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Ana Carolina Barbosa Padovan a, Nelson José de Freitas Silveira b, Leonardo Augusto de 
Almeida a,* 

a Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil 
b Laboratory of Molecular Modeling and Computer Simulation, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
New coronavirus 
Reverse vaccinology 
SARS-CoV-2 

A B S T R A C T   

The short time between the first cases of COVID-19 and the declaration of a pandemic initiated the search for 
ways to stop the spread of SARS-CoV-2. There are great expectations regarding the development of effective 
vaccines that protect against all variants, and in the search for it, we hypothesized the obtention of a predicted 
rational immunogenic peptide from structural components of SARS-CoV-2 might help the vaccine research di-
rection. In the search for a candidate of an immunogenic peptide of the SARS-CoV-2 envelope (E), membrane 
(M), nucleocapsid (N), or spike (S) proteins, we access the predicted sequences of each protein after the genome 
sequenced worldwide. We obtained the consensus amino acid sequences of about 14,441 sequences of each 
protein of each continent and the worldwide consensus sequence. For epitope identification and characterization 
from each consensus structural protein related to MHC-I or MHC-II interaction and B-cell receptor recognition, 
we used the IEDB reaching 68 epitopes to E, 174 to M, 245 to N, and 833 to S proteins. To select an epitope with 
the highest probability of binding to the MHC or BCR, all epitopes of each consensus sequence were aligned. The 
curation indicated 1, 4, 8, and 21 selected epitopes for E, M, N, and S proteins, respectively. Those epitopes were 
tested in silico for antigenicity obtaining 16 antigenic epitopes. Physicochemical properties and allergenicity 
evaluation of the obtained epitopes were done. Ranking the results, we obtained one epitope of each protein 
except for the S protein that presented two epitopes after the selection. To check the 3D position of each selected 
epitope in the protein structure, we used molecular homology modeling. Afterward, each selected epitope was 
evaluated by molecular docking to reference MHC-I or MHC-II allelic protein sequences. Taken together, the 
results obtained in this study showed a rational search for a putative immunogenic peptide of SARS-CoV-2 
structural proteins that can improve vaccine development using in silico approaches. The epitopes selected 
represent the most conserved sequence of new coronavirus and may be used in a variety of vaccine development 
strategies since they are also presented in the described variants of SARS-CoV-2.   

1. Introduction 

1.1. SARS-CoV-2 and COVID-19 

Coming from a large family of single-stranded RNA viruses, SARS- 
CoV-2 is a polyadenylated, positive-sense virus that is responsible for 
the worsening of the severe acute respiratory syndrome, elevating the 
outbreak that began in December 2019 in Wuhan, China, to the 
pandemic status declared on March 11, 2020, by the World Health 

Organization [1,2]. Seven coronaviruses capable of infecting humans 
are known, three of which are potential causes of serious diseases: 
MERS-CoV, SARS-CoV, and SARS-CoV-2; meanwhile, 229E, NL63, 
HKU1, and OC43 are linked to mild symptoms not related to compli-
cations [3]. Due to the higher transmissibility and faster spread of 
SARS-CoV-2, the WHO announced the pandemic status in February 
2020 [1]. The coronavirus disease 2019 (COVID-19) causes a variety of 
symptoms from mild to severe cases characterized by pneumonia with a 
pro-inflammatory cytokine storm or extrapulmonary responses to virus 
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leading to systemic effects as vasculitis and subsequently inducing 
thrombosis [4]. 

1.2. Search for COVID-19 treatment and vaccines 

Until now, about 8,000 clinical trials are in progress for COVID-19, 
including the development of new drugs or drug repositioning and 
vaccine development. However, despite the great efforts of scientists 
around the world, there is still no fully efficient treatment for COVID-19 
[5]. An effective strategy for the control and prevent the new corona-
virus spread is the use of vaccines as perceived with the decrease in the 
number of cases in countries with high rates of vaccinated people [6]. 
Although there are different approaches to obtain a vaccine to 
SARS-CoV-2, it is important to explore the structural proteins of the 
virus since they are fundamental to directly interacting with the host and 
may be the source of specific immunogenic components against it [7]. 

