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Multiple software programs are available for designing and running large scale
system-level pharmacology models used in the drug development process. Depending on
the problem, scientists may be forced to use several modeling tools that could increase
model development time, IT costs and so on. Therefore, it is desirable to have a single
platform that allows setting up and running large-scale simulations for the models that have
been developed with different modeling tools. We developed a workflow and a software
platform in which a model file is compiled into a self-contained executable that is no longer
dependent on the software that was used to create the model. At the same time the full
model specifics is preserved by presenting all model parameters as input parameters
for the executable. This platform was implemented as a model agnostic, therapeutic
area agnostic and web-based application with a database back-end that can be used to
configure, manage and execute large-scale simulations for multiple models by multiple
users. The user interface is designed to be easily configurable to reflect the specifics of the
model and the user’s particular needs and the back-end database has been implemented
to store and manage all aspects of the systems, such as Models, Virtual Patients, User
Interface Settings, and Results. The platform can be adapted and deployed on an existing
cluster or cloud computing environment. Its use was demonstrated with a metabolic
disease systems pharmacology model that simulates the effects of two antidiabetic drugs,
metformin and fasiglifam, in type 2 diabetes mellitus patients.
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INTRODUCTION
In recent years pharmaceutical R&D has seen an increase in the
development and application of mechanistic, systems-level mod-
els to inform decision making. These models are better at describ-
ing the disease biology and drug pharmacology than the more
traditional and empirical pharmacokinetic/pharmacodynamic
(PK/PD) models (Lalonde et al., 2007; Milligan et al., 2013; Visser
et al., 2013). They are typically called quantitative systems phar-
macology (QSP) models to distinguish them from other systems
biology models that do not incorporate drug pharmacology or
pharmacokinetics and often do not account for the biology of
disease and its progression. With a detailed representation of
physiology and pharmacology QSP models include a significantly
larger number of equations and parameters compared to what is

Abbreviations: ER, extended release; FFA, free fatty acids; G6-P, glucose-6 phos-
phate; GI, gastrointestinal; GNG, gluconeogenesis; GIP, gastric inhibitory peptide;
GLP-1, glucagon like peptide 1; GPR40, G-protein coupled receptor 40; IIGU,
insulin independent glucose utilization; MDSP, metabolic diseases systems phar-
macology; PD, Pharmacodynamic; PK, pharmacokinetic; RE, rapidly equilibrating;
RR, readily releasable; SE, slowly equilibrating; TAG, triacylglycerol; UI, User
Interface; ViSP, virtual systems pharmacology.

normally seen in traditional PK/PD models (Mager et al., 2003;
Danhof et al., 2007). Despite the challenges of accurately deter-
mining all of the model parameters, QSP models can nevertheless
be very informative by allowing the generation of quantitative
hypotheses about the efficacy and/or safety of drugs prior to
testing them in humans, or when testing in new patient pop-
ulations (De Graaf et al., 2009; Kuepfer et al., 2012). Examples
of mechanistic system-level models include, the first attempt to
mathematically model the circulatory system in the human body
(Guyton et al., 1972) and more recently, the HumMod model
(Hester et al., 2011), and models of glucose homeostasis (Schaller
et al., 2013), rheumatoid arthritis (Rullmann et al., 2005), hyper-
tension (Hallow et al., 2014), and drug induced liver injury (DILI)
(Shoda et al., 2014). A recent review by Schmidt et al. (2013)
describes the process of how these models can be built and used.

With our incomplete knowledge of disease biology, QSP mod-
els can be used to make and test assumptions about the intrinsic
variability in biological pathways. Because of the deterministic
nature of the current approaches to the development of QSP
models, it is expected that one set of initial conditions will nor-
mally produce a single set of outcomes with a unique solution
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trajectory from its initial state to the final one. In order to
represent variability observed in a given population, multiple
simulations with different initial conditions must be generated,
each simulation implementing a virtual experiment or a virtual
patient. Combined, the results from a sufficient number of simu-
lations will provide estimates on the expected degree of variability
in a population of patients. However, this comes at a price, by
involving a large number of simulations and a large number
of varied parameters the modeling process becomes computa-
tionally intensive. This challenge can be efficiently tackled only
by employing the state of the art high-performance computing
technology.

Likewise, the creation of large QSP models is not a trivial
task; it requires the use of sophisticated and specialized soft-
ware applications. Available tools range from complex sets of
distributed software packages connected through a common por-
tal to smaller yet versatile software programs capable of producing
detailed mechanistic models. Examples of the former include
the Garuda Alliance (Ghosh et al., 2011) and Physiome project
(Thomas et al., 2008; Randall Thomas, 2009), while examples
of the latter are JDesigner (Vallabhajosyula and Sauro, 2007),
Entelos PhysioLab (Shoda et al., 2010), Mathworks SimBiology
(MathWorks)1, Bayer’s PK-Sim and MoBi (Eissing et al., 2011),
and ISB’s DBSolve Optimum (Gizzatkulov et al., 2010). For a
given problem the choice of a proper modeling tool could become
a difficult task by itself. In addition to purely scientific consider-
ations dictated by the scope of the model, the software should
meet multiple criteria to be considered optimal: an intuitive
user interface, numerous differential equation solvers and library
functions, a convenient way of storing and handling large num-
ber of parameters, ease of setting up multiple simulations and
executing them in parallel, multiple-format import-export capa-
bilities, reasonable cost and technical support, and an existing
base of trained users. In this paper we present a simple and user-
friendly Virtual Systems Pharmacology (ViSP) platform designed
to quickly set up, run, and handle multiple simulation tasks
in a flexible and scalable hardware/software environment. The
platform is neither model nor software specific and can utilize
existing cluster or cloud computing infrastructure for large-scale
simulations. The ViSP platform was successfully used with a
Metabolic Diseases Systems Pharmacology (MDSP) model to
simulate multiple antidiabetic therapies in healthy and Type 2
diabetes mellitus (T2DM) patients.

