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Digital pathology technologies, including whole slide imaging (WSI), have significantly improved modern clinical
practices by facilitating storing, viewing, processing, and sharing digital scans of tissue glass slides. Researchers
have proposed various artificial intelligence (AI) solutions for digital pathology applications, such as automated
image analysis, to extract diagnostic information fromWSI for improving pathology productivity, accuracy, and repro-
ducibility. Feature extraction methods play a crucial role in transforming raw image data into meaningful representa-
tions for analysis, facilitating the characterization of tissue structures, cellular properties, and pathological patterns.
These features have diverse applications in several digital pathology applications, such as cancer prognosis and diag-
nosis. Deep learning-based feature extraction methods have emerged as a promising approach to accurately represent
WSI contents and have demonstrated superior performance in histology-related tasks. In this survey, we provide a
comprehensive overview of feature extraction methods, including both manual and deep learning-based techniques,
for the analysis of WSIs. We review relevant literature, analyze the discriminative and geometric features of WSIs
(i.e., features suited to support the diagnostic process and extracted by “engineered” methods as opposed to AI), and
explore predictive modeling techniques using AI and deep learning. This survey examines the advances, challenges,
and opportunities in this rapidly evolving field, emphasizing the potential for accurate diagnosis, prognosis, and
decision-making in digital pathology.
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Introduction

Digital pathology technologies and solutions have significantly im-
provedmodern clinical practices.61 Among these technologies is the digital
histology slide scanner, also known as a whole slide scanner, which cap-
tures high-resolution digital images of histological slides. Histological slides
are thin sections of tissue samples that are mounted on glass slides and
stained for microscopic examination. Traditionally, pathologists would
view these slides under a microscope to analyze and diagnose various dis-
eases and conditions.127 Influenced by the progress of digital image pro-
cessing, recent advances in microscopic scanning led to the development
of a new imaging technology named whole slide imaging (WSI) that cap-
tures tissue glass slides in a single image. These digital full-color images fa-
cilitate storing, viewing, processing, and sharing scans of tissue slides.8 It
also enables simultaneous case reviews and the international sharing of
scans of tissue slides with experts and represents a rich source of clinical di-
agnostic information, rich color information, across multiple scales of reso-
lution. WSI opens the door for developing various solutions for complex
problems specific to the highly detailed content of these images for auto-
mating certain aspects of histopathology workflows. However, the resolu-
tion of these images is extremely high, with the sizes of individual images
reaching several gigabytes. This leads to several technical challenges, cur-
rently and extensively addressed by the scientific community.127 In this
context, feature extraction methods play a crucial role in transforming
raw image data intomeaningful representations that capture relevant infor-
mation for analysis. These methods encompass a wide range of techniques,
including traditional handcrafted features, as well as more advanced ap-
proaches utilizing deep learning architectures. These techniques facilitate
the extraction of morphological, textural, and contextual features from
whole slide images, enabling the characterization of tissue structures, cellu-
lar properties, and pathological patterns.

Various kinds of organs and tissues show different visual characteristics
depending on the organ type and disease type. These characteristics are em-
bedded in WSIs2 and require a special kind of analysis based on the under-
lying clinical procedure.15 For instance, the morphological features of
nuclei are considered primary indicators of cancerous tissue.3 For example,
normal cells have a regular and ellipsoid shape, while cancer cells are often
irregular and contoured. When dealing with lung cancer lethality, the di-
versity of shape and morphology of nuclei is one of the main
characteristics.25,74 The distribution of histologic primitives, including
glands and nuclei, is also one of the analysis methods commonly employed
to predict the aggressiveness of various cancers. Pathology associations de-
sign and develop specific analysis procedures and guidelines based on
2

them. Specifically, nuclear pleomorphism and morphologic heterogeneity
are strongly related to cellular diversity, which is one of themain indicators
of cancer type and grade. Several cancer-grading schemes rely on cellular
diversity, where diversity in nuclear size, shape, and appearance is a critical
element of the analysis process.124 Moreover, the texture of tissue images is
one of the main features commonly used in processing these images. These
features are widely used to determine regions of interest with unique clini-
cal properties showing the spread of the abnormal group of cells in tissue
samples. Texture features are also commonly used for the segmentation of
different elements of tissue images.1

Due to the large size of WSIs and high variations in color and texture, in
addition to variations in scanning parameters and technologies, traditional
morphology and shape features may not provide the best representation of
WSIs. Recently, a new feature extraction and analysis method that relies on
deep learning has emerged. It has the potential to provide an accurate and
complete representation of WSI contents. Features extracted based on deep
learning proved superior in terms of accuracy inmany histology-related prob-
lems, including image segmentation, classification, and description.63,102,203

WSIs analysis based on feature extraction using deep learning has diverse
clinical applications. It aids in cancer diagnosis and subtyping, tumor grad-
ing, and prognosis prediction. For instance, it supports precision medicine
by identifying biomarkers and enabling personalized treatment plans. It is
also valuable for disease detection and quantification, such as identifying
skin lesions or quantifying renal features. Overall, feature extraction from
WSIs using deep learning enhances pathology practices, enabling accurate di-
agnosis, prognosis, treatment planning, and disease monitoring.54,142

This survey paper aims to provide a comprehensive overview of the ap-
plications of feature extraction using handcrafted methods and deep learn-
ing techniques for the analysis of whole slide images. By surveying the
existing literature, we aim to shed light on the advancements, challenges,
and opportunities in this rapidly evolving field. Understanding the poten-
tial of these approaches is essential for both researchers and practitioners
seeking to leverage the power of computational techniques for accurate di-
agnosis, prognosis, and decision-making in digital pathology. We aim to
provide a comprehensive understanding of the state-of-the-art methodolo-
gies, techniques, and applications of feature extraction methods and deep
learning for whole slide image analysis.

The survey is geared towards pathologists and lab technicians whowish
to have a broad, technical overview over the state-of-the-art, categorized by
application, to make informed choices when it comes to implementing or
evaluating automated techniques. It is also geared towards machine learn-
ing engineers and researchers who want to conduct research in the digital
pathology field.
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In this survey, we review literature related to digital pathology applica-
tions, focusing on AI and deep learning solutions. Specifically, we analyze
and discuss the utilization of discriminative and geometric features of vi-
sual components of WSIs (i.e., features suited to support the diagnostic pro-
cess extracted by “engineered” methods as opposed to AI) in the
development of computational image analysis tools. Additionally, we ex-
plore predictive modeling techniques applied to histology images using
AI and deep learning methodologies. To provide a structured approach to
our survey, we classify these features based on the type of descriptive infor-
mation they capture, the application domains they serve, and the level of
representation they provide. Furthermore, we explore the various analyti-
cal information that can be extracted from these features, categorizing
them based on the extraction method employed and their geometric local-
ity. To provide a comprehensive view, we also review notable applications
that have been developed based on these features thereby facilitating the
creation of analysis tools and predictive modeling applications in the
field. Lastly, in the context of feature analysis and deep learning techniques,
we present a brief discussion on the challenges that emerge specifically in
the analysis and processing of whole slide images. By focusing on these
challenges, we aim to emphasize their significance and the need for effec-
tive solutions. Additionally, we highlight potential research opportunities
within this domain, providing valuable research directions for further
exploration and advancement.

Review methodology

Digital pathology has seen a huge interest in recent years, as indicated
by the growing volume of literature on WSI and its applications. The use
of AI forWSI analysis in pathology departments around the world is rapidly
increasing. Given the immense potential of digital pathology for many ben-
eficial use cases (e.g., workload balance, remote diagnosis,
teleconsultation, quality control, and image analysis), further research is
devoted to handling new technical issues arising from these new applica-
tions. Since the development of whole slide images, the number of studies
has grown exponentially to meet the demand for solutions for these techni-
cal issues. To structure, organize, and summarize the huge volume of re-
search in this field, several review and survey studies have been
conducted using various strategies based on scope, topic, application, and
methodologies.

Niazi et al.127 highlight the most important applications of AI in digital
pathology and whole slide imaging for several general applications such as
education, quality assurance, and clinical diagnosis. Yet, their review did
not address the use of AI for more specific applications with a high impact
on the daily clinical diagnosis tasks, which depend mainly on extracting in-
formation from WSIs. Tizhoosh and Pantanowitz187 shed light on some of
the most important challenges and opportunities for exploiting AI poten-
tials in computational pathology. Despite the new research trends explored
in their review, they did not discuss how these new problems were
approached by recent studies. Bera et al.25 provide a broad review of re-
search directions incorporating AI and machine learning techniques. The
review focuses on the impact of AI on biomarker development in clinical
oncology using data-driven methodologies such as machine learning and
deep learningwith little focus on image analysis and information extraction
methods. The impact of AI on clinical pathology is also discussed by Colling
et al.48; while emphasizing the impact of biomarker development in digital
pathology, the scope of their review is limited by exploring tasks related to
the clinical pipeline without a detailed discussion of available solutions in
the literature.

Our survey provides an exploration of various methods and solutions,
presenting a detailed discussion on the use and the impact of AI on digital
pathology development concerning WSIs analysis. Several review studies
address the impact of AI on WSIs. The earliest is the review conducted by
Madabhushi and Lee133 to explore the development of image analysis
tools for predictive modeling using handcrafted and deep learning features
extractionmethods focusing on detection, segmentation, feature extraction,
and tissue classification perspective. Yet, the review did not provide a
3

detailed discussion of solutions for these tasks. Deng et al.54 review some
of the applications of deep learning solutions in digital pathology. They ad-
dress limited applications classified based on region, gland, and cell-based
analysis. The review conducted by Salvi et al.160 provides an overview of
deep learning methods that are used to either optimally prepare the input
(pre-processing) or improve the results of the network output (post-
processing), with a focus on WSIs. However, the scope of the review is
reduced to discussing the impact of these methods on a few digital pathol-
ogy applications, such as cancer detection andWSIs segmentation. A recent
survey was conducted by Srinidhi et al.175 focusing on deep neural network
trainingmethodologies with respect to a limited number of applications, in-
cluding classification, regression, segmentation, and survival prediction
models. Ahmedt-Aristizabal et al.5 presents a review of graph-based deep-
learning methodologies for computational histopathology. Yet, the survey
provides a discussion on the training paradigms based on graph-based
learning with little focus on digital pathology clinical applications. Finally,
Baxi et al.22 examined the potential and limitations of using AI-based tech-
niques for identifying biomarkers and selecting patients, and explored how
digital pathology and AI advancements should be taken into account in the
field of translational medicine, together with the challenges that may arise
if this technology is adopted in clinical settings.

On the other side, we focus onmanual and deep learning feature extrac-
tion methods from technical and clinical perspectives. We discuss various
manual and automatic feature engineering methods for WSI analysis and
explain how these methods are exploited to extract useful information
from these images for solving various digital pathology challenges.We clas-
sify these methods according to scope and application type. We also collect
and summarize some of the most common applications of feature engineer-
ing methods in digital pathology. In this survey, we include peer-reviewed
articles published between 2000 and 2022. We exclude extended abstracts
and papers written in languages other than English. We retrieved papers
from the Scopus and Google Scholar search engines using the search
query “image feature extraction in digital pathology for whole slide im-
ages”, “manual features for whole slide images”, “deep learning features
for whole slide images”, and “manual and automatic feature extraction
for whole slide images”. We only considered the first hits for each query,
until the title and keywords showed that the hits were no longer relevant.
This yielded about 1000 papers. We then removed duplicates and screened
the papers by abstract, using our exclusion criteria. After extensive forward
and backward referencing to collect the most relevant publications, more
than 200 papers remained. While we reference all of these remaining pa-
pers in this survey, we then identified 93 papers that significantly contrib-
ute to the understanding and advancement of manual and automatic
feature extractionmethods for the analysis of WSIs. In this step, we focused
on scientific publications with clear improvement and impact on clinical
applications of digital pathology. We discuss these 93 core papers in-
depth in this survey, aiming at striking a balance between the length and
depth of this survey.