1.3. Immunoinformatics and COVID-19 vaccine development based on 
SARS-CoV-2 structural proteins 

With the advent of immunoinformatics where the bioinformatics 
have helped a quick way to develop epitope-based vaccines in silico as a 
preliminary study for the in vivo validation study [8]. Sohail and col-
leagues [9] proposed this strategy to identify in silico T cell epitope 
identification for SARS-CoV-2. Since the ideal immune response against 
the new coronavirus should include an efficient antiviral innate immu-
nity and a robust, specific cellular and humoral adaptative response 
against this virus [10] it is necessary to identify possible immunogenic 
epitopes based on the different SARS-CoV-2 genomes present in the DNA 
repositories. SARS-CoV-2 expresses 29 proteins, four of which are 
structural proteins: envelope protein (E), membrane glycoprotein (M), 
nucleocapsid phosphoprotein (N), and surface glycoprotein (S). They 
are closely associated with host interaction during the infection, which 
makes them important targets to be recognized by the immune system 
[11]. Among the structural proteins, the S protein is used as the most 
important to host recognition due to its presence around the virion, and 
it might be the best target for neutralizing antibodies. However, the 
SARS-CoV-2 variants described during the pandemic are mostly based 
on differences in amino acids in the primary sequences of the S protein, 
decreasing the capacity of neutralizing antibodies. In addition, re-
searchers have observed interesting mechanisms of the new coronavirus 
to induce filopodia in the infected cells, which can augment the spread 
of the virus [12]. Therefore, a robust and efficient cellular immune 
response should be triggered by epitope-based vaccines that can induce 
elimination of the focus of infection using T cell activation-dependent 
mechanisms [13,14]. In order to obtain a rationally selected, specific 
immunogenic epitope from SARS-CoV-2 structural proteins that sur-
passes the possible issues associated with the virus variants or only one 
type of adaptive immune response, we identified a consensus sequence 
of the four structural proteins with a high possibility to elicit T and B cell 
responses against this virus. We used different established immu-
noinformatic approaches and structural analysis to identify the position 
of each selected epitope in the consensus 3D structure modeled by us for 
the structural proteins of SARS-CoV-2. 

2. Methods 

2.1. Obtaining SARS-CoV-2 putative structural protein consensus 
sequences 

The methods followed the pipeline presented in Supplementary 
Fig. 1, showing the main immunoinformatic and molecular modeling 
and docking established tools used in this manuscript. The protein se-
quences for SARS-CoV-2 were obtained from the National Center of 
Biotechnology Information (NCBI) database. The specific database for 
Sars-CoV-2, present on the website in the “NCBI Virus” tab, was used by 

means of the following identification: “taxid: 2697049” (https://www. 
ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Pro-
tein&VirusLineage_ss=SARS-CoV-2,% 20taxid: 2697049). All sequences 
of the envelope protein (E), membrane glycoprotein (M), nucleocapsid 
phosphoprotein (N), and surface glycoprotein (S) from all continents 
present on the site were downloaded in FASTA format. The Jalview 
software (https://www.jalview.org/) was used to obtain the consensus 
sequences for each region and the global consensus sequence for each of 
the four target proteins [15]. 

2.2. Epitopes identification 

For all epitope predictions of the target proteins, we used the algo-
rithms of the Immune Epitope Database and Analysis Resource (IEDB; 
https://www.iedb.org/), of which only the methods were changed for 
the selection of each prediction. 

2.3. MHC-I or MHC-II and B-cell receptor epitopes prediction 

The NetMHCpan EL 4.1 server (http://tools.iedb.org/mhci/) was 
used and the option to obtain epitopes that interact with the 27 refer-
ence alleles of MHC-I [16] that simulate a greater coverage of the global 
population, among 97% and 99% and IC50 < 500nM [17] in sequence 
the cutoff of 1% of the total amount of each target structure was used; all 
options were recommended by the IEDB platform itself [18,19]. The 
“IEDB recommended 2.22” method (http://tools.iedb.org/mhcii/) was 
used, which consists of the consensus use of the NN-align [20], 
SMM-align [21], CombLib [22], and Sturniolo [23] methods, to obtain 
the best possible result for a given protein, as recommended by the IEDB. 
The combination of the 27 MHC-II alleles recommended for the world-
wide coverage of the population was also used [24], for the cutoff, the 
epitopes that fit into two observations, including a consensus percentile 
threshold rank < 20.0 and interacting with more than 50% of the 
selected alleles [25], were selected. The BepiPred Linear Epitope Pre-
diction 2.0 server (http://tools.iedb.org/bcell/) was used to obtain B 
cell interaction epitopes, based on a system of machine learning algo-
rithms called Random Forest that classifies the amino acid sequences of 
the target proteins from simulations in crystallized proteins and amino 
acids not considered epitopes. A standard cutoff threshold of 0.5 was 
used to obtain promiscuous epitopes [26]. 

2.4. Alignment and determination of worldwide consensus epitopes 

All epitopes found from each structural protein that interacts with B- 
cell receptors MHC-I and MHC-II were aligned using the MultiAlign 
server (http://multalin.toulouse.inra.fr/multalin/; [27] in addition to a 
manual alignment for comparison and greater precision. From the 
alignment, the epitopes with the highest repetition rate per region with 
an established size of 15 amino acids were selected. The selection of the 
most promiscuous 15 amino acids epitope was based on the peptide 
length able to fit in the MHC groves with best affinity for interaction, 
stability, and specificity to SARS-CoV-2 proteins. 