METHODS
In order to create flexible and versatile QSP software for setting up
and running large scale simulations the following requirements
were formulated:

(1) Handle diverse systems pharmacology models designed by
different software packages.

(2) Be independent of the specifics of any given model and place
as few general requirements as possible on the model (e.g.,
not depend on the number of parameters, actual parameter
values or their names, etc.).

1http://www.mathworks.com/products/simbiology/.

(3) Enable a flexible computational environment/hardware
choice to run simulations (cluster, cloud, or desktop).

(4) Provide an intuitive user interface (UI) that is easily config-
urable without updating the software code to accommodate
specifics of a particular model and the input parameters.

(5) Should serve as collaboration software accessible throughout
the company network. Offer differentiated access to models
and projects, based on set user privileges.

(6) Provide means of storing and handling large modeling
projects.

(7) Have low deployment and maintenance costs.

The main innovation that enables the first three requirements is
to separate the process of constructing a QSP model from the pro-
cess of running simulations originated by that model. During the
design step the model is created and then saved in what could
be software proprietary file format. Afterwards it is the operating
system (OS) that runs simulations, a process that could be imple-
mented as software independent. One way to achieve this is to
compile the model file(s) and convert into an executable code in
which high-level model instructions are translated into low-level
machine commands. Features proprietary to the modeling soft-
ware will be removed during this translation and the executable
will rely only on OS instructions. In order to keep the simula-
tion process maximally flexible all model parameters need to be
external to the executable file (i.e., their values not being hard-
coded into the model). This means all model parameters should
be presented as input parameters. Once input values are provided,
together with the executable they will define a unique simulation
task. Multiple simulation instances can be created by combining
different input parameter values with executables, which can be
run on a grid of processors in a cluster, in a cloud, or in a mixed
environment (see Figure 1). As soon as the executable is compiled
for the OS which runs the hardware, all computational resources
integrated by the grid management software will be available for
simulations.

Another important concept of the QSP software architecture is
making it a web-based client-server application with a relational
database back-end. With many advantages emphasized below it
helps to address the requirements formulated in points 4 through
7. For example, a web-based platform is inexpensive to deploy and
maintain, since it does not require installing software on every
computer and web browsers are now omnipresent. Modifications
and upgrades to the software could be done on the server side
with no user intervention, thus reducing IT cost and time. Web-
based software is easily accessible over networks inside or outside
the company by multiple users whose access privileges can be
regulated by IT departments. More advantages offered by web-
based architecture come from the rich selection of software tools
available for UI, front, and back end programming. Additionally,
the database allows for a robust, reliable, dynamic, structured
and complex relational data model where items such as models,
users, virtual patients, project information, UI configuration set-
tings, simulation inputs and results can be stored, managed and
displayed by the UI components or other server-side modules.

Since QSP software is required to be capable of handling mul-
tiple models, its UI needs to be dynamic and configurable. This
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FIGURE 1 | Components of a simulation: compiled model file

(executable) together with input data (e.g., virtual patients,

therapies, simulation time) represent a unique simulation

instance that can be dispatched to either cluster computer or

to a cloud. Input data provide a mechanism of customizing each
particular simulation. Executable file should be compiled for a target
operating system (Linux, Unix, Windows) that runs on cluster nodes
or a cloud.

means the UI should expose model parameters in the way specific
to each particular model. Also, some parameters should be imme-
diately available via UI while other should be hidden. The latter
could be necessary because physiological models often have hun-
dreds of parameters, of which only a relatively small subset may
be of interest for performing simulations. Such flexibility could
be achieved by dividing all model parameters into meaningful
groups, e.g., parameters that describe caloric value and compo-
sition of meals consumed by patients, or parameters specifying
drug regimen, and so on (see Figure 1). Then, only the groups
that are of interest will be selected during the UI configuration
process; they will show up as sub-sections in the UI with specific
parameters inside. An example of such an interface is given in the
Results section.

