayed effects of meteorological factors, a distributed lag
non-linear model®> combined with generalized additive mixed models®® was
applied to estimate the associations of daily mean temperature, daily mean SH, and
daily mean UV radiation with SARS-CoV-2 R,. To quantify the total contribution,
independent effects, and relative importance of meteorological factors (i.e., tem-
perature, SH, and UV radiation), we included all three variables in the same model.
To reduce collinearity, we used cross-basis terms rather than the raw variables
(Supplementary Tables 5-6). The full model can be expressed as:

log(E(R,,)) =a + te(s(latitude;, longitude,, k = 200), s(time,, k = 30)) + cb.temperature + cb.SH + cb.UV
+ B, (population density;) + f, (percent Black residents;) 4 B, (percent Hispanic residents;)
+ B, (percent people older than 60 years;) + ;(median household income;)
+ Bg(percent owner — occupied housing;)
+ B, (percent residents older than 25 years without a high school diploma;)
+ Bg(number of ICU beds per 10, 000 people;) + B,(percent healthcare workers;)
B1o(day when 100 cumulative cases per 100, 000 people was reached;) + re(county;) + re(state;)

(©)]

where E(R, ;) refers to the expected R, in county i, state j, on day ¢, and « is the
intercept. Given the distribution of R, in our data close to a lognormal distribution
(Supplementary Fig. 8), we used log-transformed R, as the outcome variable, and
the Gaussian family in the model. A thin plate spline with a maximum of 200 knots
was used to control the coordinates of the centroid of each county; the time trend
was controlled by a flexible natural cubic spline over the range of study dates with a
maximum of 30 knots; due to the unique pattern of the non-linear time trend of R,
in each county (Supplementary Fig. 4), we constructed tensor product smooths (te)
of the splines of geographical coordinates and time, to better control for the
temporal and spatial variations (Supplementary Fig. 3).

Cb.temperature, cb.SH, and cb.UV are cross-basis terms for the mean air
temperature, mean SH and mean UV radiation, respectively. We modeled
exposure-response associations (meteorological factors vs. percent change in R;)
using a natural cubic spline with 3 degrees of freedom (df) and modeled the lag-
response association using a natural cubic spline with an intercept and 3 df with a
maximum lag of 13 days. We adjusted for county-level characteristics, including
population density, percent Black residents, percent Hispanic residents, percent
people older than 60 years, median household income, percent owner-occupied
housing, percent residents older than 25 years without a high school diploma,
number of ICU beds per 10,000 people, and percent healthcare workers, given their
potential relationship with SARS-CoV-2 transmission®’-7%. Day when 100
cumulative cases per 100,000 people was reached in each county was used to
approximate local epidemic stage?® (Supplementary Fig. 9). The random effects of
state and county were modeled by parametric terms penalized by a ridge penalty
(re), to further control for unmeasured state- and county-level confounding.
Residual plots were used to diagnose the model (Supplementary Fig. 10). In
additional analyses, we included air temperature, SH, and UV radiation in separate
models (Supplementary Fig. 2).

Based on the estimated exposure-response curves, between the 15t and the 99th
percentiles of the distribution of air temperature, SH, and UV radiation, we
determined the value of exposure associated with the lowest relative risk of R; to be
the optimum temperature, the optimum SH, or the optimum UV radiation,
respectively. The natural cubic spline functions of the exposure-response
relationship were then re-centered with the optimum values of meteorological
factors as reference values. We report the cumulative relative risk of R, associated
with daily temperature, SH, or UV radiation exposure in the previous two weeks
(0- 13 lag days) as the percent changes in R, when comparing the daily exposure
with the optimum reference values (i.e., the cumulative relative risk of R, equals one
and the percent change in R, equals zero when the temperature, SH, or UV
radiation exposure is at its optimum value).

Attribution of R; to meteorological factors. We used the optimum value of
temperature, SH, or UV radiation as the reference value for calculating the fraction
of R, attributable to each meteorological factor; i.e., the attributable fraction (AF).
For these calculations, we assumed that the associations of meteorological factors
with R, were consistent across the counties. For each day in each county, based on
the cumulative lagged effect (cumulative relative risk) corresponding to the tem-
perature, SH, or UV radiation of that day, we calculated the attributable R, in the
current and next 13 days, using a previously established method”!. Specifically, in a
given county, the R, attributable to a meteorological factor (x,) for a given day t was
defined as the attributable absolute excess of R; (AE,, the excess reproduction
number on day t attributable to the deviation of temperature or SH from the
optimum value) and the attributable fraction of R, (AF,, the fraction of R; attri-
butable to the deviation of the meteorological factor from its optimum value), each
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accumulated over the current and next 13 days. The formulas can be expressed as:

13
AE,, = AF. x 31 (5)
= X
ot U341

where 7, is the R; on day ¢, and leioﬁx‘_l is the overall cumulative log-relative risk
for exposure x; on day ¢ obtained by the exposure-response curves re-centered on
the optimum values. Then, the total absolute excess of R, attributable to tem-
perature, SH, or UV radiation in each county was calculated by summing the
absolute excesses of all days during the study period, and the attributable fraction
was calculated by dividing the total absolute excess of R, for the county by the sum
of the R, of all days during the study period for the county. The attributable
fraction for the 2669 counties combined was calculated in a similar manner at the
national level. We derived the 95% eClI for the attributable absolute excess and
attributable fraction by 1000 Monte Carlo simulations’. The total fraction of R,
attributable to meteorological factors was the sum of the attributable fraction for
temperature, SH, and UV radiation. We also calculated the attributable fractions by
month in the study period.

Sensitivity analyses. We conducted several sensitivity analyses to test the
robustness of our results: (a) the lag dimension was redefined using a natural cubic
spline and three equally placed internal knots in the log scale; (b) an alternative
four df was used in the cross-basis term for meteorological factors in the exposure-
response function; (c) the maximum number of knots was reduced to 25 in the
flexible natural cubic spline to control time trend in the tensor product smooths;
(d) all demographic and socioeconomic variables were excluded from the model;
(e) adjustment for the prevalence of smoking and obesity among adults was
included in the model; (f) adjustment for climate zone was included in the model;
(g) additional adjustment was made for the average PM, 5 concentration in each
county during 2014-2018%; (h) additional adjustment was made for daily mean
PM, 5, and daily maximum 8-h O;. For daily covariates with available data in only
some of the counties or study period, the results of sensitivity analyses were
compared to the main model re-run on the same partial dataset.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in GitHub (https://doi.org/
10.5281/zen0do.4766014)72.

Code availability
R code for this analysis is available at https://github.com/CHENIab-Yale/COVID-
Climate.
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