2.5. Transmembrane epitopes identification 

All regions of epitopes that were within the transmembrane regions 
of the SARS-CoV-2 structural proteins were removed in such a way the 
SOSUI server was used (http://harrier.nagahama-i-bio.ac.jp /sosui/ 
sosuisubmit.html) [28], which identifies the transmembrane regions 
present in the proteins. It is worth mentioning that the nucleocapsid 
phosphoprotein is a completely soluble protein with no transmembrane 
regions. 
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2.6. Selected epitopes antigenicity, allergenicity, putative N-glycan sites 
and physical and chemical properties test 

For the antigenicity test, the VaxiJen 2.0 server (http://www.ddg-ph 
armfac.net/vaxijen/VaxiJen/ VaxiJen.html), with 89% accuracy, was 
used with the 0.5 and “probable antigen” cutoff [29]. For the allerge-
nicity test, the server AlgPred 2.0, an update version of “AlgPred: Pre-
diction of Allergenic Proteins and Mapping of IgE Epitopes” (http://c 
rdd.osdd.net/raghava/algpred/), with sensitivity of 93.1%, of 95.36% 
specificity and 94.26% accuracy, was used with the hybrid method that 
consists of using the following five tools available on the server: SVMc, 
IgE, epitope, ARPs BLAST, and MAST [30]. The Putative N-glycan sites 
were determined using the NetNGlyc 1.0 Server (http://www.cbs.dtu. 
dk/services/NetNGlyc), 76% accuracy [31]. For the physical and 
chemical properties test, the Expasy server’s ProtParam tool (http 
s://web.expasy.org/protparam/) was used with a cutoff of 40 for 
structure stability values [32]. 

2.7. SARS-CoV-2 structural proteins modeling 

For the molecular modeling of SARS-CoV-2 envelope protein, 
membrane glycoprotein, nucleocapsid phosphoprotein, and surface 
glycoprotein membrane glycoprotein, the script AlphaFold v2.0 [33] 
(https://github.com/deepmind/alphafold) was used to predict the 
conformation of the proteins with an extremely high level of accuracy 
(>95%). Multiple databases as UniRef90 [34], MGnify [35], BFD [36], 
Uniclust30 [37], PDB70 and PDB [38] were used to homology modeling 
the structural proteins. 

2.8. Refinement of human leukocyte antigen (HLA) and selected epitopes 
from structural proteins from SARS-CoV-2 for molecular docking 

Receptor proteins for the docking process were selected from the 27 
interaction alleles made available by the IEDB, and then a search was 
carried out on the PDB database for all these alleles to perform molec-
ular docking. All proteins, both receptor (HLA) and ligands (Epitopes), 
were subjected to a preparation, in which hydrogens absent from the 
structures were added, the waters present in the .pdb files were deleted, 
the protein was scanned using the script complete_pdb. Py from the 
MODELLER software in order to find missing atoms, and the grid box in 
the active site of the structure was defined [39]. 

2.9. HLA and selected epitopes from structural proteins from SARS-CoV-2 
docking 

To carry out the dockings, the protein-peptide method was defined, 
which consists of determining the receptor protein as a rigid structure 
with some small conformations of the side chains as flexible and the 
ligand-protein as a flexible structure. For that, we used the MDockPep 
servers (https://zougrouptoolkit.missouri.edu/mdockpep/index.html; 
[40] XU X et al., 2018) and ClusPro (https://cluspro.org/help.php) [41]. 

In addition, the AutoDock Vina software was used with the intention of 
obtaining a greater range of results and thus having a greater precision 
of results [42]. LigPlot + [43] and Pymol [44] were used to determine 
the epitope-MHC interaction in 2D and 3D diagrams, respectively. 

3. Results 

3.1. SARS-CoV-2 structural proteins consensus sequence from different 
deposited genomes in a database. 

From the NCBI database, we analyzed 53,765 putative SARS-CoV-2 
structural proteins from translated, deposited genomes (table 1), rep-
resenting sequences from six continents. North America is the continent 
with the highest number of obtained SARS-CoV-2 genome sequences 
with a total of 41,112 sequences (10,278 per protein). Asia presents 
4,784 sequences (1,196 per protein), followed by Oceania with 5,672 
sequences (1,418 per protein), Europe with 1,644 sequences (411 per 
protein), Africa with 428 sequences (107 per protein), and finally South 
America with 124 sequences (31 per proteins). After obtaining all se-
quences from all continents, the process of obtaining consensus se-
quences was carried out. In addition to the respective conservation 
values, in which a consensus sequence of each protein per continent was 
obtained (Supp. 1-4), we identified global consensus sequences from 
each new coronavirus structural protein to be used as targets in 
obtaining putative epitopes. 

3.2. Putative immunogenic epitopes from the consensus sequence of 
SARS-CoV-2 structural proteins are described to interact with MHC-I, and 
the S protein contains a higher number of epitopes 

According to Table 1, the higher number of epitopes from structural 
proteins from SARS-CoV-2 interact more with MHC-I and less with B-cell 
receptors. Since the surface glycoprotein is considered the highest 
immunogenic protein of SARS-CoV-2 and the bigger structural protein 
from this virus, the majority of putative epitopes were found in this 
protein (773 putative epitopes). On the other hand, the envelope protein 
with 75 amino acids presented only 68 putative epitopes in this 
sequence. All results are presented in Table 1, and they were obtained 
using the IEDB software performing a projection of 98,55% of popula-
tion coverage according to “Population Coverage Calculation Result” 
tool. 