Grouping provides additional benefits for handling and stor-
ing parameter values in a structured way. For instance, the same
parameter group may get assigned different value sets corre-
sponding to different individuals, here called virtual patients.
Similar manipulations can be done with groups describing ther-
apies, meals, and so on. Each set of values can be given a name
and stored in the database with options for search and reuse.
Once a sufficient number of such value sets is accumulated in
the database, the end user’s task of setting up simulations will
be reduced to simply finding and selecting appropriate value
sets. Again, the use of relational database enables and empow-
ers this process, making it another key concept implemented in
the QSP software architecture. In addition to parameter value
sets, practically all other information about the model, UI con-
figuration, and simulation results is stored in the database that
is searchable and that preserves the relationships between these
pieces of information.

The software architecture with the features discussed above
was implemented in the ViSP platform, a flexible tool for set-
ting up and running large-scale QSP simulation tasks. Together
with attempts to make simulation process less dependent on spe-
cific modeling tools and proprietary model formats we tried to
establish a more universal workflow for simulations (Figure 2).
In this article we describe the implementation of this simulation
workflow using the MDSP model designed to study the effects of
anti-diabetic drugs. The MDSP model itself was generated using
JDesigner software (Sauro et al., 2003) and then exported as an
m-file used by Matlab® software by Mathworks (MathWorks)
(Figure 2). Afterwards, the “main” program controlling the simu-
lation process was added to the model, and the code was modified
such that all model parameters became input parameters as per
the requirements described above. Using the Matlab Compiler
Toolkit®, the code was then compiled into a standalone exe-
cutable. The executable was subsequently uploaded into the ViSP
database while a designated Power User (experienced user with
highest privileges) configured the user interface (UI) to reflect the
specifics of the model. Once the UI is in place all users may set up,
submit and run simulations on any number of nodes, for instance
via Amazon Web Services™. When simulations are complete the
results are saved to the database in a text format for further pro-
cessing. The same process can be repeated with any model as soon
as it can be converted into an executable file.

ViSP specific details along with its application to the MDSP
model are illustrated in the Results section. The MDSP model
high-level organization is outlined in the next sub-section, how-
ever a complete description is out of this paper’s scope. The
mathematical basis of the MDSP model is provided in the
Appendix.
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FIGURE 2 | ViSP architecture and operational diagram. Mathematical
model is implemented as a computer model by the Power User using
model development software. It is then converted into an executable file
with the help of 3-d party software. The Power User also configures the
user interface (UI) that is specific to the model by using ViSP. Executable,
text file with full set of parameter baseline values, and Virtual Patients are
uploaded by ViSP into the database (DB). Power and Regular Users can

then setup simulations through the UI and send them for execution.
Dispatching software will distribute the simulations over the computational
grid (cluster, cloud) and retrieve the results after simulations are
completed. The latter will be available for analysis to users through the
ViSP UI. The section of the workflow that deals with model conversion
into an executable file (inside gray rectangle) is currently implemented
outside of ViSP.

MDSP MODEL
The MDSP mathematical model was developed to mechanis-
tically describe the basic physiological and pathophysiological
processes involved in T2DM. It represents essential systems
and mechanisms regulating glucose and lipid metabolism and
describes pathophysiological changes related to T2DM together
with the PKPD effects for several classes of antidiabetic drugs
(for recent review of mathematical models of diabetes please see
Ajmera et al., 2013). The core of the model simulates intake and

processing of nutrients, and their distribution and utilization by
different body tissues and organs as schematically represented by
a block diagram on Figure 3. The nutrients enter in the form
of meals (up to three per day) with a specific percentage of car-
bohydrates, fats and proteins and with a given caloric content
(all these can be modified through the ViSP UI). From the GI
tract the nutrients are absorbed into the bloodstream and the
model further tracks glucose and lipid metabolism by the brain,
liver, muscle and adipose tissues (Figure 3A) (Zierler, 1999). In
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FIGURE 3 | MDSP model block diagram describing nutrients’ dynamics

(A) regulated by metabolic hormones (B). Blocks stand for dynamic
quantities represented by state variables. Same name blocks with dash-line
border are aliases of the blocks with solid boundaries; they are shown
separately to make the diagram more readable. Arrows between the blocks
point in the direction of the positive flux (reaction rate), bi-directional

connectors denote either reversible flux (reaction) or two different reactions
running in opposite directions. The sink element is used to remove the
matter from the system that is no longer tracked, e.g., when describing
glucose utilization by the muscle. For the sake of clarity not all the model
details are shown on the diagram. For abbreviations used in the figure refer
to the List of Abbreviations.

the liver, glucose is phosphorylated to become glucose-6 phos-
phate (G6-P) to be afterwards converted into glycogen (Agius,
2008). Both reactions have their counterparts working in the
opposite direction such that the net glucose flux into/out of the

liver maintains plasma glucose concentration within a specific
range depending on the feeding condition. The liver produces
glucose from the three-carbon substrates through the process of
gluconeogenesis (Radziuk and Pye, 2001). The above processes
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are subject to insulin and glucagon regulation, and are disrupted
in T2DM, resulting in increased hepatic glucose output in the
postprandial and fasting states compared to healthy subjects.