Whole slide imaging

Whole slide imaging (WSI) is the digital equivalent of histological
glass slides scanned using digital slide scanners. These images are nor-
mally examined by experts, stored, transmitted, or fed to automated
image analysis tools. High-resolution images are generated by digital
scanners within a short time. Scanners can apply multiple magnifica-
tions and focal planes at different resolution levels. WSI is considered
beneficial for educational and diagnostic purposes by experts, espe-
cially in comparison to static digital images. However, there are practi-
cal challenges to WSI analysis. Some of these challenges are related to
the scanning technology, which does not provide satisfactory output
for 3D cell groups and thick smears. Moreover, poor staining of mate-
rial and tissue folds may negatively affect the quality of the scanned
slides. Therefore, the workflow of the WSI systems requires adaptive
technologies and solutions to overcome challenges and increase reli-
ability and throughput.1
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The workflow of WSI can be divided into 4 sequential steps: image ac-
quisition, storage, processing, and visualization. Image acquisition can fur-
ther be divided into 2 components: image capture and image display. The
image-capturing component is composed of a trinocular digital microscope,
combining a traditional binocular microscope with a third port to which a
high-resolution camera can be mounted. The capturing microscope also
has a robotic unit to control illumination intensity and a mechanical stage
to hold and move the glass slide. The microscope also allows for automatic
fine and coarse focusing. Images are divided into a set of tileswhich are cap-
tured in sequential order and assembled to create the full digital image rep-
lica of the glass slide.

Preparing the glass slide for the scanning requires complying with a
standardized approach in preparation and staining, especially for surgical
pathology where the placement of the tissue sectionmay reduce the quality
if not centered away from the coverslip edges.109 In addition to the X- and
Y-axis, the Z-axis is also considered while scanning WSI images. This axis
represents the depth focus which is changed according to the region of in-
terest through observation. The transition of the depth of focus is captured
and saved as a Z-axis to enable viewing the images at multiple depth scales.
Digital scanners differ according to the methodology of Z-axis focusing,
with high-quality scanners focusing on a range of depths across each tile
which is a time-consuming process.205 Unlike surgical pathology, which re-
quires scanning at×20magnification, cytology slides require Z-stack scan-
ning at ×40 magnification to ensure higher diagnostic accuracy. The
scanning time and file size mainly depend on the Z-stack scanning depth
with some scanners, for ×20 resolution, requiring up to 2 min, while
×40 resolution takes up to 4 min.64,117

WSI features analysis

The structure and topology of human tissue are composed of sophisti-
cated and dense biological constructs. WSI absorbs this information in a
static, complex form represented by color and texture. The information em-
bedded in these images is huge, which raises many issues concerning infor-
mation extraction and manipulation. In many cases, the normal processing
pipeline of these images involves dividing the image into patches to process
each patch individually. Yet, this kind of processing has a high time com-
plexity level since each WSI can be composed of hundreds of patches.
Image features are normally extracted from these patches and combined
to perform analysis and inference based on the overall WSI.221

The description of WSIs can be achieved using many digital image pro-
cessing techniques, each providing a different level of detail. For instance,
spatial moments, color profiles, and histograms provide the lowest level
of information since they are established based on plain color intensity
values. Other techniques, such as model- and transform-based techniques,
perform processing based on a higher hierarchy level to extract edges and
detect objects within images. Therefore, image processing techniques in
WSI can be subdivided into 3 main categories; pixel-, object-, and region-
level.40

Pixel-level techniques describe the lowest level of image details based
on color intensity, texture information, and spatial pattern. Object-level
techniques describe a higher level of information that characterizes seman-
tic objects within images. Such objects in WSI images can be mitoses, nu-
clei, lumen, stroma, ducts, crypts, etc. In order to perform object-level
processing, image segmentation is used to detect objects at several levels
of detail depending on the anatomical elements of these objects.92 The
basic segmentation level detects low-level components such as nuclei,
whereas more sophisticated methods detect complex structures such as tu-
mors. Object-level features are then extracted by analyzing the morphology
and appearance of the detected objects. On the other hand, region-level
techniques describe the highest level of detail by aggregating multiple ob-
jects within images that share common characteristics. Regions are then de-
scribed by a set of features that can be obtained based on topological
properties and morphological appearance of aggregated elements.10,144

These features are normally used as input to machine learning techniques
for classification, segmentation, clustering, etc. Table 1 lists the most
4

common classical (i.e., non-deep) machine learning techniques utilized by
some of the reviewed publications in our survey. In this review, we classify
feature extraction techniques into 5 main categories: color, texture, mor-
phological, topological, and deep learning features. We provide a more de-
tailed description and discussion of these features in the following sections.

Color features

Visual examination of WSIs reveals differences in color and appearance
between various kinds of tissues. For instance, variation in color between
cancerous and benign tissue increases as the level of malignancy increases.
The reason is that epithelial nuclei stained in blue spreadwithin red-stained
stroma tissue, exhibiting different color intensity values and spatial mo-
ments for both cancerous and benign tissues. Therefore, color features
based on a range of color spaces, such as RGB, CMYK, HSV, CIEL*a*b,
gray-level, etc., are widely used for WSI analysis.34,55,124,138,145,182

Table 2 presents color features with corresponding papers.
Pezoa et al.146 use some of these features for segmentation of HER2 pro-

tein over-expression in immunohistochemically stained breast cancer im-
ages. Lu et al.124 use spatial moments to measure similarity between
neighboring cells to construct cell clusters based on a similarity distance
measure. These features, in addition to other features extracted based on
shape analysis methods and cell graph clusters, are used to predict patient
survival. Gray-level representation of WSI tiles is used by Peikari et al.145

to detect regions of interest for breast cancer. Running final detection on
the trained models shows that most of the relevant tissue regions are iden-
tified. Likewise, Mercan et al.138 perform region of interest localization
based on color features. They use both deconvoluted hematoxylin and
eosin color channels as bag of words features to represent tiled patches
and sub-patches.

Color variations can also be spotted using color histograms based on tis-
sue, region, and image level. Many studies use color histograms for cancer
diagnosis.97,122,141,167,216 Tabesh et al.182 employ color histograms for
prostate cancer diagnosis and to determine the Gleason69 score that is typ-
ically used to estimate prostate cancer grade. The study concludes that color
histograms of tumor and non-tumor image samples clearly show different
patterns and the performance in terms of accuracy increaseswhen color his-
tograms are generated after removing the background from images in the
YCbCr color space. Tissue-level description and quantification can be pro-
vided using color histograms in many applications such as image
retrieval,34 tissue micro-environment analysis,101 and region of interest
description.23 Color histograms are used by Keller et al.101 to provide a
tissue-level description of biological tissue characteristics such as collage-
nous stroma, duct-lobular unit density, and the presence of elastosis. The
authors also compare quantitative representations of these characteristics
for visual assessment by pathologists and found that color histograms are
effective for the discrimination between tissue elements in digitized histol-
ogy specimens. Additionally, region-level descriptions can be provided by
using color histograms23: in this case, clustering is performed according
to spatial features to detect meaningful tissue structures such as lobules
and ducts. Finally, color histograms can be used for image retrieval: Qi
et al.147 propose a content-based image retrieval (CBIR) framework based
on a hierarchical searching algorithm. To this end, they consider a hierar-
chical annular histogram (HAH) in which the intensity color histograms
of consecutive concentric rectangular rings are concatenated together to
form a searching feature vector.

Texture and edge features

Image characteristics, such as smoothness, regularity, depth, etc., can be
observed in the image texture and color intensity values. These features
provide a description of variations between neighboring pixels in terms of
color, contrast, and brightness, which emphasize sharp edges.188 Texture
features can be categorized into statistical, structural, model-based, and
transform-based features. Statistical texture analysis is widely used to de-
scribe images based on higher-order moments and histograms. Besides,



Table 1
Machine learning techniques in digital pathology classified by application type.

Technique Cancer grading Survival
prediction

Nuclei
classification

Tumor
localization

Cancer detection ROI
localization

Image
retrieval

WSI
visualization

Treatment
response

SVM Rathore et al.,149

Yener,207 Mohan,141

Durgamahanthi et al.58

Chankong et al.,39

Al-Thelaya
et al.10

He et al.,80 Bejnordi et al.,23

Durgamahanthi et al.,59

Vaishali et al.191

Peikari et al.145 Kalra et al.,97

Caicedo
et al.34

Zhao
et al.214

LDA Lu
et al.124

Chankong et al.39

QDA Lu
et al.124

Random Forest Lu
et al.124

Cox
proportional
hazards

Wang
et al.197

Zhang
et al.212

KNN Yener,207 Mohan141 Chankong et al.39

Bayesian
classifier

Yener207 Chankong et al.39 Durgamahanthi et al.59

MLP Chankong et al.39

GNN Levy
et al.112

Logistic
Regression

Mohan141 Bejnordi et al.23 Dodington
et al.57

Naive Bayes Mohan141

RBF kernel Durgamahanthi et al.58 Bejnordi et al.23

Gradient Boost Bejnordi et al.23

K-means Cheng
et al.44

Demir et al.52 Peikari
et al.,145

Mercan et al.138

Ma et al.131

Hidden Mrkov
Model

Zhao
et al.214

Abbreviations.: SVM: Support Vector Machine; LDA/QDA: Linear/Quadratic Discriminant Analysis; KNN: K-Nearest Neighbors; MLP: Multilayer Perceptron; GNN: Graph
Neural Network; RBF: Radial Basis Function.
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the gray-level co-occurrencematrix (GLCM) is a statistical method that uses
second-order statistics of the gray-level histograms for texture and color in-
tensity representation. Other statistical methods include the run-lengthma-
trix, the singular value decomposition, etc.26 On the other hand, structural
texture analysis is mainly used to process regular textures of WSIs, provid-
ing a description of well-defined regularly spaced elements such as parallel
lines.70 In addition to statistical and structural texture, model-based texture
analysis techniques are alsowidely used for the empirical modeling of pixel
intensities based on localization. Autoregressive and fractal models (see
Section 4.2.3) are 2 examples of model-based descriptors where descriptive
features are extracted from the estimated model parameters. Transform-
based techniques, on the other hand, convert images into a new form
based on their spatial component. Several transforms can be used to de-
scribe image texture, such as fast Fourier transform (FFT), Gabor filters,65

andwavelet transforms.26 Table 2 presents various texture and edge feature
extraction methods with corresponding papers. Cross and Cotton49 first
suggested that fractal models may provide useful morphometric features
in histopathology: this intuition was successfully applied for improving
menangioma classification togetherwith a combinedGaussianMarkov ran-
dom field,9 and together with Probabilistic PairwiseMarkov models for the
detection of prostate cancer.210