3.3. Rational selection of putative immunogenic epitopes from SARS-CoV- 
2 structural proteins indicates at least one candidate epitope in each 
protein 

To obtain the best candidates of putative immunogenic epitopes from 
each SARS-CoV-2 structural protein, the obtained epitopes were aligned, 
and the linear amino acids sequence performing about 15 amino acids 
that presenting repeating was selected. Furthermore, epitopes presented 
in the transmembrane anchoring site were excluded since they present 

Table 1 
Rational selection of consensus structural proteins epitopes of SARS-CoV-2.   

Africa Asia Europe North America Oceania South America Total 

Genomes 428 4,784 1,644 41,112 5,672 124 53,764  
Epitopes from consensus structural proteins of SARS-CoV-2  
Envelope Membrane Nucleocapsid Surface 

B-cell receptor 2 6 11 33 
MHC-I 36 116 222 625 
MHC-II 30 52 12 115  

Rational selection of the best epitopes  
Envelope Membrane Nucleocapsid Surface 

Multalign 1 4 8 21 
Vaxijen 1 3 3 9 
ProtParam 1 1 2 6 
Algpred 1 1 1 2  
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hydrophobic characteristics that cause difficult interactions with the 
amino acids present in the MHC-I or MHC-II grooves. Since the nucle-
ocapsid phosphoprotein is a soluble protein, all repeated epitopes 
identified in this protein were kept for the next evaluations. After those 
selections, 34 epitopes were obtained, and they were in silico tested for 
antigenicity using the VaxiJen 2.0 software, obtaining 16 antigenic 
epitopes (Table 2). Physicochemical properties evaluation of the ob-
tained epitopes was based on molecular weight, isoelectric point, 
structural formula, number of atoms, number of amino acids, half-life, 
structural stability, and n-glycan sites. At this point, 10 epitopes were 
selected. It is important to note that the epitope from envelope protein is 
the only epitope that did not reach the cutoff value for stability. To 
overcome it, it was necessary to augment the selected epitope to 17 
amino acids to make it stable but with a n-glycan site. The epitope was 
subjected to the antigenicity evaluation again, yielding a score necessary 
to be considered a putative immunogenic epitope. To increase the 
confidence of using the selected epitopes in future in vitro and in vivo 
evaluation, the allergenicity was tested using the AlgPred software with 
the following five tools in the server: SVMc, IgE, epitope, ARPs BLAST, 
and MAST. At this point, only five epitopes were not allergenic. Ranking 
the results, we obtained one epitope of each protein except for the S 
protein that presented two epitopes after selection (Table 1). 

3.4. Position identification of selected putative immunogenic epitopes in 
SARS-CoV-2 structural proteins after molecular modeling by homology 

To identify the position of selected putative immunogenic epitopes in 
the structural proteins from SARS-CoV-2, we performed molecular 
modeling for each global consensus protein. Since there is no informa-
tion about the 3D consensus protein in the PDB database, we used the 
opensource script AlphaFold v2.0 for the envelope protein (E; Fig. 1A), 
membrane glycoprotein (M; Fig. 1B), nucleocapsid phosphoprotein (N; 
Fig. 1C), and surface glycoprotein (S; Fig. 1D). The selected epitopes 
inserted in the 3D structure that were identified for each protein are 
highlighted in red in Fig. 1. The transmembrane helices are indicated in 
the models in green. 

3.5. Molecular docking between the selected putative immunogenic 
epitopes in SARS-CoV-2 structural proteins and MHC-I and MHC-II shows 
high probabilities of interaction between them 

Although not all structures of MHC-I and MHC-II were found in the 
database (IEDB), we used the structure of 14 proteins of MHC-I alleles 
and three of MHC-II alleles according to the underlined presented in 
Table 3. The results demonstrated great energy of interaction based on 
two different online servers and by AutoDock Vina software. To repre-
sent the molecular docking between the epitope and the MHC-I and 
MHC-II alleles, we chose the interaction with the highest power of 
interaction indicted by the servers and the software. The best interaction 