Muscle also stores glucose in the form of glycogen but unlike
the liver it does not use glycogen to release glucose back into
circulation (Laurent et al., 2000). Insulin regulates muscle glu-
cose uptake, storage and utilization, and T2DM have decreased
sensitivity to these insulin effects. In regard to the other tissues
involved in glucose metabolism, adipose tissue uptakes glucose
for either storage or oxidation (Figure 3A), brain consumes glu-
cose in a constant, insulin independent fashion, while kidneys
normally reabsorb all filtered glucose unless its concentration
exceeds a threshold value (Rave et al., 2006; Marsenic, 2009).
Lipids in the model are represented as pools of triacylglycerols
(TAGs) and free fatty acids (FFA) stored and transported between
several compartments (Figure 3A).

As mentioned earlier, nutrient disposal by tissues is tightly
regulated by multiple hormones, insulin being the most impor-
tant one. In the MDSP model the secretion and action of insulin
is described by a multistep process (Figure 3B) that is coupled
to plasma glucose concentration. Other factors included in the
model that affect levels of insulin are beta-cell mass and beta-
cell function (Bouwens and Rooman, 2005), activation of cAMP
pathways (Fridlyand et al., 2007) and activation of Ca+ path-
ways (Bertuzzi et al., 2007). Insulin is degraded primarily by the
liver and partially by peripheral tissues, with C-peptide being an
important by-product and biomarker of insulin secretion tracked
by the model. Insulin’s counterpart glucagon is described by a
simpler two-compartment dynamic model (Figure 3B). Its reg-
ulatory effects are implemented as stimulating gluconeogenesis
and glycogenolysis in the liver. Two other metabolic incretin hor-
mones, glucagon like peptide-1 (GLP-1) and gastric inhibitory
peptide (GIP) are also implemented in the model (Figure 3B),
since they represent potential targets for therapies. GLP-1 affects
glucose uptake and oxidation by adipose tissue and both hor-
mones influence insulin and glucagon secretion in response to
glucose.

The ViSP platform was used to calibrate (see Appendix) and
then run the MDSP model to simulate the effects of meals, glu-
cose and meal tolerance tests, and several antidiabetic drugs in
different patient phenotypes. Examples of simulation results for
two of such drugs are presented in the following Results sections.
The first example illustrates the simulated effects of metformin,
considered by many as a standard of care for T2DM patients,
compared to literature data. The other example presents results
with a relatively new class of drugs, GPR40 agonists (GPR40a),
with simulations reproducing the effects of fasiglifam (TAK-875).
The last example presents simulation results for metformin +
TAK-875 combination therapy.

RESULTS
ViSP PLATFORM
The ViSP software features several primary user-interface compo-
nents, the first of which is the Explorer (see Figure 4, left side). It
organizes user’s models and data in a tree-like hierarchical struc-
ture in which top elements are projects. A ViSP project typically
comprises all information related to simulation tasks that pertain

to the specific research topic. Each project can contain one or sev-
eral models, for instance, different versions created in the course
of the model development. The model is represented by an exe-
cutable file which is uploaded into the ViSP databases every time a
new model is created. The executable is accompanied by a text file
which contains a list of model input parameters and their base-
line values. Every model can be associated with one or several user
interfaces (UI) that are configured to fit particular project needs
or user preferences. The next level down in the hierarchy com-
prises groups of parameters that are subsets of input parameters
in the sense explained in the Methods. Each group may further
contain multiple value sets, reflecting, for instance, settings for
different drug regimens (Figure 4). All elements of the structure
are stored in a database that facilitates handling of the model,
data, and results.

Another important feature in ViSP is the Simulation Manager.
It provides a means to customize the UI to the content of the
model and then prepare and launch simulation tasks. The model
UI can be configured by a Power User in a simple setup by cre-
ating sections that deal with particular aspects of the model.
For example, in the section of the MDSP model specifying meal
regimen, out of all parameters related to meals only the param-
eters defining the regimen are selected (see Figure 4, right side).
Consequently, only these parameters will be presented in the UI
through a series of controls. The Power User assigns meaning-
ful text labels to these controls and specifies how they should be
displayed in the UI, as a check box to turn a parameter on/off,
as a text entry field, or as a dropdown selection. The configu-
ration table helps to arrange the controls in a simple grid by
specifying row and column numbers (see Figure 5). By creating
various sections in this manner, the Power User has full control
over which of the hundreds of parameters of the model to display,
and how. The Power User can create several UIs targeting differ-
ent groups of users which require particular aspects of the model
to be exposed.

Once the sections of the UI have been configured, the
Simulation Manager presents an option of selecting some or all of
the Virtual Patients (VPs) known to the system for this model (see
Figure 6). For convenience VPs are classified according to their
phenotypes, thus facilitating proper VP selection required for
simulations. Even though VPs come with all parameters defined,
there is an option to change some of them if a user finds that nec-
essary. After VP selection is complete, the Simulation Manager
will create a set of single simulations for every combination of
the settings and VPs. For example, if three VPs were selected and
the parameters were set to apply one therapy, then three sim-
ulations will be generated and submitted, one for each patient.
However, if two therapies were selected (the same drug with dif-
ferent dose, or two different drugs, etc.), then the Simulation
Manager will generate six simulations accordingly. Simulation
Manager also allows the therapies (dropdown selections) to be
applied as “Combination” treatments, which in the above exam-
ple means both therapies get applied to each patient, resulting in
three simulations (see Figure 6).