Statistical texture descriptors
Statistical texture features are used by Rathore et al.149 to represent the

distribution of chromatin within nuclei. They use gray-level run-length
(GLRLM), co-occurrence matrices, and other morphological and clinical
features to identify low- and high-grade gliomas and predict cancer grade.
They report GLCM features to be effective for brain cancer diagnosis.
Durgamahanthi et al.58 apply color correction on images before extracting
the GLCM features, thereby improving the accuracy performance signifi-
cantly, whereas Mohan141 extracts the features by considering all the re-
gions regardless of interest. The study concludes that these features offer
good tissue-level discrimination for cancer detection. Region-based descrip-
tion using GLCM is also evaluated by Bejnordi et al.23 for breast cancer di-
agnosis, where region-based clustering is established to detect ductal
5

carcinoma in situ. Moreover, combining GLCMwith deep learning features
extracted using CNN significantly improves the accuracy performance for
classification and segmentation of breast cancer as suggested by He et al.80

GLCM is widely used for nuclei- and tissue-level description and quanti-
fication. Keller et al.101 use it for tissue-level quantification, where repre-
sentations of tissue elements are compared and correlated with biological
visual assessment estimated by experts. GLCM features are also used by
Aziz et al.19 to quantify and analyze tissue-level objects such as cytoplasm,
nuclei, lymphocytes, and blood cells. The authors study the impact of color
correction on image features for tissue-level object discrimination. They are
also used byChaddad and Tanougast38 to describe identified abnormal cells
for predicting the continuum of colorectal cancer. Dodington et al.57 use
GLCM to measure and analyze pathological response to neoadjuvant che-
motherapy used to treat high-risk breast cancer patients. The study extracts
features from nuclei to quantitatively study the impact of this treatment on
tumor growth and micro-environment. The extracted features include
Haralick texture features and statistical metrics based on GLCM. These fea-
tures are also used by Sharma and Mehra167 to describe the stochastic tex-
ture resulting from the random distribution of cells in WSIs. They are also
used by Pezoa et al.146 in breast cancer for segmentation of HER2 protein
overexpression in immunohistochemically stained WSIs.

Structural texture descriptors
Structural texture approaches derive geometrical representations of tex-

ture that can be thought of as a spatial organization of texture components.
The main components of the resulting models are the structure and spatial
organization of texture elements. Texture elements are prominent local
constructs that reflect the spatial organization of spatially varying image
signals. Image edges, shapes, and Voronoi polygons are examples of texture
components. Visual descriptors of texture can be obtained using the Local
Binary Pattern (LBP) method. LBP features are extracted based on pixel in-
tensity values where neighboring pixels at a fixed radius are given new bi-
nary values. Pixels with intensity greater than or equal to the center pixel
are set to 1, whereas the rest are set to 0. The generated binary representa-
tion can be normalized and binned to describe patterns within images.



Table 2
Texture, edge, and color features extracted from WSIs, classified by described objects.

Paper Color
intensity

Color
moment
Invariants

Intensity
descriptive
statistic

GLRM GLCM Color
histogram

Autoregressive
model

Fractal code
features

Wavelt
coefficients

Gabor
filter

LBP SIFT Fourier
coefficients

Haralick Root
filter Set

Sobel Tamura

Lu et al.124 Nuclei Nuclei Nuclei
Rathore et al.149 Tissue Nuclei Nuclei
Mohan141 Tissue Tissue Tissue Tissue
Durgamahanthi et al.58 Objects Objects
Chaddad and
Tanougast38

Nuclei

He et al.80 Tissue Tissue Tissue
Dodington et al.57 Nuclei Nuclei
Pezoa et al.146 Tissue Tissue Tissue
Chaddad et al.37 Tissue
Lopez et al.122 Objects
Farooq et al.62 Tissue Tissue
Bejnordi et al.23 Objects Objects Objects Objects Objects
Xu et al.201 Tissue Tissue Tissue Tissue
Déniz et al.55 Tissue
Tabesh et al.182 Objects Objects Tissue Tissue
Almuntashri et al.13 Tissue Tissue
Vaishali et al.190 Tissue
Vaishali et al.191 Tissue
Mehta et al.136 Tissue
Zheng et al.216 Tissue Tissue Tissue
Nagase et al.125 Tissue
Peikari et al.145 Tissue Tissue
Simon et al.170 Tissue
Kalra et al.97 Tissue
Durgamahanthi et al.59 Tissue
Mercan et al.138 Tissue Tissue
Ma et al.131 Nuclei Nuclei Nuclei
Caicedo et al.34 Tissue Tissue Tissue
Sharma et al.165 Tissue Tissue Tissue Tissue
Caicedo et al.34 Tissue Tissue
Mercan et al.138 Tissue Tissue
Romo et al.154 Tissue Tissue
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Features can then be used for several tasks such as image segmentation,
classification, and registration. Variants of LBP are commonly used in the
literature for processing WSIs.62,80,138,141,170,201 Farooq et al.62 use differ-
ent variants of LBP to obtain features from the texture of raw images.
They use uniform rotation-invariants for prostate cancer grading. Uniform
LBP is also exploited by Bejnordi et al.23 for region-based WSI description
where regions are matched to perform clustering-based detection of ductal
carcinoma in situ. A multi-radial LBP is employed by Simon et al.170 to de-
tect glomerular and distinguish between disease and control glomeruli. A
Fourier LBP is used byMohan141 for brain cancer grading, whereas variants
of LBP descriptors are utilized byXu et al.201 for Gleason grading in prostate
cancer.

Model-based descriptors
Model-based texture features are obtained byfitting an empirical model

based on color intensity values within a range of the pixel neighborhood.
These features can improve the accuracy performance of classification
models significantly. Fractal coding is an example of model-based descrip-
tors where features are extracted based on image similarity. Images are di-
vided into small blocks mapped using a discrete counteractive affine
transformation. Self-similarity is captured at multiple scales where larger
blocks at higher resolution are mapped into a transformed version of
smaller blocks at lower resolution.162. This feature is used by Tabesh
et al.182 to extract mathematical representations of WSIs which are then
used to detect prostate cancer. Results show that fractal code features can
be used to identify cancerous tissues accurately. Grading of prostate cancer
is conducted by Xu et al.201 using 4 groups of fractal code features where
different grid sizes are used for fractal analysis.

Techniques based on the autocorrelation function describe dependen-
cies between pixel neighborhoods based on gray-level intensity.
Autoregressive models are typically used to model this linear dependency
where a set of parameters are estimated on the 2D spatial domain repre-
sented as texture. Durgamahanthi et al.59 propose a multiresolution
autoregressive model to study the complex random texture of WSIs based
on nonlinear spatial interaction in the wavelet domain. The wavelet
autoregressive model attains higher accuracy performance compared to
that achieved by simple statistical autoregressive models. The experiments
are conducted to predict malignant brain cancer tissue images. Vaishali
et al.190,191 use autoregressive features for brain cancer diagnosis where
multiple autoregressive models of different orders are used in the evalua-
tion experiments. Results show that the estimated parameters provide a
high discrimination function for malignancy detection.

Transformation-based descriptors
Transformation-based texture analysis of WSIs provides information

about the objects’ structural appearance in images.Wavelet decomposition,
for instance, transforms images into another domain in which frequency
and spatial information are preserved. This kind of transformation provides
an in-depth, detailed multi-resolution representation of images, providing
more explanatory information found useful for object detection and
analysis.120 The filter bank is also one of the texture descriptors that can
be utilized to describe the content of a WSI. An array of bandpass filters
can be used to decompose image texture components into multiple compo-
nents to reveal patterns and emphasize edges. This feature extraction
method is exploited by Peikari et al.145 for automatically triaging WSIs to
identify relevant tissue region candidates for tissue microarray analysis.
Features are then extracted from the normalized luminance after discarding
the hue and saturation channels. To be able to produce feature descriptors
invariant to rotation and scaling, 380 root filters are used to describe image
tiles. Statistical aggregation functions are used to compress feature vectors
into 48 statistical measures. Feature vectors of image tiles are then com-
bined using a bag of visual words approach, which enables modeling im-
ages with complex contexts. Results show that these features have the
highest impact on classification accuracy performance. A similar conclu-
sion is made by Mohan141 and Bejnordi et al.23 for edge detection and tex-
ture encoding using the Gabor filter, which is found very effective for
7

processing histopathology images. Farooq et al.62 use Gabor wavelets to
represent spatial details ofWSIs and to detect edges. Feature vectors are ob-
tained by rotation and dilation of themother function to generate Gabor fil-
ter variants. Features are then used to do cancer grading. Cancer grading is
also conducted by Xu et al.,201 where 12 Gaborfilter-related features are ex-
tracted from image patches and aggregated using the mean, standard devi-
ation, skewness, and kurtosis of each feature. Gabor wavelet filters are also
used byMa et al.131 for image retrieval in breast cancer, where amulti-level
feature extraction is applied to generate hash codes for similarity estima-
tion. A set of morphological and Gabor features are used as basic-level fea-
tures, whereas a latent Dirichlet allocation28 model is utilized for higher-
level semantic mining features. Results show that images abundant in tex-
ture have been accurately retrieved by Gabor features. Wavelet transforms
tend to perform better than Fourier transform since they are able to main-
tain the localization of frequency and space components in discrete data.
Wavelet coefficients represent different resolutions to model texture fea-
tures uniquely at each level. Therefore, wavelet texture analysis is com-
monly used to extract meaningful representative features from images.26

It is used in Tabesh et al.182 and Almuntashri et al.13 for prostate cancer de-
tection and grading. In this case, wavelet features are combined with other
morphometric features to perform the detection. Multi-scale texture fea-
tures can be extracted using 3Dwavelet decomposition.37 Each data sample
consists of 16 multi-spectral images with a size of 512 × 512 pixels,
forming a volume of 512 × 512 × 16 voxels. Wavelet coefficients are
then summarized through multiple scales using variance, entropy, and en-
ergy functions. The extracted features are then used to classify colorectal
cancer tissues.

When it comes to image registration and matching, the scale-invariant
feature transform (SIFT)123 is one of the most popular techniques.
Extracting a set of features representing key points in the image provides
an adequate measure of similarity between images and between objects
within images. Mehta et al.136 use SIFT to perform image indexing and
sub-image retrieval, where a query sub-image is used as a reference to
find similar patches within WSIs. Edge features can be used to provide a
content-based description of WSI. They are exploited by Caicedo et al.34

for image retrieval, where histograms based on Sobel173 edges and
Tamura184 features are part of the set of low-level features extracted from
images.

Morphological features

Abroad spectrum of digital pathology tasks dependsmainly on the anal-
ysis of the morphological structure of the tissue. Tissue appearance and nu-
clei shape are the main characteristics whereby pathologists attempt to
make prognosis decisions.149 Generic shape properties can be accurately
described using a variety of generic descriptors, such as moment invariants
and Fourier descriptors. Single characteristic shape descriptors can also be
used to discriminate objects via different measures such as rectilinearity,
circularity, curvature, etc. Evaluation measures of each of these descriptors
use different methodologies taking into account processing task, computa-
tion time, and application.223

Region-based descriptors
The description of the interior characterizes the object’s body within its

closed boundary. Region-based descriptors can be used to provide a repre-
sentation of the object’s interior. These descriptors commonly use a wide
range of primitives (such as deformable templates, skeleton, and moment
invariants) to describe regional shape properties. Cancer cells in WSIs
tend to show abnormal shape characteristics because they have unstable
growth resulting in a non-uniform shape. Table 3 presents a list of region-
based features classified by level of representation. Hu86 moments are sta-
tistical descriptors that discriminate normal from abnormal cells based on
geometric shape and morphology. These features are used by Sharma and
Mehra167 and Rebouças Filho et al.150 for cancer detection and diagnosis.
Rathore et al.149 use a combination of different features, includingmorpho-
logical features extracted from WSIs, to develop a cancer grading model.