between the envelope protein (E) and MHC-I was with the HLA-B*1501 
allele (Fig.s 2A and 2C) and MHC-II with the HLA-DRB1*04:01 allele 
(Fig.s 2B and 2D). The points of contact are demonstrated in the 3D Fig.s 
2A and 2B, and twenty-two hydrophobic interactions between the 
epitope and MHC-I are 2D represented in Fig. 2C. For epitope and MHC- 
II interactions it was observed eighteen hydrogen bounds and twenty- 
eight hydrophobic interactions (Fig. 2D). For the membrane glycopro-
tein (M), we demonstrated the interaction between the HLA-B*57:01 
allele for MHC-I (Fig.s 3A and 3C) and the HLA-DRB1*15:01 allele for 
MHC-II (Fig.s 3B and 3D). The points of contact are demonstrated in the 
3D Fig.s 3A and 3B, and eight hydrogen bonds and thirty-five hydro-
phobic interactions between the epitope and MHC-I are 2D represented 
in Fig. 3C. For epitope and MHC-II interactions it was observed six 
hydrogen bounds and thirty-two hydrophobic interactions (Fig. 3D). 
The epitope present in the nucleocapsid phosphoprotein (N) was dock-
ing with the HLA-B*35:01 allele for MHC-I (Fig.s 4A and 4C) and HLA- 
DRB1*04:01 allele for MHC-II (Fig.s 4B and 4D). The 3D diagram shows 
the points of contact in Fig.s 4A and 4B. Seven hydrogen bounds and 
twenty-six hydrophobic interactions between the selected epitope and 
MHC-I are represented in the Fig. 4C, while ten hydrogen bounds and 
thirty-seven hydrophobic interactions between the selected epitope and 
MHC-II are represented in the Fig. 4D. The surface glycoprotein (S) 
presented two epitopes, and the results of the interaction are demon-
strated in Fig.s 5 and 6. For epitope 1, we demonstrated the interaction 
between the MHC-I allele HLA-A*02:03 (Fig.s 5A and 5C), with twelve 
hydrogen bounds and twenty-four hydrophobic interactions between 
the epitope 1 and MHC-I (Fig. 5C). The interaction between the epitope 
1 and MHC-II allele HLA-DRB1*04:01 showed nine hydrogen bounds 
and twenty-nine hydrophobic interactions (Fig. 5D). For epitope 2 from 
the S protein demonstrated the interaction between the allele HLA- 
B*35:01 (Fig.s 6A and 6C) and allele HLA-DRB1*15:01 (Fig.s 6B and 
6D) with MHC-I and MHC-II, respectively. The points of contact are 
demonstrated in the 3D Fig.s 6A and 6B, and nine hydrogen bonds and 
twenty-nine hydrophobic interactions between the epitope 2 and MHC-I 
(Fig. 6C). For epitope 2 and MHC-II interactions it was observed eight 
hydrogen bounds and twenty-seven hydrophobic interactions (Fig. 6D). 

4. Discussion 

4.1. Short time to find putative immunogenic epitopes to COVID-19 
vaccine development by immunoinformatic 

The urgency of an effective vaccine against emerging and rapidly 
transmitting pathogens, such as the new coronavirus, is a reality. The 
WHO report, after a year and a half of the COVID-19 pandemic status, 
that there are more than 284 vaccines in development, 100 of which are 
in clinical studies in different phases, nine are in phase III already 
published, two of messenger RNA technology (Pfizer, Moderna), four of 
viral vectors (AstraZeneca, Gamaleya, Jansen, CanSino), one of 

Table 2 
Antigenicity, allergenicity, and physical-chemical properties of selected epitopes from consensus structural proteins epitopes of SARS-CoV-2.   

Envelope Membrane Nucleocapsid Surface 1 Surface 2 

Sequence LVKPSFYVYSRVKNLNS TVATSRTLSYYKLGA MEVTPSGTWLTYTGA IAIPTNFTISVTTEI ALQIPFAMQMAYRFN 
Antigenicity 0,6582 0,7300 0,7886 0,7719 1,0112 
MW 2014,36 1630,86 1613,80 1619,88 1801,15 
PI 10,00 9,70 4,00 4,00 8,79 
Stability 38,99 19,08 -7,92 7,39 33,91 
Half-life 

Reticulocytes 
5,5 h 7,2 h 30 h 20 h 4,4 h 

Half-life 
Yeast 

3 min >20 h >20 30 min >20 h 

Half-life 
E. coli 

2 min >10 h >10 h >10 h >10 h 

IgE epitope No No No No No 
Allergenicity No No No No No 
n-glycan site Yes No No Yes No  

L.P. Araújo et al.                                                                                                                                                                                                                                



ImmunoInformatics 7 (2022) 100015

5

recombinant protein (Novavax), and two using an inactivated virus 
(Sinopharm). Here we used in silico approaches to obtain epitopes from 
structural proteins from SARS-CoV-2 to reach, in a short period of time, a 
specific immunogenic peptide able to be used as a safe peptide-based 
vaccine. Currently, numerous projects for the development of effective 
vaccines have been carried out, and some of these vaccines are already 
commercially available for humans [45]. However, traditional vaccine 
production techniques have some disadvantages, which can be over-
come by using computational approaches [46]. In addition, recent ad-
vances in bioinformatics have provided a variety of tools and servers 
capable of reducing the cost and time of advancing the traditional 
vaccine [5]. Immunoinformatics approaches can be used to analyze 
pathogen antigens, predict their epitopes, and assess their immunoge-
nicity [5]. Furthermore, reverse vaccinology, epitope prediction, struc-
tural vaccinology, rational approaches, and molecular docking are of 
great use in designing a potential vaccine against COVID-19 [46]. 