The final settings that are specified through an additional UI
window (not shown) are duration of simulation, output variables
and time intervals between outputs. Once those are provided the
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FIGURE 4 | Explorer (left side) helps to navigate through users’ projects,

models, and model parameters that are shown as folders. Parameters
can be organized into meaningful groups, for instance, parameters that
describe a drug’s regimen. The same group can be saved with different
values that correspond e.g., to different doses as shown here for GPR40

agonist and can later be used for setting up simulations. Right side presents
an example of defining UI section “Meals.” Circled on the left is the list box
with all the parameters defined in the model that are associated with the key
word “meal” provided by the user in the filter box. Outlined on the right are
parameters selected to be shown on UI section “Meals.”

simulations are fully defined and can be submitted to the com-
putational grid. The user will get notified by e-mail upon task
submission and when simulations are completed. The results that
are saved in a series of text files can be retrieved afterwards via the
Results Manager for further analysis and graphical visualizations.
ViSP itself is capable of generating graphical plots which can be
viewed directly as part of the results.

ViSP’s Administrator tool provides means to register and grant
access only to users who are authorized to use the software and
its data, thus preventing any proprietary information from dis-
closure. Additionally all users are divided into Power Users and
Regular Users based on their privileges. As was described above
Power Users are allowed to create and modify projects, configure
model UIs, and set up and run simulations, while Regular Users
can perform only the last two functions.

SIMULATIONS METFORMIN
The pharmacokinetics of metformin was simulated by using
a three-compartment model (Figure 7A) derived from the
Pentikainen et al. (1979). The model was calibrated to fit PK char-
acteristics for a 500 mg single dose (Pentikainen et al., 1979) and
multiple 500 mg twice daily doses (Graham et al., 2011) obtained

with healthy individuals. An adequate fit has been achieved for
both data sets as evidenced by Figure 8. It was deemed acceptable
to apply the same calibration for simulating metformin pharma-
codynamic (PD) effects in T2DM patients. This assumption is
supported by the data from the Tucker et al. (1981), which found
little difference in metformin PK between healthy and T2DM
individuals.

Metformin has multiple sites of action, including liver, muscle,
adipose tissue, GI tract, and pancreas. Despite the fact that met-
formin is perhaps the most widely used antidiabetic therapy its
exact mechanism of action remains unclear (Kirpichnikov et al.,
2002). Among its reported primary PD effects are decreased hep-
atic glucose production (Stumvoll et al., 1995; Campbell et al.,
1996), increased peripheral tissue sensitivity to insulin (Bailey
and Turner, 1996), and increased glucose utilization. Other less
commonly described effects include lowering FFA levels and
increasing lipid oxidation (Perriello et al., 1994), increased glu-
cose utilization by the GI tract, and a delayed, more distal GI
glucose absorption (Bailey et al., 2008). There are different opin-
ions on whether metformin directly affects β-cells (DeFronzo,
1999), however some evidence exists that it improves the function
of β-cells (Patane et al., 2000; Bi et al., 2013) and their response
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FIGURE 5 | UI layout, as shown here for the “Meals” section, is

defined by filling the configuration table (background). Each
parameter is associated with a particular control type (e.g., TEXTBOX)
that is supplied with a text label. Each control location is defined by UI

Group line (row) and a UI Position within the line. A parameter is also
assigned a category (DOSE, TIME) in order to perform unit conversion
if necessary. With the above configuration the section will look like on
the inset (front).

to glucose. In the MDSP model the above mentioned metformin
PD effects were implemented as multipliers in the rate equations.
Functionally they are expressed as Hill equations (Appendix,
Equation A3) representing either metformin-mediated activation
or inhibition.

A study on the short-term effects of metformin in T2DM
patients (Eriksson et al., 2007) was selected for simulations
demonstrating the model’s ability to reproduce metformin ther-
apeutic outcomes. In this study an escalating metformin dose
(500 mg qd for 7 days followed by 500 mg bid for 7 days and then
by 1000 mg bid for 14 days) was applied to a group of T2DM
patients with fasting plasma glucose concentration between 7 and
12 mM. At the beginning of each subsequent dose an oral glu-
cose tolerance test (OGTT) was performed to check the effects
of the previous dose on glucose and other metabolic character-
istics, (for further details see paper by Eriksson et al., 2007). In
simulations the same treatment regimen was reproduced for a
representative virtual patient that matched the study enrollment
criteria including body weight, fasting plasma glucose (FPG), age,
etc. Table 1 provides a comparison between clinical and simu-
lation data for key parameters, including FPG, area under the
glucose concentration curve for OGTT, and percent change in
fasting plasma insulin (FPI) concentration from day 0 before
treatment and after 7, 14, and 28 days of metformin. Overall there
is good agreement between simulations and data, with simula-
tions slightly under-predicting the decrease in FPG especially at
higher doses.