Table 3
Region-based shape descriptors classified by level of representation.

Paper Area Eccentricity Convex area Compactness Geometric moment Major and minor axis Solidity Circularity Elongation Aspect ratio

Lu et al.124 Nuclei Nuclei Nuclei Nuclei Nuclei
Rathore et al.149 Objects Nuclei Nuclei Nuclei Nuclei
Wang et al.197 Tumor Tumor Tumor Tumor Tumor
Mi et al.139 Tumor Tumor Tumor
Tabesh et al.182 Objects Objects
Hayward et al.78 Nuclei Nuclei
Lopez et al.122 Lumen Lumen Lumen Glands
Chankong et al.39 Nuclei Nuclei Nuclei Nuclei
Nagase et al.125 Nuclei
Aziz et al.19 Nuclei Nuclei Nuclei Nuclei
Dodington et al.57 Nuclei Nuclei
Ma et al.131 Nuclei Nuclei Nuclei
Lee et al.111 Nuclei Nuclei Nuclei
Cheng et al.44 Nuclei Nuclei

K. Al-Thelaya et al. Journal of Pathology Informatics 14 (2023) 100335
The set of morphological features includes Euler number, convex area, etc.
They use K-means clustering to create connected components and average
the extracted feature values for each component. Averages are then used
as input to train a classification model. Results show that accuracy is signif-
icantly improved by combining morphological and texture features with
clinical features. Tabesh et al.182 use the MAGIC system186 to segment
WSIs into smaller components. Identified objects generated by the segmen-
tation process include nuclei, stroma, lumens, etc. The study uses the
MAGIC system to extract 48 descriptive features from the identified objects
to detect prostate cancer.

Morphological features are also used to measure the diversity and ho-
mogeneity of nuclei inWSI images. Lu et al.124 use shape, area, solidity, cir-
cularity, etc. to measure the morphological proximity of nuclei cells and
construct cluster graphs. Features are then extracted from graphs and
used as input to the prediction model. Nuclei region-based features are
also utilized in Chankong et al.39 for cervical cell classification, where 9 fea-
tures are input to 5 machine-learning models to classify cell images. Aziz
et al.19 use region-based features to quantify and compare tissue-level ob-
jects such as cytoplasm, nuclei, lymphocytes, and blood cells. They are
also used by Dodington et al.57 to study the impact of neoadjuvant chemo-
therapy treatment on breast cancer patients. They are used to compare re-
sponses of different patients based on nuclei- and tissue-level features.

Geometric region-based shape descriptors can also be extracted from
tumor regions in WSIs. Wang et al.197 develop a CNN architecture to detect
tumor regions and extract region- and boundary-based descriptors from
tumor regions to measure the survival outcome of patients. They report
these features to be highly correlated with patients’ survival outcomes.
Lopez et al.122 develop a computational pipeline to predict prostate carci-
noma biological behavior. The study used a set of geometrical region-
based features from the lumen, nuclei, and gland units. These features are
then combined with architectural features to predict Gleason patterns.

Spatial characteristics in WSIs are commonly employed to quantify and
analyze tumoral heterogeneity. Mi et al.139 develop a multi-module
workflow to quantify spatial heterogeneity within the tumor micro-
environment using quantitative correlation analysis of 5 immune markers
in different tissue regions. The study uses image processing to perform seg-
mentation to extract and identify immune marker cells. Point pattern anal-
ysis is then conducted to measure the density of cell markers within each
region and generate cell cluster hierarchies. The study characterizes 3 dif-
ferent regions, including normal tissue, central tumor, and invasive front.
Inter- and intra-tumoral heterogeneities are compared by examining the
correlation of immunemarkers for each region. Regional shape descriptors,
such as convexity, circularity, and eccentricity, are extracted from cell clus-
ters to measure immune contexture heterogeneity. The study concludes
that invasive front tissue has higher immune cell density than tumor and
normal tissues. Heterogeneity between different kinds of ducts in ductal
carcinoma in situ (DCIS) breast cancer is also estimated in Hayward
et al.78 by using a set of region-based features including major and minor
axis and cross-sectional area.
8

Contour-based descriptors
Object visual characteristics can be observed in the boundary’s struc-

tural and geometrical appearance. The surrounding boundary curves can
be used to discriminate objects and identify unusual patterns. Curves can
be described using different models based on the analysis method and ex-
tracted information. This information can be utilized to describe shape var-
iability. Table 4 presents some contour-based features classified by objects
in WSI. Regular sharp nuclei are commonly used to characterize and indi-
cate low-grade gliomas, while high-grade gliomas tend to show higher ir-
regularity and heterogeneity in the boundary. Rathore et al.149 use a set
of boundary geometric descriptors tomodel boundary smoothness and reg-
ularity to evaluate nuclei and tumor heterogeneity for cancer grading based
on visual appearance. Boundary regularity and shape circularity is found to
be helpful in learning and predicting low- and high-grade gliomas.

In segmentation and nuclei detection problems, identifying the exact
nuclei contour is a challenge since variations in size and shape between dif-
ferent types of nuclei increase the complexity of extracting the exact bound-
ary. To address this challenge, Nagase et al.125 use radial distance to
estimate the size and boundary of nuclei in well-differentiated hepatocellu-
lar carcinoma. The nuclei density estimation is used for cancer diagnosis
and WSI image visualization.

Object detection is one of the common problems in computer vision and
image processing. Finding particular objects with a given probability in ad-
dition to the coordinates of the bounding box is the output of the detection
process. In many cases, coordinates of additional supporting points are also
generated to pinpoint the main common shape characteristics of the object.
These points represent object landmarks that are used for many applica-
tions, such as image registration, reconstruction, classification, etc. WSIs
tend to have a complex structural and contextual appearance with rela-
tively high similarities among different images. Uniquely identifying and
describing different objects within WSIs require sophisticated shape
analysis approaches. Landmark-based image analysis is one of the shape de-
scriptors commonly used to analyze WSIs. Zhang et al.212 develop a
Bayesian-based method for tumor region landmarks detection. The study
proposes to perform lung cancer survival prediction using landmark-
based features categorized as distance- and model-based features. These
features are mainly used by the study to describe the roughness of the
tumor contour, which is one of the important indicators for cancer staging.
The landmark-based analysis is also used to reconstruct 3DWSIs by detect-
ing corresponding landmarks in multiple consecutive slice images. Kugler
et al.108 use templatematching to detect landmarks in different slice images
for mapping based on the smoothed trajectories. The objective is to match
corresponding similar landmarks to align images vertically. They use trajec-
tory smoothing to alleviate the problem of damaged and folded portions by
rejecting unreliable landmarks based on a confidence factor.

Irregularly shaped objects inWSIs can be described quantitatively using
fractal geometry. The fractal dimension is different from the geometric di-
mension in that it measures the space-filling capacity of an object. The frac-
tal dimension of a straight line is one, which is similar to its topological



Table 4
Contour-based shape descriptors classified by described objects.

Paper Smoothness Fourier descriptors Landmarks Edge sharpness Perimeter Radial distance Contour complexity Curvature analysis Fractal dimension

Lu et al.124 Nuclei Nuclei Nuclei Nuclei
Zhang et al.212 Tumors
Rathore et al.149 Nuclei
Wang et al.197 Tumor
Kugler et al.108 Tissue
Hayward et al.78 Nuclei
Lopez et al.122 Lumen Gland
Ahn et al.6 Check
Nagase et al.125 Nuclei
Aziz et al.19 Nuclei Nuclei
Ma et al.131 Nuclei
Al-Thelaya et al.10 Nuclei Nuclei
Lee et al.111 Nuclei Nuclei Nuclei
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dimension.182 Edge information in WSIs describes finer image details and
can be used to detect similar patterns to characterize different tissues. Frac-
tal dimension featuresmeasure similarities between patterns in histological
images. They also measure the complexity and geometrical description of
the space allocated for each object or a set of points.13. Tabesh et al.182

use the features extracted through analysis of their fractal dimension to de-
velop a prostate cancer diagnosis framework. The results show that fractal
dimension features alone can be used to produce up to 92% accuracy per-
formance. Almuntashri et al.13 derived fractal dimensions from wavelet co-
efficients extracted from images. Wavelet-based fractal features are
combined with fractal dimension features extracted from raw images and
Haar wavelet energy coefficients to form the feature vectors.
Curvature-based shape analysis is established based on differential geome-
try describing closed contours of objects inWSIs, such as nuclei and tumors.
Geometric modeling of curves can be used for object discrimination based
on contour representation. Al-Thelaya et al.10 and Agus et al.4 propose a
shape processing framework for visual exploration of WSIs based on curva-
ture analysis of the closed contours of nuclei. The framework uses elliptic
Fourier analysis to form a feature vector invariant to rigid shape transfor-
mation and translation. The resulting features are then harnessed to dis-
criminate, classify, and visualize nuclei based on contour analysis.

Topological features

The topological structure of tissue images reflects the biological changes
resulting from various diseases. These changes explain the underlying func-
tional state and condition of a tissue sample. Modeling these changes in a
topological relational form reveals constructive patterns that can be used
for biological analysis to predict different diseases.52 Cancer aggressiveness
identification depends on many topological characteristics, such as the in-
terplay, distribution, and arrangement of nuclei. Tissue types have different
nuclear topological structures that exhibit variable graph densities, connec-
tions, and topology. Graph-based approaches are commonly used to accu-
rately represent these characteristics based on the distribution of nuclei in
histopathology images. The interest in these approaches is rapidly growing
to characterize nuclei features and arrangements. Table 5 presents several
topological feature extraction methods based on different digital pathology
applications. Lu et al.124 use a computational graph-based approach to de-
scribe the distribution and structure of nuclei in histopathology images.
The set of nuclear morphological features and spatial position are used to
construct a nuclei cell cluster graph. Quantification measurements are ex-
tracted for cluster graphs to describe the diversity of WSIs in terms of cellu-
lar morphology, appearance, and architecture. These features are mainly
used to measure morphological heterogeneity within nuclei in WSIs. In ad-
dition to histomorphometric features, these features are used to develop a
machine learning classifier for lung cancer short- and long-term survival
prediction. They are also used to predict the human papillomavirus (HPV)
status of oropharyngeal squamous cell carcinoma (OP-SCCs). Graph-based
features are also leveraged by Yener207 for modeling the structure–function
9

relationship. The study proposes a cell-graph modeling framework for WSI
image analysis. After cell segmentation, graphs are constructed based on
Euclidean distance thresholding which reveals interesting patterns in im-
ages. A set of local- and global-level features are then extracted from the
constructed graph. Local-level features such as cell size, convexity, physical
contact, shape, etc. are extracted based on attributes of individual cells. In
contrast, scope and global-level features are extracted by computing the dis-
tribution of cell- and graph-level features, such as the size of connected
components and the spectrum of the graph. Global graph features are also
used by Sharma et al.165 to provide a visual description of gastric cancer.
Several graphs are constructed based on nuclei attributes. Features are
then extracted from each graph separately. Global graph features include
not only moment-based vertex and edge attributes but also the number of
edges and vertices, graph density and irregularity, number of connected
components and triangles, and cyclomatic number.