4.2. Global consensus amino acid sequence and modeling of SARS-CoV-2 
structural proteins 

Therefore, in this work, bioinformatics techniques were used to 
reach a consensus amino acid sequence from the four structural proteins 
of SARS-CoV-2 using the sequences of genomes deposited in the data-
base from different regions of the world following obtaining a global 
consensus sequence. The strategy to obtain a consensus sequence of each 
protein may decrease the possibility of observing variants, but it 

increases the possibility to define the conserved amino acid sequences 
from those proteins on available genomes around the world. Here, we 
were able to define the three-dimensional structure of the consensus 
proteins and identify their secondary structures using molecular 
modeling and artificial intelligence data. Furthermore, the immu-
noinformatics approaches may direct in a rational way the identification 
of putative immunogenic epitopes to design an epitope-based vaccine to 
control SARS-CoV-2 [47]. 

4.3. Rational selection of putative immunogenic epitopes from global 
consensus SARS-CoV-2 structural protein 

We also demonstrated that sequentially using rational in silico tech-
niques, based on well-established bioinformatic tools, made it was 
possible to select the best epitope able to interact with the B-cell re-
ceptor, which may stimulate a specific adaptative humoral response, or 
MHC-I and MHC-II alleles, which may stimulate a cellular adaptative 
immune response based on TCD8+ or TCD4+ activation, respectively. 
The best example is the search for epitopes in the sequence of the surface 
glycoprotein (S). There are about 770 epitopes in the protein S, but with 
our sequence of analysis, only two potential epitopes are selected in this 
protein. S glycoprotein, also called spike, is one of the main proteins for 
therapeutic and vaccine targets, in addition to being one of the most 
important proteins to study, as it is responsible for the SARS-CoV-2 virus 
infecting host cells. It has a structure with covalently linked carbohy-
drate molecules that are N-glycans and is extremely glycosylated. This 

Fig. 1. Position identification of selected epitopes in consensus 3D structural proteins from SARS-CoV-2. Molecular modeling by homology for the envelope 
protein (A), membrane glycoprotein (B), nucleocapsid phosphoprotein (C), and surface glycoprotein (D). The molecular modeling of the proteins was based on 
homology using AlphaFold v2.0 scrip. The selected epitopes are highlighted in red, and the transmembrane helices are indicated in the models in green. 
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glycosylation plays a very important role in the interaction of this pro-
tein with the ACE2 receptor because water molecules can disrupt the 
interaction of the S protein with this receptor. These glycans, like car-
bohydrates, are quite polar, and in addition to stabilizing this molecule, 
they work by capturing water molecules on the surface of S glycoprotein 
as well as capturing water molecules on the surface of ACE2, favoring its 
interaction with the receptor [48]. However, the S protein is where most 
variations are found between strains, favoring the evasion of the virus by 
the host’s immune system [49,50]. Based on knowledge of how the 
infection occurs, which residues are responsible, and which atoms are 
involved, we can infer the impact of these mutations on the protein’s 
activity. 

4.4. The concerns about the SARS-CoV-2 new variants during vaccine 
development 

Viruses mutate constantly, but just a few key mutations can affect in 
some way, making a variant more virulent or more lethal, and it depends 
a lot on where this mutation occurs [51]. One of the two selected epi-
topes in this work is not presented in the described variants, while the 
other, epitope 1, is related to a variant T716I and contains a n-glycan site 
(Fig. 7). If a mutation with changes in the amino acid sequence occurred 
in the same region of a selected epitope, there would be a loss of effi-
ciency of the same, or even a loss of functionality of the immune system 
to efficiently recognize the pathogen. The n-glycan site may worse the 
antibody interaction to neutralize the virus. However, it is not 
hampering the cellular response against the infection. Among the vari-
ants described the ones that cause the most concern is related to changes 
in the amino acid sequence of the S glycoprotein. The US Department of 