GPR40 AGONIST (TAK-875)
TAK-875 is a selective GPR40 agonist that improves glycemic
control in T2DM patients by potentiating postprandial insulin
secretion in a glucose dependent manner with a minimal risk
for hypoglycemia (Kaku, 2013; Yabuki et al., 2013). A single
dose TAK-875 PK study with healthy volunteers (Naik et al.,
2012) and a multiple dose study with T2DM patients (Leifke
et al., 2012) were used to establish and calibrate the PK section
of the MDSP model (Figure 7B). An enterohepatic recirculation
(EHRC) was included in order to better fit the TAK-875 clinical
data (Figure 9).

The mechanism by which TAK-875 potentiates insulin secre-
tion involves activation of GPR40 in pancreatic β-cells followed
by a cascade of reactions increasing the levels of secondary intra-
cellular messengers. This eventually results in increased Ca2+
release that enhances the movement of insulin granules and
their fusion with the plasma membrane, leading to subsequent
insulin release (Burant, 2013). In the MDSP model all these
events are simplified into one mechanism representing the net
TAK-875 amplification of the Ca2+ effect on insulin secretion.
GPR40 is also expressed in enteroendocrine cells of the intes-
tine, and it has been hypothesized that GPR40 activation may
potentially lead to increased secretion of GLP-1 and GIP hor-
mones (Luo et al., 2012; Mancini and Poitout, 2013). These
pathways are represented in the model as hypotheses, so that
their potential impact on efficacy could be evaluated. However,
the results of the TAK-875 clinical study in T2DM patients did
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FIGURE 6 | Selecting Virtual Patients (VPs) and using parameter

sections. All available VPs are presented in the left list box inside the
section “Virtual Patients” grouped according to their phenotype. By
checking a box the selected phenotype will be displayed in the right
list box from which a user can choose a few or all corresponding VPs
to be run in simulations. Parameters for selected VPs can be modified,

if necessary, by clicking the “Change Individual Patient Parameters”
button that will bring up a dialog window allowing to do this (not
shown). The selection of VPs belonging to multiple phenotypes could
be further refined by checking and applying “AND” logic. The “Drugs”
section provides an example of setting up Metformin-GPR40a
combination therapy.

not demonstrate increases in GIP or GLP-1 following an OGTT
(Leifke et al., 2012). Therefore, the secretion of GIP and GLP-
1 via the intestine was disabled for simulations with TAK-875.
In choosing a representative VP for simulations, as in the case
of metformin, we selected one with steady-state characteristics
comparable to the mean values found in the study enrollment
criteria.

Figure 10 compares simulation results with clinical data from
a multiple ascending dose study of TAK-875 in T2DM subjects
that received either placebo or one of the 25, 50, 100, 200 mg daily
doses (Leifke et al., 2012). Data shown in the figure illustrate the
short-term TAK-875 effects on steady state responses (FPG con-
centration, Figure 10A), and dynamic responses (2 h post-OGTT
glucose concentration Figure 10B) after 14 days with different
levels of drug exposure. Simulations provide adequate predictions

in both occasions although simulated glucose post-OGTT values
seem to follow clinical data more closely.

METFORMIN—TAK875 COMBO
Since metformin is used as the standard of care for treat-
ing hyperglycemia in T2DM patients, we repeated the above
simulation of TAK-875 in combination with 500 mg met-
formin twice daily as a background therapy. Simulation
results suggest that additional therapeutic benefits could
be achieved by combination therapy by further lowering
FPG and post-prandial glucose excursions (Figure 11).
Interestingly, the effect on post-prandial glucose appears to
be more pronounced, with the response at TAK-875 doses
of 50 mg and higher approaching a plateau (Figure 11B).
In contrast the decline in FPG over the same dose range
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FIGURE 7 | Pharmacokinetic sub-models for Metformin (A) and GPR40 agonist TAK-875 (B).

FIGURE 8 | Metformin simulated steady-state concentration profile

(line) is plotted against clinical data (diamonds) (Graham et al., 2011)

for 500 mg bid dose regimen. On the inset single 500 mg dose simulation
results are compared with data from Pentikainen et al. (1979) (mean ± SE)
for metformin peak concentration Cmax, time to peak Tmax, and area under
the curve (AUC).

(Figure 11A) did not appear to have reached saturation.Without
metformin (Figure 10) this plateau in OGTT response is observed
in both clinical and simulation data but at higher (>100 mg)
doses than with combination therapy.

DISCUSSION
QSP models bring new insights into our understanding of the
mechanism of action of drugs and they help in optimizing deci-
sion making in pharmaceutical R&D (Schmidt et al., 2013).
However, multiple obstacles need to be overcome in order to
increase recognition of the value of QSP within the pharmaceuti-
cal industry. Two challenges are worth mentioning in the context
of this article. First, QSP models rely on large-scale simulations
requiring high-performance parallel computing infrastructure
that is expensive to run and maintain. Second, there is no indus-
try standard software, such as NONMEM® for non-linear mixed
effects PK/PD modeling that satisfies the diverse needs of the
modeling community. Utilizing multiple tools increases the cost
of model development and limits the exchange of models between
scientists, thus creating additional barriers for model acceptance
and application. A solution for the first challenge could be cloud-
based computing, as the burden of creating and maintaining an
up to date computational environment is outsourced to ven-
dors of high-performance computing clusters (e.g., Amazon). By
developing the ViSP platform we attempted to address the sec-
ond challenge, i.e., making the simulation process less dependent
on the modeling tools and creating a more universal workflow
for simulations (Figure 2). The central idea behind the ViSP plat-
form is to work with the model file once it satisfies two conditions;
first, it is compiled into an executable file, and second, all model
parameters are presented as input parameters. Combination of
an executable binary file with an input text file fully defines a sin-
gle simulation task that has the following benefits. On the one
hand, it is no longer dependent on the file format or the specifics
of the modeling tool that created the model. On the other hand,
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Table 1 | Effects of metformin in 28 day study in T2DM patients, comparison between clinical data by Eriksson et al. (geometric mean ± 95%