The spatial distribution of the tissue architectural components, such as
nuclei, lumen, and gland units, can be modeled using the Delaunay51 trian-
gulation. Graph-based features extracted from the Delaunay triangulation
can be used to describe different structural characteristics of histological
images.44,111 A triangulation is established by joining a set of points using
non-intersecting straight lines to form a set of triangles. Each triangle is
formed by 3 vertices preserving the empty circumcircle property, which im-
plies that each triangle vertices can be joined using a circle such that no ver-
tex point falls within the interior of the circle.128 Lopez et al.122 extract a set
of graph-based features using the Delaunay triangulation to perform cancer
grading. They calculated the side lengths and area of the triangles from the
Delaunay triangulation to classify WSIs into 4 classes based on the Gleason
pattern. Lee et al.111 evaluate the use of graph features for predicting dis-
ease recurrence in prostate cancer. A set of graph-based, Voronoi
diagrams17 and Delaunay triangulation features are extracted from a
group of tissue microarray cores scanned using a digital whole slide scan-
ner. Statistical and classification analysis show that features extracted
from the benign tissue field surrounding the tumor region field can be suc-
cessfully used for recurrence prediction. Results show that shape descrip-
tors and nuclear topology features are the predominant predictors of
disease recurrence. Delaunay triangulation is also exploited by Cheng
et al.44 to generate a topological representation to represent relationships
between different types of nuclei based on appearance and distance. The ex-
tracted features are then used for survival prediction for patients with kid-
ney cancer.

Deep learning features

The application of deep learning methods in digital pathology is rapidly
increasing. The output of these applications proved to be generally superior
to the use of “engineered” features and had a major impact on digital pa-
thology progression. Deep learningmethods are used to segment and detect
nuclei and regions of interest withinWSIs. They are also used for cancer di-
agnosis, grading, and nuclei classification.144 Tables 6 and 7 present a



Table 5
Topological features classified based on application type.

Features Type Lu et al.124 Lopez et
al.122

Yener207 Ma et al.131 Lee et al.111 Demir et al.52 Sharma et
al.165

Cheng et al.44

Polygon area Voronoi diagram Cancer
diagnosis

Cancer
diagnosis

Cancer
diagnosis

Polygon perimeter Voronoi diagram Cancer
diagnosis

Cancer
diagnosis

Chord length Voronoi diagram Cancer
diagnosis

Cancer
diagnosis

Triangle side length Delaunay
triangulation

Cancer
diagnosis

Cancer
grading

Cancer
diagnosis

Triangle area Delaunay
triangulation

Cancer
diagnosis

Cancer
grading

Cancer
diagnosis

Edge length Minimum spanning
tree

Cancer
diagnosis

Density of nuclei Cell clustring graph Cancer
diagnosis

Cancer
grading

Images
retrieval

Cancer
diagnosis

Cancer
diagnosis

Distance to nearest
nuclei

Cell clustring graph Cancer
diagnosis

Images
retrieval

Cancer
diagnosis

Survival
prediction

Clustering coefficient Cell clustring graph Cancer
diagnosis

Cancer
grading

Cancer
diagnosis

Connected component Graph Cancer
diagnosis

Cancer
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classification of features extracted using several deep learning architectures
based on digital pathology applications.

Convolutional neural networks (CNNs)
Features learned by convolutional neural networks (CNNs) effectively

describe whole slide images (WSIs). These features can be used as input
to other deep learning models or fully connected layers for classification,
segmentation, and detection tasks. Fig. 1 illustrates a typical WSI analysis
workflow using a simple CNN architecture. Many well-known deep archi-
tectures, such as Inception, DenseNet, and ResNet, are based on CNNs.
Due to their high accuracy, many solutions have been developed based on
these architectures to process WSIs using models pre-trained on large
data sets, such as ImageNet.107 Some studies67,84,195,197,213 propose a cus-
tom deep learning CNN architecture that better fits their learning task. In
Zhang et al.213 and Gao et al.,67 features are used to describe WSIs and
form a superpixel representation,2 which is then used to construct a graph
embedding representation. The graph embedding features, in addition to
the CNN’s features, are used as input to a graph convolutional network
(GCN) for cancer diagnosis and cancer region localization. On the other
hand, 2 different CNN architectures are evaluated in Höfener et al.84 for nu-
clei detection based on themap of pointsmethodology, inwhich points pin-
point the center of each cell in theWSI image. CNNmodels are also used for
the survival prediction of cancer patients: Wang et al.197 develop a deep
CNN to detect tumor regions within WSIs. A set of shape and boundary de-
scriptors are extracted from the detected tumor regions to predict patient
survival outcomes. CNN models are also used in Wang et al.195 to perform
10
segmentation of WSI images to extract nuclei and other objects. In the fol-
lowing, we discuss how features extracted based on well-known deep
CNN architectures are used to provide efficient solutions for WSI analysis.

Inception networks181. The Inception family of CNNs has been successfully
applied in many histopathology applications, such as cancer detection
and nuclei classification. For example, Wang et al.196 used Inception-V3
for colorectal cancer detection, collecting data from hospitals and medical
research centers in 3 countries. The authors validated the data set through
a labeling review process involving domain experts. The data set is avail-
able online for researchers to further advance the field. The developed
model demonstrated higher performance than human domain experts. Sim-
ilarly, Arvaniti et al.16 evaluated Inception-V3 for grading prostate cancer
using manually annotated images of 886 patients. Results showed that
deep CNN architectures could provide assistance to pathologists in real-
life scenarios.

In addition, Iizuka et al.90 used Inception-V3 for the classification of
image tiles into adenocarcinoma, adenoma, and non-neoplastic. A long
short-term memory (LSTM) was employed to aggregate features generated
by Inception-V3 by separating whole slide images into a collection of tiles.
The authors annotated a set of WSI images diagnosed with colon and stom-
ach cancer, which were used to train and validate both Inception-V3 and
LSTM models.

DenseNet networks89. Huang et al.88 proposed DenseNet, a deep
convolutional neural network architecture, in 2016. It introduces the



Table 6
Deep learning applications and architectures in digital pathology.

Architecture Cancer detection Cancer diagnosis Tumor
localization

Nuclei
classification

WSI
segmentation

Cancer grading Nuclei detection

CNN Wang et al.,197

Cruz-Roa et al.50
Kanavati et al.98 Zhang et al.213 Wang et al.195 Höfener et al.84

Inception Wang et al.,196

Iizuka et al.90
Arvaniti et al.16

ResNet Cheng et al.45 Arvaniti et al.,16

Campanella et al.35
Dodington et al.57

AlexNet He et al.80 del Toro et al.189

DenseNet Shi et al.169 Arvaniti et al.16

GoogleNet He et al.80 del Toro et al.189

LeNet del Toro et al.189

GCN Gao et al.,67

Ye et al.206
Zhang et al.213 Shi et al.169 Zhou et al.,219

Wang et al.195

U-Net Ye et al.206 Ye et al.206 Dodington et al.57

VGG Dodington et al.57 Chen et al.43 Arvaniti et al.,16

Xu et al.201

CIA-Net Zhou et al.219

MobileNet Arvaniti et al.16

LSTM Iizuka et al.90

RNN Kanavati et al.98 Campanella et al.35

Autoencoder Roy et al.,156 Lomacenkova
and Arandjelovic121

Xu et al.202

GAN Gupta et al.73 Koyun and Yildirim,106

Li et al.116

Transformer Liang et al.,118 Shao et al.,164

Takagi et al.183
Stegmüller et al.,176

Yin et al.208
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innovative notion of “dense connections,” in which each layer takes input
from all preceding layers and delivers its feature maps to all following
layers. This method promotes maximum information flow and reuse
throughout the network, resulting in greater accuracy with fewer parame-
ters. DenseNet networks have demonstrated cutting-edge performance in
a variety of computer vision applications such as picture classification, ob-
ject identification, and segmentation. Because of its ability to collect com-
plex descriptive characteristics and generate meaningful representations
from medical images, DenseNet architectures are widely employed in bio-
medical image analysis. Deep learning features extracted using DenseNet
are used inKalra et al.97 to describe image patch samples for image retrieval
and matching. The study uses DenseNet to generate the feature vectors of
Table 7
Deep learning applications and architectures in digital pathology.

Architecture WSI visualization Deep graph embedding WSI image registration Survival

CNN Levy et al.112 Gao et al.67 Ren et a
Inception
ResNet Al-Thelaya et al.12 Chen et al.41 Chen et
AlexNet Ren et a
DenseNet Kalra et al.97

GoogleNet
LeNet
GCN Sureka et al.179 Chen et
U-Net
VGG Faust et al.63 Bychkov
CIA-Net
MobileNet
LSTM Ren et a

Ren et a
RNN
Autoencoder Awan and Rajpoot18 Sun et a
GAN Sun et a

Transformer Chen et
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size 1, 024 by applying the Global Average Pooling (GAP) over the feature
maps from the last convolution layer. DenseNet networks capture more
complex descriptive features compared to other networks, such as VGG19
and Inception. DenseNet features are also used in Shi et al.169 for cell clus-
tering. Clusters are learned using K-means based on the visual similarity of
nuclei. The generated clusters are then used for graph embedding
using GCN.

GoogleNet networks180. GoogleNet is developed based on the Inception ar-
chitecture, where Inceptionmodules are combined based onmultiplefilters
with different sizes. Blocks are stacked with occasional max-pooling layers.
GoogleNet is utilized in del Toro et al.189 for the classification of high-grade
prediction Stain normalization Glomerulosclerosis
identification

l.151 Zanjani et al.211 Bueno et al.30

Bueno et al.30

al.42

l.152 Bueno et al.30

al.41

Bueno et al.30

et al.32 Bueno et al.30

l.,152 Bychkov et al.,32

l.151

l.,178 Cheng et al.44 Zanjani et al.211

l.178 BenTaieb and Hamarneh,24

Cho et al.,46

Zanjani et al.,211

Zhou et al.,218

Al-Thelaya et al.,12 Shaban et
al.163; Cai et al.33

al.,42 Li et al.114



Fig. 1. Typical workflow of WSI processing using a simple CNN architecture.
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Gleason in prostate cancer. Randomly sampled patches are extracted from
WSIs to reduce the computation time. Different parameters, such as patch
size, number of random samples, and color channels, are evaluated to deter-
mine the best configuration.

AlexNet networks107. AlexNet consists of 8 layers, including convolutions,
max-pooling, and fully connected layers. All layers, except for the output
layer, use rectified linear units (ReLU) instead of the hyperbolic tangent
(tanh) activation, and model overfitting is avoided by using dropout
layers.82 It was proposed in 2012 by Krizhevsky et al.107 and won the
ImageNet large-scale visual recognition challenge. Many studies develop
WSI analysis solutions based on the AlexNet architecture. It is used by del
Toro et al.189 for the classification of high-grade Gleason in prostate cancer.
The study compares the speed and accuracy performance of AlexNet with
GoogleNet and found that AlexNet was faster while producing comparable
accuracy. Ren et al.152 use AlexNet to learn features of image patches for
survival prediction of prostate cancer patients. These features along with
genomic sequences are used as input to an LSTMmodel to learn the spatial
relationship of adjacent image patches.