Health and Human Services (HHS) created the Sars-CoV-2 Interagency 
Group (SIG), formed by the largest agencies for Disease Control and 
Prevention (CDC). The GIS is responsible for defining the classification 
of the new coronavirus mutations, observing the characteristics that a 
given mutation can generate; these three groups are the variant of in-
terest (VOI), variant of concern (VOC), and variant of high consequence 
(VOHC). For a mutation to qualify for the VOI classification, it must have 
at least one of the characteristics, such as specific genetic markers, that 
lead the virus to increase its degree of transmission or change the escape 
mechanism to the immune system or any evidence to prove that it is 
responsible by an expansion of contamination. Currently, seven strains 
fall into this category, and they are Iota (United States), B.1.526.1 
(United States), Eta (Nigeria/United Kingdom), B.1.617 (India), Kappa 
(India), B.1.617.3 (India), and Zeta (Brazil). To define a mutation as 
VOC, it must have, in addition to the attributes mentioned for VOI, any 
evidence that proves increased disease severity, impact on vaccines, 
treatments, diagnoses, increased transmissibility, and reduced vaccine 
effect among others. Currently, seven strains are present in this category: 
Alpha (United Kingdom), Gamma (Japan/Brazil), Delta (India), Beta 
(South Africa), Epsilon (B.1.427 and B.1.429; United States), and Omi-
cron (South Africa). And finally, for a mutation to be characterized as 
VOHC, in addition to having all the characteristics mentioned for VOC, it 
must have an impact on medical countermeasures (MCM), evidence of a 
drastic reduction in the effect of vaccines, and an increase in hospitali-
zations with worsening clinical conditions; however, to date, no muta-
tions fall into this category [52]. It is noteworthy that the variant VOC 
B.1.351 from South Africa was the object of a study for researchers at the 
Faculty of Medicine of São Paulo (FM-USP) in which the 417N mutation 
responsible for replacing the amino acid lysine with asparagine is 

Table 3 
Molecular docking between selected epitopes of SARS-CoV-2 consensus structural proteins and HLAs.   

Epitope Alelle ClusPro MdockPep AutoDock Vina 

Center Lowest Energy 

MHC-I Envelope HLA-A*0203 -842,2 -842,2 -266,03 -7,1 
HLA-B*0801 -636,7 -963,7 -239,0 -7,3 
HLA-B*1501 -635,5 -791,4 -261,9 -7,4 
HLA-B*3501 -679,4 -923,0 -273,9 -6,4 
HLA-A*0206 -749,8 -749,8 -270,2 -5,7 

Membrane HLA-B*5701 -655,0 -850,3 -230,4 -8 
HLA-B*3501 -693,9 -833,7 -221,1 -7,3 
HLA-B*5801 -578,8 -689,7 -220,4 -7,4 
HLA-A*0301 -731,9 -731,9 -223,6 -7,0 
HLA-A*0206 -809,0 -809,6 -247,7 -6,5 

Nucleocapsid HLA-B*3501 -711,2 -911,1 -203,6 -7,8 
HLA-B*4403 -681,4 -833,6 -204,3 -7,4 

Surface 1 HLA-A*0203 -792,0 -931,7 -187,7 -8,3 
HLA-B*5101 -796,5 -1112,8 -185,4 -7,9 
HLA-B*3501 -792,4 -843,8 -187,8 -8,3 
HLA-B*5701 -762 -914,2 -213,7 -7,7 
HLA-B*5801 -787,9 -905,3 -210,3 -7,2 

Surface 2 HLA-B*3501 -794,6 -1044,9 -234,9 -7,9 
HLA-A*2402 -664,7 -789,9 -229,3 -7,8 
HLA-B*5801 -730,5 -982,8 -264,4 -7,0 
HLA-A*0206 -754,5 -949,9 -255,2 -7,1 
HLA-B*1501 -752,5 -1016,6 -242,4 -6,6  

MHC-II 
Envelope HLA-DRB1*04:01 -695,2 -806,9 -275,3 -7,2 

HLA-DRB1*15:01 -847,4 -911,3 -273,2 -6,9 
HLA-DRB1*01:01 -788,7 -917,0 -276,5 -5,8 

Membrane HLA-DRB1*04:01 -743,9 -747,3 -228,1 -6,6 
HLA-DRB1*15:01 -814,2 -814,2 -219,9 -6,3 
HLA-DRB1*01:01 -762,1 -762,1 -230,2 -7,0 

Nucleocapsid HLA-DRB1*04:01 -697,9 -809,8 -226,4 -8,2 
HLA-DRB1*15:01 -723,0 -858,8 -240,5 -6,5 
HLA-DRB1*01:01 -660,5 -751,0 -214,5 -6,3 

Surface 1 HLA-DRB1*04:01 -722,0 -844,1 -200,8 -7,2 
HLA-DRB1*15:01 -784,1 -857,2 -209,0 -6,7 
HLA-DRB1*01:01 -729,1 -827,8 -201,4 -7,1 

Surface 2 HLA-DRB1*04:01 -770,7 -806,3 -252,1 -7,7 
HLA-DRB1*15:01 -797,3 -996,6 -263,6 -7,7 
HLA-DRB1*01:01 -766,7 -888,1 -258,6 -7,4  
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Fig. 2. Interaction between the selected epitope from the consensus sequence of the SARS-CoV-2 envelope protein and MHC-I and MHC-II alleles. The best 
interaction evaluated by molecular docking between the envelope protein epitope and the MHC-I allele HLA-B*1501(A and C) and MHC-II allele HLA-DRB1*04:01 (B 
and D). The points of contact are demonstrated in A and B in red, and the points of interaction between the epitope and MHC molecules are 2D represented in C and 
D, respectively. 