conf. interval) and simulation.

Days of treatment 0 7 14 28

Data metric Eriksson et al. Sim. Eriksson et al. Sim. Eriksson et al. Sim. Eriksson et al. Sim.

FPG (mM) 9.54 (8.6, 10.6) 10.1 9.15 (8.24, 10.15) 10.1 8.26 (7.55, 9.46) 9.6 7.59 (6.74, 8.54) 8.6

AUC glucose (mM·h) 29.6 (27.1, 32.4) 29.9 26.4 (24.2, 28.7) 24.9 23.4 (21.5, 25.5) 20.5 21.7 (19.9, 23.6) 19.9

FPI (% change from day 0) 0 (–29, 41) 0 5 (–23, 43) 2 16 (–42, 23) 16.0 1 (–24, 29) 8.0

FIGURE 9 | TAK-875 concentration profiles for 25, 50, 100, and

200 mg once daily doses administered to T2DM patients. Clinical
data points are mean values ±SD (Leifke et al., 2012) shown by black

color markers connected with lines overlaid with simulated data shown
by gray color markers only. Panel (A) presents results at day 1, panel
(B) at day 14.

FIGURE 10 | Change in fasting plasma glucose concentration (A) and 2 h post-OGTT glucose values (B) from baseline after 14 days of placebo or 25,

50, 100, and 200 mg daily dose of TAK-875. Panels (A,B) show clinical data (Leifke et al., 2012), and simulation results for TAK-875 monotherapy.

the model preserves all possibilities for its customization since all
its parameters are available through the input file. Additionally,
when launched it runs as a single computer process that pro-
vides flexibility in choosing the hardware (multicore processors,
cluster, or cloud) that can be used for computations. The only

requirement here is to use the proper compiler when creating the
executable file.

Large-scale simulation tasks in which ViSP could be useful
originate from numerous applications. We employed ViSP for cal-
ibrating the MDSP model and for simulating clinical studies. In
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FIGURE 11 | Simulated change in fasting plasma glucose

concentration (A) and 2 h post-OGTT glucose values (B) from

baseline after 14 days of placebo or 25, 50, 100, and 200 mg

daily dose of TAK-875. Panels (A,B) compare simulation results
for TAK-875 monotherapy with TAK-875 + 500 mg bid metformin
combo.

the first case, multiple virtual patients (VPs) have been created in
which only the parameters of interest were changed. Then a series
of simulations equal to the number of virtual patients has been
run and the process was repeated until the desired model behav-
ior was achieved. The latter meant checking that sets of output
parameters lay within the observed ranges derived from clinical
or preclinical data. A similar procedure was used to create new
VPs representing different phenotypes. In the future we are plan-
ning to automate this process, when parameter variations and
model response analysis will be done without user intervention.
The process just described could be applied to perform sensitiv-
ity analysis, for instance, to search for the pathway that responds
the most (or the least) to the drug, or to characterize the drug
response based on patient phenotype. This process could also be
used to model a clinical trial, when different cohorts of VPs that
satisfy the enrollment criteria are simulated and their responses
are analyzed to provide suggestions for patient stratification.

One aspect of simulation workflow that remains outside
the capabilities of the ViSP platform is how to convert model
files saved in proprietary formats into an executable code (see
Figure 2). Currently there is no universal mechanism inside ViSP
allowing this to be done with an arbitrary file format. The pro-
prietary nature of the model files prevents seeing model details,
such as equations and parameters, making compiling such files
into an executable impossible. Normally the modeling software
itself does not offer this option either. The solution, however,
exists if the modeling tool allows the export of models into
a file format that can be read by other software. One such
format is Systems Biology Markup Language (SBML), a com-
puter language that is gaining ground inside the Systems Biology
community for saving and exchanging models between users.
Currently several model development tools offer SBML export
capabilities, among them JDesigner (part of the Systems Biology
Workbench, SBW) (Sauro et al., 2003), SimBiology by Mathworks
(MathWorks), CellDesigner by the Garuda Alliance (Kitano et al.,

2005), DBSolve Optimum by ISB (Gizzatkulov et al., 2010) and
others. Once saved in SBML format, a model file can be trans-
lated into a different computer language that afterwards can be
compiled into an executable (see Figure 2). We utilized SBW
capabilities to export an SBML file into a MathWorks Matlab®
file that later was compiled into a binary executable file using
the MathWorks compiler. Since the MDSP model was originally
developed in JDesigner, which “natively” saves models in SBML
(XML) format, there were no issues in exporting it to a Matlab
file. However, if the SBML model file is produced by a differ-
ent modeling tool, for example PhysioLab®, it may require some
editing before saving it as Matlab code. Such modifications may
be necessary since the level of SBML support varies in different
modeling tools.