ResNet networks79. Chen et al.41 trained a ResNet-50model to describeWSIs
divided into patches. These features are then used to form a graph embed-
ding for the whole slide image, which is then used as input to a GCNmodel
to perform survival prediction of cancer patients. Furthermore, Arvaniti
et al.16 compare ResNet-50 with other deep architectures for Gleason grad-
ing in prostate cancer; the deep learning architectures produce comparable
accuracy performance compared to human experts. ResNet-50 is used by
Cheng et al.45 for cervical cancer diagnosis. Features are extracted from
low-resolution images to identify the most suspicious regions within
WSIs, which are then verified using higher-resolution images by another
ResNet-50 model, resulting in better accuracy.

ResNet-152 and ResNet-101 are used byDodington et al.57 for tumor re-
gion identification and nuclei segmentation, where a set of texture and
shape features are extracted from nuclei to analyze the impact of neoadju-
vant chemotherapy treatment on breast cancer patients. In another study
by Campanella et al.,35 ResNet-34 is utilized for cancer grading based on
themultiple instance learning approach, where top-ranking image tiles fea-
tures are aggregated using an RNN model.

U-Nets155. U-Net is one of the most popular deep convolutional neural net-
work architectures for segmenting and locating anatomical structures in
WSIs. Jha et al.94 propose a detect-then-segment framework for glomerulus
detection based on the U-Net architecture. Objects within images are first
detected during the initial training phase, then segmentations of detected
glomeruli are further refined using a second training phase. The proposed
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framework is evaluated against previously detected glomeruli image data,
showing improved performance. A U-Net architecture is also used by
Dodington et al.57 for tumor region identification and nuclei segmentation
in breast cancer.

VGG networks171. VGG network is a widely used deep convolutional neural
network architecture for segmenting and recognizing the different scales of
context and semantic patterns in WSIs. Chen et al.43 use VGG16 to extract
multi-level feature maps that are superimposed by superpixel contours to
recognize the different scales of context and semantic patterns to segment
WSIs. In comparison, Xu et al.201 utilize VGG16 as a baseline model and
compare it with an SVMmodel trained using LBP features for Gleason grad-
ing in prostate cancer.

For region-based tissue classification and visualization of WSI images,
Faust et al.63 use VGG19 to conduct probability scores and leverage t-SNE
dimension reduction to visualize different types of tissue classes identified
by the model.132 VGG19 is also used by Dodington et al.57 for tumor region
localization, followed by tiled images segmentation using a U-Net
architecture to do benign vs. malignant tissue-level classification. Finally,
tissue-level quantification is conducted based on nuclei shape, intensity,
and texture features to study the impact of neoadjuvant chemotherapy
treatment on breast cancer patients.

MobileNet networks85.MobileNet is a simple architecture initially developed
to perform the inference step on small devices with low computation
power. It shows high accuracy performance in many application domains,
especially the computer vision domain, for tasks such as object detection,
face recognition, and fine-grained classification.209 Due to its lightweight,
efficient, and portable architecture, it has become one of the most com-
monly adapted neural networks. Using depth- and point-wise separable
convolution layers significantly reduces the number of parameters and
keeps the accuracy performance at a level comparable to heavyweight ar-
chitectures. MobileNet is used in many histopathology applications.
Arvaniti et al.16 develop a deep learning processing framework based on
theMobileNet architecture. Despite its lightweight architecture, MobileNet
showed higher performance than other architectures, such as VGG-16,
Inception-V3, ResNet-50, and DenseNet-121, as evaluated in the experi-
ments by the aforementioned authors. The authors analyze the perfor-
mance of the 5 architectures for Gleason grading in prostate cancer,
where a set of manually annotated WSIs are generated by 2 pathologists
and released publicly. The accuracy of the pathologists is also analyzed
and compared with that of the deep learning architectures. Deep learning
models achieve expert-level annotations and grading of prostate cancer,
demonstrating the potential of using deep learning technology to assist pa-
thologists.
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Recurrent neural networks (RNNs)
RNNs are artificial neural networks that receive sequential or time se-

ries data as input.157 These neural networks are often employed for ordinal
or temporal research problems like natural language processing (NLP),
speech recognition, and image captioning. Several prominent applications
like Apple’s Siri, voice search, and Google Translate are developed based
on these neural networks. RNNs distinguish themselves from CNNs by
their “memory,” which allows them to modify their current state and out-
put using information from previous inputs. While typical deep neural net-
works assume that individual input/output pairs are independent of each
other, the output of recurrent neural networks is dependent on the se-
quence’s prior inputs. While original simple RNNs are mainly used to
solve unsophisticated problems using their shallow learning capability,
more sophisticated RNN variants such as long short-term memory (LSTM)
networks83 and gated recurrent unit (GRU) networks47 can be used to
solve more complex problems that require more training capacity and
higher memory. RNNs are typically used in the context of WSI to aggregate
features generated by dividing WSIs into a sequence of adjacent
tiles.32,35,45,90,151,152 Campanella et al.35 and Kanavati et al.98 utilize
RNNs for cancer grading using a slide-level aggregation of top-ranking
tiles based on features generated by a CNN model. To predict the final
slide-level classification, the most suspicious tiles in each slide are consecu-
tively passed to the RNN model. Ren et al.152 use LSTMs to model the spa-
tial relationship between adjacent image tiles based on the image features
generated by an AlexNet model together with genomic sequencing data.
Features learned by the LSTM are used as input to a multilayer perceptron
(MLP) model to identify computational biomarkers for survival prediction
of prostate cancer patients. LSTMs are also utilized by Iizuka et al.90 to ag-
gregate features generated using a CNNmodel by dividingWSIs into a set of
tiles. An arbitrary number of tiles are extracted from the tissue areas for
each slide and fed all of the tiles into the RNN model. To avoid reliance
on tile input order, the order of the features of the tiles is randomized at
each step during training.

Mukherjee et al.143 develop a new variant of RNNs based on a sequence
of CNNs. The new RNNmodel is called recurrent CNN (RCNN). The model
is developed to solve the problem of super-resolution in WSI by utilizing
multiple instances of each WSI image, each at a different resolution. Each
image instance is used as input to a single CNN to generate the next
higher-resolution instance of the same image. Features generated by this
step are used as input to the next CNN, whose input is the next resolution
level of the same image generating the third resolution level. The process
continues until the highest-resolution image instance is reconstructed.
The name “RCNN” reflects the fact that features of each CNN in the se-
quence are used as input to the adjacent sequential CNN. Multiple resolu-
tion WSIs are also used by Cheng et al.45 to predict lesion cells using a
progressive lesion cell recognition method that combines low- and
high-resolutionWSIs, as well as a recurrent neural network-basedWSI clas-
sificationmodel that evaluates the lesion degree ofWSIs. A CNNmodelfirst
analyzes WSIs at low resolution to identify positive regions, which are then
validated at high resolution by another CNN model. Finally, the system
identifies the 10 most suspicious lesion regions in each slide for
cytopathologists to analyze further. An RNN model is used to provide a le-
sion degree likelihood based on the features of the top 10 suspicious images
extracted using a CNN.

Deep AutoEncoder networks
The output layer of an autoencoder neural network has the same di-

mensionality as the input layer. The number of output units equals the
number of input units. Therefore, an autoencoder is an unsupervised
neural network that replicates data from input to output and is thus
sometimes referred to as a replicator neural network. The challenge is
to replicate the input data based on a reduced smaller representation
generated by the middle layers of the autoencoder.20 Different types of
deep autoencoders are used for extracting features from WSI, including
sparse autoencoders, variational autoencoder,178 and convolutional
autoencoder.156
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Due to their potential for representation learning and transfer learning
for deep architectures, autoencoders are used in a wide range of applica-
tions. The use of features learned by autoencoders for classification and re-
gression is widespread. Lomacenkova and Arandjelovic121 conduct an
experimental evaluation based on deep autoencoder to study the effect of
the latent representation and the loss function on the patch-based
classification of WSIs for breast cancer detection. The results demonstrated
that task-specific loss function adjustments that take into account the con-
tent of individual patches in a more sophisticated manner result in a large
drop in the false-negative rate. Çelik and Karabatak36 conduct experiments
to evaluate the impact of using different input image sizes for the compres-
sion of WSIs. The study shows that autoencoders can be used to reconstruct
high-dimensional WSIs using low-dimensional latent representations.

Stacked sparse autoencoders are used by Xu et al.202 for nuclei detection
in breast cancer WSIs by learning high-level features based on various re-
gions of interest containing nuclei. To do this, a sliding window is moved
across the entire image to identify candidate image regions for a subsequent
classification stage. A trained Softmax classifier is then used for a binary
prediction of the presence or absence of a nucleus in each patch. The sparse
autoencoder is also used by Cheng et al.44 for survival prediction of patients
with renal tumors. Image patches of different types of nuclei are used as
input to the sparse autoencoder model for a low-dimensionality representa-
tion of nuclei. Image features are then clustered using k-means to group nu-
clei with similar appearance and form a topological representation of the
whole slide image using Delaunay triangulation.

The convolutional autoencoder architecture is developed based on
CNN, where the encoder layers are convolution layers, and the decoder
layers are deconvolution layers. This architecture is used by Roy et al.156

based on a combination of supervised and unsupervised approaches for
learning class conditional data-driven feature distributions. The study pre-
sents a convolutional autoencoder (CAE)-based method for learning struc-
tural image features for segmenting and classifying liver cancer WSI. The
proposed network comprises 2 modules: an autoencoder for learning
image features and a classifier for supervised classification. Registration
of WSI images is commonly achieved using features learned by
autoencoders. Awan and Rajpoot18 conducted a study to evaluate the use
of convolutional autoencoders for WSI registration by maximizing feature
similarity between the fixed and moving images.

Variational autoencoders use a variational approach for latent represen-
tation. The stochastic gradient variational Bayes estimator is used as an ad-
ditional loss component and a specific estimator for the training algorithm.
Variational autoencoders are used by Sun et al.178 for survival prediction of
individuals with colorectal cancer by analyzing the relationship between
the features learned via the variational autoencoder and the prognosis of
colorectal cancer patients. Following that, the generated features are used
to predict survival after adjuvant chemotherapy to improve risk classifica-
tion for colorectal cancer patients. The signature-based features could assist
clinicians in determining the duration of chemotherapy in patients.

Graph deep embedding
In many applications, data is represented as a graph to model the rela-

tionships between entities. Various graph structures can be chosen based
on the underlying problem domain and the data structure. The simplest
graph representation is composed of n nodes connected with undirected
edges with no parallel edges and no loops where the degree of every vertex
is at most (n–1). However, several applications require more complicated
graph structures, such as trees, cyclic graphs, acyclic graphs, and bipartite
graphs. Different deep graph embeddings have been proposed in the litera-
ture, such as structural deep network embeddings, deep neural networks
for learning graph representations, and graph convolutional networks.71

Node embeddings aim at reducing the data dimensionality of the graph rep-
resentation and the node’s locality and neighborhood information. These
node embeddings can then be used to train machine learning and deep
learning models to perform link prediction or node classification.76 In
graph learning, nodes are associated with attributes that are usually used
as input features. In many situations, the aim is to predict the type of
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node based on a set of pre-labeled nodes in the graph. Connections between
nodes are represented as weighted edges summarized by an adjacency ma-
trix. This graph learning methodology aims to consider the neighborhood
of the predicted node by feeding attributes of the connected nodes in addi-
tion to the attributes of the predicted node to the machine- or deep learning
model.