Fig. 3. Interaction between the selected epitope from the consensus sequence of the SARS-CoV-2 membrane glycoprotein and MHC-I and MHC-II alleles. 
The best interaction evaluated by molecular docking between the membrane glycoprotein epitope and the MHC-I allele HLA-B*57:01 (A and C), and MHC-II allele 
HLA-DRB1*15:01 (B and D). The points of contact are demonstrated in A and B in red, and the points of interaction between the epitope and MHC molecules are 2D 
represented in C and D, respectively. 
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responsible for glycolysis of proteins making an escape mechanism for 
the virus, changing its conformation [53]. Currently, the new Indian 
variant, B. 1617, of the new coronavirus raises the concern and warning 

signal regarding transmission, lethality, and resistance to available 
vaccines [54,55]. Using the approaches indicated in this work, 
peptide-based vaccines facilitate the handling of variants. 

Fig. 4. Interaction between the selected epitope from the consensus sequence of the SARS-CoV-2 nucleocapsid phosphoprotein and MHC-I and MHC-II 
alleles. The best interaction evaluated by molecular docking between the nucleocapsid phosphoprotein epitope and the MHC-I allele HLA-B*35:01 (A and C), 
and MHC-II allele HLA-DRB1*04:01 (B and D). The points of contact are demonstrated in A and B in red, and the points of interaction between the epitope and MHC 
molecules are 2D represented in C and D, respectively. 

Fig. 5. Interaction between the selected epitope 1 from the SARS-CoV-2 surface glycoprotein consensus sequence and MHC-I and MHC-II alleles. The best 
interaction evaluated by molecular docking between the surface glycoprotein epitope 1 and the MHC-I allele HLA-A*02:03 (A and C) and MHC-II allele HLA- 
DRB1*04:01 (B and D). The points of contact are demonstrated in A and B in red in red, and the points of interaction between the epitope and MHC molecules 
are 2D represented in C and D, respectively. 
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4.5. Handling of a peptide-based putative vaccine against SARS-CoV-2 
rationally selected by immunoinformatic 

The only way to perform the management of a vaccine with the 
complete protein sequence is to change the sequence itself as a whole. 
On the other hand, peptide vaccines, which are the small regions of the 
protein that have characteristics of an immune response, can be 
managed in two ways: using a pool of peptides that escape and are not 

within the most frequent areas that present mutation and replacing the 
protein or in the advent of the emergence of a new variant where that 
substitution is precisely in the peptide used and can perform only that 
substitution [56]. Besides, generating multiple target sites as other 
structural proteins of a specific pathogen may increase the possibilities 
for the host’s immune system to recognize and eliminate the invader. 
The results presented in this work also identify the most likely epitope, 
using a variety of established bioinformatic tools with different accuracy 

Fig. 6. Interaction between the selected epitope 2 from the SARS-CoV-2 surface glycoprotein consensus sequence and MHC-I and MHC-II alleles. The best 
interaction evaluated by molecular docking between the surface glycoprotein epitope 2 and the MHC-I allele HLA-B*35:01 (A and C), and MHC-II allele HLA- 
DRB1*15:01 (B and D). The points of contact are demonstrated in A and B in red, and the points of interaction between the epitope and MHC molecules are 2D 
represented in C and D, respectively. 

Fig. 7. SARS-CoV-2 surface glycoprotein variants. The described variants of SARS-CoV-2 based on amino acid changes in the surface glycoprotein indicate a 
variety of points across the protein indicated by a red mark. The selected epitopes are highlighted in blue. N-glycan sites are highlighted in green. The selected 
epitope 1 lies within a described variant T716I and a putative n-glycan site, while epitope 2 is not included within any yet-described variant. 
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level, to be immunogenic in the envelope protein (E), membrane 
glycoprotein (M), or nucleocapsid phosphoprotein (N). It is important to 
note that variants in these proteins are not described as more trans-
missible, lethal, or resistant to vaccines. All epitopes were evaluated to 
their potential to interact with immune system molecules and the se-
curity to be used in humans since they are not allergenic but antigenic 
with a good half-life in mammals, yeast, or E. coli. Finally, the results 
obtained by our group are based on a relatively reduced cost and time 
compared to traditional techniques, but it is necessary to evaluate the 
action of selected peptides associated with adjuvants to functionally 
define them as immunogenic and possible candidates to be used as a 
peptide-based vaccine. Lee and colleagues (2021), remarks the impor-
tance of different approaches to correlate the immunogenicity predic-
tion of MHC-bound peptides, including large scale in vitro or in vivo 
evaluation of selected epitopes to increase the confidence of in silico 
epitope selection [57]. Vaccination is the most effective and safest 
method of creating an immune barrier, capable of breaking the 
SARS-CoV-2 transmission and preventing the most serious pathology of 
the disease. When the effective vaccination campaign is combined with 
other preventive methods of social distancing and the use of a mask, 
over time, there is a significant reduction in the number of cases of the 
disease, even though the social life of its population returns [58]. 
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