In conclusion, we developed a versatile web based software
platform that provides capabilities for setting up and running
massive simulation tasks originating from system-level mechanis-
tic models. It is designed to conveniently handle diverse modeling
projects with large number of parameters while being flexible
with respect to model structure. Its utility was demonstrated with
metabolic diseases model by simulating pharmacological effects
of antidiabetic drugs, metformin and fasiglifam in healthy and
diabetic individuals.
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APPENDIX
BASIC EQUATIONS
Mathematically the MDSP model is organized as follows.
Individual blocks i (i = 1, . . . , n) shown on Figure 3 correspond
to quantities of a material Qi (e.g., amount of nutrient, num-
ber of cells, etc.) distributed within a particular compartment.
Blocks may also stand for a state or a signal attributed to an
organ or body system, like e.g., vagal stimulation of the stomach.
The quantities are expressed as time-dependent state variables
described by ordinary differential equations (ODEs) (Equation
A1) where the right side term Fi,j signifies the flux of Qj to com-
partment i (shown by arrows on the diagram). These fluxes may
depend on multiple variables, for instance, concentration of hor-
mones and/or drugs. Most of them follow similar functional form
(Equation A2) in which basal rate ki,j is modified by activation,
represented by the term αi,j and/or by inhibition, represented by
the term βi,j. Activation and inhibition terms are given by either
the Hill-type equation (Equation A3) or by a sigmoid shape func-
tion (Equation A4) where coefficients γi,j and σi,j regulate the
slope and the shift of the curve. Here functions are shown for
activation term αi,j, they are identical for βi,j. Parameters αmax

i,j
may assume only non-negative values. In the case of inhibition,
βmax

i,j are further restricted to be no greater than 1. The variable
Pj may stand for either the quantity Qj or its concentration Cj in
case when Qj represents the amount of substance. Parameters ni,j,
γi,j, σi,j are constant values. In each particular instance the choice
of the function, either Equation A3 or Equation A4, is dictated by
a prior knowledge about the mechanism of action. Alternatively
it is selected based on which function provides better fitting to
available data. For details refer also to Figure 3.

dQi

dt
=

∑

j

Fi,j (A1)

Fi,j = ki,j · Qj · (
1 + αi,j

) (
1−βi,j

)
(A2)

αi,j = αmax
i,j ·

P
ni,j

j

P
ni,j

j + K
ni,j

j

(A3)

ai,j = αmax · 1

2

(
1 + tanh

(
γi,j

(
Pj − σi,j

)))
(A4)

In addition to ODEs, the MDSP model contains a num-
ber of algebraic equations that calculate additional quantities

and parameters, for instance, insulin sensitivity index QUICKI
(Katz et al., 2000), homeostatic model assessment index HOMA
(Wallace et al., 2004) and others. Overall the model comprises
more than 100 ODEs and more than 50 algebraic equations
resulting in a large number of parameters (more than 800)
associated with them.

MODEL CALIBRATION
As explained in the Methods section, parameters in the model
could be approximately divided into those describing the char-
acteristics of an individual subject [virtual patient (VP)], param-
eters that represent drugs, parameters for clinical interventions,
e.g., OGTT, parameters that describe meal regimen, and the
like. All of them are input data defining a particular simulation.
Whenever possible the values for parameters are taken from the
literature, however, when the values are not available they are
estimated by matching model behavior to known clinical and
preclinical data. For a valid VP, values for plasma concentration
of glucose, insulin, C-protein, glucagon, GLP-1, GIP, FFA, TAG
obtained after simulated overnight fast are required to match
clinical data characteristic of the phenotype this VP represents
(healthy or T2DM). In addition a valid VP should correctly repro-
duce simulated interventions such as a standard OGTT and meal
tolerance test (MTT) with glucose and insulin concentration
profiles being similar to the ones observed clinically. Since mul-
tiple sets of parameters could potentially match the same data,
these sets constitute alternative VPs that reflect clinical variability.
Parameters defining VPs can be varied intentionally to produce
subjects representing different behaviors (phenotypes). For the
MDSP model we have created a number of VPs that we classi-
fied as belonging to the following 5 phenotypes: normal healthy,
obese non-diabetic, type 2 diabetic patients with mild, moderate,
and severe degree of the disease. Each VP is defined by more than
800 parameters and ViSP provides the convenience of storing and
handling them in a structured way.

In general the simulations were performed as follows. At first
all VPs are simulated for a period of time until they reach a
steady state with a meal regimen that matches VP energy expen-
diture. The latter is calculated based on VP age, height, body
weight, and activity level. After the steady state is achieved the
simulation of interest is initiated by applying additional sets of
parameters corresponding to drugs and interventions that repro-
duce the conditions of the clinical trial or other experiments of
interest.
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