Graph convolutional networks (GCNs)
GCNs were developed based on the concept of graph convolutions, in

which features of the relevant neighborhood of each node are
convolutionally aggregated through multiple layers. Weights of aggrega-
tion filters are trained to predict the node’s type. Input data can be repre-
sented as a feature matrix with the size of the number of nodes times
their attributes. Edges are also represented as an adjacency matrix. Feature
matrices are then processed through network layers, generating an updated
feature matrix in each layer by training a set of aggregation functions that
consider the local node’s neighborhood as input. Feature sets become in-
creasingly more abstract as they pass through network layers.103 GCNs
are effective deep learning networks that capture complex spatial relation-
ships and distribution of images, especially large WSI images. However,
challenges in training deep GCNs have only recently been successfully ad-
dressed by Li et al.115 Spatial features of different nuclei and tissue may
not be sufficiently representative for deep learning modeling. Other infor-
mation, such as the relation between different objects within images,
could provide useful input to improve the deep learning model accuracy.
Integratingmorphology in addition to topological information captures cel-
lular morphology and global distribution of nuclei.67 Fig. 2 shows a typical
workflow of WSI graph deep embedding using GCN.

Graphs are constructed using the spatial attributes and structure of com-
ponents of WSIs to establish the relationship between identified compo-
nents. This process involves high pre-processing overhead, including
segmentation and spatial feature extraction. The final step is to train the
GCN based on the constructed graph structure and node spatial
attributes.41,166,179,219 To avoid segmentation of WSIs, some studies extract
random patches scattered across the whole image, which are used as nodes
in the graph. Yet, spatial features and relationship establishment are re-
quired to form the final graph. In most cases, CNNs are employed to per-
form spatial feature extraction.215 Gao et al.67 develop a patch-level
CNN–GCN framework for the diagnosis of breast cancer. A CNN is used to
describe patches and generate spatial features, and the relationship be-
tween nodes is defined using the K-nearest neighbor algorithm. The con-
structed graph is then used as input to the clique GCN model, where the
final output features are fed into the graph pooling layer, followed by
fully connected layers and a softmax function. A patch-level methodology
is also used by Chen et al.,41 in which features are extracted from patches
using the ResNet-50 CNNmodel. These features are then used as attributes
to describe nodes in the graph. On the other hand, graph edges are
Fig. 2. Typical workflow of WSI gra
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established based on the Euclidean distance where messages are passed be-
tween nodes in the local Euclidean neighborhood. The graph is used as
input to the GCN model.

Graph edges can also be established through cell clustering. Shi et al.169

use features learned using DenseNet-121 for cell clustering based on image
similarity. Relations between nodes are then established based on the gen-
erated clusters. The graph representation is then input to the GCNmodel to
learn features integrated with CNN features by liner projection. Cell-level
graph representation is also used by Zhou et al.219 for grading colorectal
cancer using GCN. A set of shape and appearance features are used to de-
scribe the segmented nuclei represented as nodes in the graph. Relations
between nodes are estimated using the Euclidean distance, where the
nodes’ degree is limited based on a k-nearest neighbor predefined parame-
ter. A similar approach is used by Wang et al.195 for Gleason grading in
prostate cancer, where a CNN model is developed to perform nuclei seg-
mentation. Morphology descriptors and texture features are used to de-
scribe each nucleus, and the GCN model is used to perform Gleason
scoring based on weakly supervised methodology. The features learned
by segmentation models can also be used to generate graph embedding to
train GCN. Ye et al.206 exploits the semantic features generated by the U-
Net segmentation model. Graph nodes and edges are formed by capturing
the dependency between lesion areas based on these features.

Attention-based networks
The transformer neural network is a unique encoder–decoder architec-

ture that aims to tackle sequence-to-sequence problems preserving deep de-
pendencies between data sequences. It was first proposed for natural
language processing in the paper “Attention Is All You Need”.192 Yet, it is
currently a cutting-edge approach for many application domains, including
medical image analysis.81

In digital pathology, transformer architectures are used tomodel the re-
lationship between image patches that belong to a singleWSI. Some studies
adopt this technique to handle the problem of irrelevance between image
patches in the multiple instance learning (MIL) approaches. It is also used
to capture local and global dependencies betweenmultipleWSIs of each pa-
tient or multiple patients. Liang et al.118 propose an attention-based
context-aware GCN network for the localization and classification of
lymph node metastasis in breast cancer. A transformer-based MIL is pro-
posed by Shao et al.164 to model the dependency between input instances
and explore the spatial and morphological relationship between them. To
change the attention region in WSIs adaptively based on input clinical re-
cords, Takagi et al.183 propose a transformer-based framework to model
the relationships betweenmedical imaging data and clinical data of each in-
dividual patient. Stegmüller et al.176 use a transformer-based model to
solve the problem of discarding the inter-patches interactions while uni-
formly processing WSIs patches. The attention-based network allocates dis-
criminative regions within images by exploiting a differentiable
ph deep embedding using GCN.
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recommendation to dedicate computational resources according to a
region-based attentionmechanism. Yin et al.208 propose a lightweight pyra-
midal architecture to minimize model parameters by introducing a model’s
feature extractor with a token-to-token vision transformer. Themodel’s per-
formance is improved by integrating local and global features based on pic-
ture pyramids of various receptive fields. Chen et al.42 propose a
transformer-based framework to learn co-attentionmapping between geno-
mic features and WSIs. The co-attention mapping reduces the space com-
plexity of bags of words and provides a visualization of multimodal
interactions. A hierarchical mapping between genomics and WSIs is also
suggested by Li et al.114 for survival prediction using a hierarchical-based
multimodal transformer.

Deep generative adversarial networks
Generative modeling is an unsupervised machine learning task that in-

volves automatically discovering and learning the regularities or patterns
in input data. In this way, the obtained models can be used to generate or
output new examples that could have been drawn from the original data
set. Generative adversarial networks (GANs) is a generative modeling ap-
proach that employs deep learning methods such as convolutional neural
networks. GANs are a way of training 2 mutually interconnected models,
where one of them is a generative model, and the other model is a discrim-
inator. The generator model is mainly used to generate new examples, and
the discriminator model classifies examples as either real (from the do-
main) or fake (generated). The 2 models are trained in an adversarial
zero-sum game until the discriminator model is fooled about half the
time, indicating that the generator model generates plausible examples.159

GANs are shown to be successful in many image-generation applica-
tions, such as image-to-image translation, text-to-image translation, image
reconstruction, image synthesis, image segmentation, etc. These applica-
tions triggered new research in digital pathology for processing WSIs
using generative models, including WSI enhancement, reconstruction, seg-
mentation, augmentation, stain normalization, etc.96 GAN-based architec-
tures are widely used for WSI-style transfer.142 BenTaieb and Hamarneh24

and Cho et al.46 develop GAN models for stain normalization across differ-
ent data sets. The models are evaluated for the segmentation and classifica-
tion of WSIs. They propose a special loss function to minimize the
difference between the target and input images’ latent features, thus pre-
serving the classifier’s performance. Zanjani et al.211 conduct experiments
on 3 deep unsupervised learning architectures, including GAN, variational
autoencoder, and deep convolutional Gaussian mixture. The later architec-
ture shows higher performance in terms of color constancy of the normal-
ized images.

CycleGAN220 is a GAN-based architecture for automatically training
image-to-image translation models without paired samples. The models
are trained using a set of unpaired images from the source and target do-
mains by learning a mapping between the 2 domains such that the distribu-
tions of the 2 domains are indistinguishable. CycleGAN is used by Zhou
et al.218 for color normalization of H&E stained images. A template-free
cycle consistency GAN method is proposed to automatically learn a stable
stain color domain based on the domain of the training data set. Shaban
et al.163 use the CycleGAN model to stain normalize input images before
feeding them into another model for classification. Cai et al.33 develop a
new unpaired GAN-based architecture called transitive adversarial net-
work. The new architecture is simpler and achieves better results compare
to other GAN-based architectures. Segmentation of WSIs and nuclei detec-
tion has been widely achieved using variants of GAN-based architectures.
Koyun and Yildirim106 approach the nuclei segmentation problem as an
image-to-image translation. The input nuclei domain is represented by
WSIs, whereas the target domain is represented by randomly generated nu-
clei shapes. Li et al.116 present a new conditional generative adversarial net-
work to identify nuclei to explore the spatial distribution of the probability
map. They also introduce Residual Attention U-Net, a generator created by
fusing the residual attention module with U-Net for producing local spatial
relation information from WSIs. The conditional GAN (cGAN)140 is also
used for nuclei segmentation and classification. Mahmood et al.134 train a
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cGAN network for multi-organ nuclei segmentation based on spectral nor-
malization and gradient penalty. An adversarial term is used to impose
higher-order spatial consistency during the training. The task is formulated
as a regression problem rather than a classification problem.

Applications of feature engineering in digital pathology

The development of WSI opens the door for several applications in dig-
ital and computational pathology. It allows storing tissue slides in a digital
format, enabling the automation of several tasks in the histopathology
workflow. The highly diverse and complex content of WSIs results in a set
of complex problems in different application domains. Various solutions
are proposed based on AI solutions. Table 8 presents some applications of
feature extraction methods in digital pathology.

WSI image segmentation

Identifying and quantifying different nuclei, glandular structures, and
anatomical regions with different visual characteristics are essential for
the clinical analysis of WSI images. Pathologists often need to annotate re-
gions that provide indications of biological evidence or clinical symptoms.
Segmentation of molecular objects with different visual properties within
WSI images facilitates the visual characterization and the analytic descrip-
tion of these objects. Moreover, WSI segmentation is a fundamental re-
quirement for further analysis of WSI images on a granular level. Nuclei
classification, tumor localization, tissue type identification, etc. require
pre-segmented images to process each object separately.94,102 Fig. 3 illus-
trates a typical workflow of WSI segmentation.

Some histological image analyses involve a cumbersome and
complicated identification and scoring process. Scoring of kidney glomeruli
samples is one of the most complicated operations that require high-
throughput and consistent handling. Expert pathologists may need statisti-
cal analysis to identify glomerular features in order to perform sample scor-
ing. Therefore, highly accurate automation is one of the preferred solutions
to reduce the complexity of histological analysis.168 Automatic glomerular
instance segmentation is an evolving research area to provide pixel-wise an-
notation for each glomerulus to facilitate quantitativemeasurements of glo-
merular features. Jha et al.94 propose a framework based on U-Net’s deep
network architecture to perform instance-level segmentation of glomeruli.
Ye et al.206 also propose an encoder–decoder architecture based on U-Net
to perform segmentation of breast cancer region-of-interest (ROI) images,
whereas a GCN is used to perform pixel-level labeling of image regions
into normal, benign, in-situ carcinoma, and invasive carcinoma. Wang
et al.197 address the segmentation problemby developing a deep CNN to di-
vide WSI into 3 regions (tumor, normal, and background). They divide im-
ages into patches and transfer the gray-scale images into ternary images. A
set of shape and boundary descriptors are then extracted from the detected
tumor regions and used to predict patient survival outcomes.

To enable efficient supervised deep learning for segmentation tasks, a
sufficient number of segmented WSI images should be provided. The avail-
ability of this data is a real challenge since it requires tremendous effort.
WSI images includemillions of nuclei and other types of tissue components.
Pathologists have to look into these images individually, identifying com-
ponents and accurately defining their boundaries. The complexity of this
analysis results from several parameters related to tissue types such as tis-
sue structure, morphology attributes, color variations, staining materials,
and scanning technologies. These parameters complicate the generation
of sufficient data to train deep learning models. To overcome this problem,
weakly supervisedmethods andmodels are used to performWSI segmenta-
tion based on limited data sets with low quality and quantity. Rough anno-
tations such as bounding boxes, scribbles, or points are commonly used to
identify image-level labels rather than object-level labels. Though imper-
fect, these approximate annotations enable the model to identify unknown
pixel-level regions by learning strong contextual correlations of input sam-
ples. Typically, the effort spent to generate these data sets is minimal com-
pared to fully pixel-level segmentation, yet weakly supervised training



Table 8
Classification of reviewed papers by application and type of tissue.

Paper Cancer
diagnosis

Cancer
grading

Tumor shape
reconstruction

Survival
prediction

Heterogeneity
quantification

ROI
localization

Images
retrieval

Segmentation Nuclei
detection

WSI
visualization

Stain
normalization

Glomerulosclerosis
identification

Lu et al.124 Lung Lung
Zhang et al.212 Lung
Rathore et al.149 Glioma
Wang et al.197 Lung
Mi et al.139 Breast
Tabesh et al.182 Prostate Prostate
Almuntashri et al.13 Prostate
Wang et al.196 Colorectal
Hayward et al.78 Breast Breast Breast
Chaddad et al.37 Colorectal
Lopez et al.122 Prostate
Simon et al.170 Kidney
Kalra et al.97 Whole-image
Mehta et al.136 Whole-image
Zheng et al.216 Sub-image
Jha et al.94 Cancer
Farooq et al.62 Prostate
Gao et al.67 Breast
Ye et al.206 Breast Cancer
Zhang et al.213 Breast
Chen et al.41 Multiple
Shi et al.169 Cervical
Höfener et al.84 Breast
Chankong et al.39 Cervical
Levy et al.112 Cervical
Faust et al.63 Multiple
Nagase et al.125 Liver
Zhou et al.219 Colorectal
Wang et al.195 Prostate
Chen et al.43 Multiple
del Toro et al.189 Prostate
Sureka et al.179 Multiple
Yener207 Cervical
Mohan141 Brain
Durgamahanthi et al.58 Brain
Aziz et al.19 Multiple
Chaddad and Tanougast38 Colorectal Colorectal Colorectal
He et al.80 Breast
Dodington et al.57 Breast
Bejnordi et al.23 Breast
Xu et al.201 Prostate
Peikari et al.145 Breast
Durgamahanthi et al.59 Brain
Mercan et al.138 Breast
Vaishali et al.190 Brain
Vaishali et al.191 Brain
Ma et al.131 Breast
Caicedo et al.34 Skin
Al-Thelaya et al.10 Multiple
Arvaniti et al.16 Prostate
Pezoa et al.146 HER2 protein
Romo et al.154 N/A
Demir et al.52 Brain
Ren et al.152 Prostate
Iizuka et al.90 Multiple
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Campanella et al.35 Multiple
Cheng et al.45 Cervical
Kanavati et al.98 Breast
Bychkov et al.32 Colorectal
Ren et al.151 Prostate
Roy et al.156 Liver
Sun et al.178 Colorectal
Lomacenkova and
Arandjelovic121

Breast

Cruz-Roa et al.50 Breast
Xu et al.202 Breast
Cheng et al.44 Kidney
BenTaieb and Hamarneh24 Mutiple
Cho et al.46 Mutiple
Zanjani et al.211 Breast
Zhou et al.218 Breast
Al-Thelaya et al.12 Multiple Multiple
Shaban et al.163 Breast
Cai et al.33 Breast
Koyun and Yildirim106 Multiple
Li et al.116 Colorectal
Gupta et al.73 Kidney
Liang et al.118 Lymphoma Breast
Shao et al.164 Multiple
Takagi et al.183 Lymphoma
Stegmüller et al.176 Breast
Yin et al.208 Thyroid
Chen et al.42 Multiple
Li et al.114 Multiple
Bukowy et al.31 Kidney
Sheehan and Korstanje168 Kidney
Bueno et al.30 Kidney
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Fig. 3. Typical workflow of WSI segmentation applications.
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could be used to extract key features from these data sets and produce a
comparable performance to fully supervised models. Zhang et al.213 pro-
pose a weakly supervised approach to perform WSI image segmentation
to detect cancer regions using CNN and GCN networks. Graph nodes are
formed by super-pixels generated from the CNN output features. The
graph features and CNN features are then used as input to the GCN. Chen
et al.43 propose a weakly supervised framework using sparse point annota-
tion to learn and classify hierarchical pixel and super-pixel features. To rec-
ognize the different context scales and semantic patterns, fine-tuned CNNs
are employed to extract multi-level feature maps superimposed by super-
pixel contours.

Nuclei detection and classification

Various histopathology assessment tasks rely on the quantification of
cell nuclei of tissue samples for determining various biomarkers, identify-
ing and localizing T-cells, quantifying tumor immune infiltrates, and
other types of pathological analysis that are essential for cancer
prognosis.84 Visual estimation is labor-intensive, time-consuming, and
prone to high inter- and intra-observer variability. Therefore, automatic de-
tection and quantification of nuclei in WSIs increase assessment reliability
and productivity. However, the similarity between different types of nuclei
and variations of staining and tissue preparation conditions increase the
complexity of nuclei automatic detection and classification.169 Therefore,
morphological features and automatic features are commonly used in the
literature for nuclei detection and classification.19,39,84

Morphological features of nuclei are used by Chankong et al.39 to de-
scribe nuclei and cytoplasm for cervical cell classification. Five different
classifiers are used to classify cells into normal, squamous cell carcinoma,
as well as low- and high-grade squamous intraepithelial lesions. Color
pre-possessing of WSI is found to improve the accuracy of nuclei detection.
Aziz et al.19 use a set of texture andmorphological features for nuclei detec-
tion where color correction is applied to improve the accuracy.

The features extracted by the deep learning models provide a higher
level of nuclei detection accuracy compared to traditional manual feature
extraction methods. Detection of nuclei using deep learning features is con-
ducted by Höfener et al.84 by generating a map of points where each point
corresponds to a single nucleus center. Two different CNN architectures are
evaluated to learn image classification and regression. Post-processing of
target maps of points is found to improve the accuracy significantly.

Classification of nuclei is essential for cancer detection and classifica-
tion. Shi et al.169 propose a relation-based feature extraction framework
based on DenseNet and GCN features for cervical cell classification.
DenseNet features are used to perform clustering of cell images which is
used to create graph embedding features. Graph representation is used to
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train a GCN model to learn a set of relation features combined with
DenseNet features.

Cancer detection and diagnosis

Medical radiology imagingmaterials such asMRI and CT scans are valu-
able for tumor region detection and patient medical condition evaluation.
These technologies are also used for many other purposes, including cancer
surveillance, screening, and planning of treatment. Physicians depend on
these scans to identify tumor region shape and stage. Many studies are con-
ducted to automatically detect tumor regions from CT and MRI scans.27,119

WSIs, however, are becoming more popular among the medical commu-
nity. They are increasingly used for cancer detection. Automated detection
solutions based onWSIs are in demand, and research in this area is growing.
Cancer diagnosis involves tissue slide inspection by pathologists, which is a
complex task and requires highly qualified pathologists. Pathologists per-
form cancer diagnosis by examining the glandular structure of the speci-
men. In normal tissue, gland units are composed of circles of epithelial
cells around the lumen. A fibromuscular tissue called stroma holds gland
units together. In tumor tissue, epithelial cells duplicate in an unexpected
non-systematic way causing irregular gland unit architecture. In the worst
case, stroma virtually vanishes, and lumens are filled with epithelial
cells.182

The demand for automatic detection of tumor cells is rapidly increasing
to reduce time, increase productivity, and improve the quality of the detec-
tion process by reducing false-negative rates.198 Prostate cancer detection is
conducted in Tabesh et al.182 and Almuntashri et al.13 by extracting several
features from images, including fractal dimensions, color histograms, and
wavelet decomposition. Other types of morphological features of objects
in WSIs are also extracted by Tabesh et al.182 using the MAGIC system.186

Object-level features generated by morphological analysis produced higher
accuracy. The detection of colorectal cancer is investigated by Chaddad
et al.37 The study uses a set of texture features extracted from 3D WSI vol-
ume using 3D wavelet transforms. It analyzes and compares different path-
ological tissues of colorectal cancer. Texture features are also used by
Durgamahanthi et al.58 and Vaishali et al.190,191 for brain cancer diagnosis.

Extracting features from WSI images using deep learning models
produces superior results in cancer diagnosis. Gao et al.67 develop a CNN-
GCN framework for breast cancer diagnosis. The proposed framework at-
tains higher accuracy performance when compared with other approaches.
Labeling of segmented regions of interest for cancer detection is generated
using GCN by Ye et al.206 where morphological features are generated from
the segmented regions using a U-Net model. Region detection is also con-
ducted by Faust et al.63 to classifyWSI images into 13 tissue and lesion clas-
ses. The patch-level approach is used to learn a VGG19-CNN model for the
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classification and detection of gliosarcoma and hemangioblastoma tumors.
Probability scores are then used for region-based visualization of WSI.
Wang et al.197 address the problem by developing a deep CNN to divide
the WSI image into 3 regions (tumor, normal, and background). They di-
vide images into patches and transfer the gray-scale images into ternary im-
ages. A set of shape and boundary descriptors are then extracted from the
detected tumor regions and used to predict patient survival outcomes.
The study concluded that many features are associated with the survival
outcome.

Cancer grading and survival prediction

Cancer treatment goes through different stages, during which several
kinds of therapies can be given to patients. The detection of cancer stage
and grade determines the most appropriate treatment: it also helps with
identifying the severity of the disease and patient survival.182 The cancer
stage refers to the size and the spread of the tumor, whereas the grade is re-
lated to the appearance of the tumor cells. Histological screening and tests
of cell appearance should be conducted to determine cancer grade. This
process is manual, subjective, and depends on personal opinion and experi-
ence, resulting in wide variability in scoring. Accurate clinical results in
these cases are required, and cancer diagnosis must consider heterogeneity
between different tissues. To overcome these issues, solutions using image
processing techniques and AImethods can be incorporated into the diagno-
sis pipeline. Several solutions have been developed to contribute to the au-
tomation of this process. Rathore et al.149 develop a predictive modeling
pipeline to perform cancer grading. A set of features describing phenotypic
information within WSI images are used to reflect different histological
characteristics such as mitotic activity, microvascular proliferation level,
and abnormal appearance of cell nuclei. Cancer grading is achieved by
predicting low- and high-grade gliomas (LGG and HGG). Gleason pattern
grading is also conducted by Farooq et al.62 by extracting texture features
from images using the Gabor filter and LBP method. The study concludes
that uniform rotation LBP invariant achieved the highest accuracy results.

The morphological architecture of the tumor region is also found useful
in determining cancer grade.Morphological features are used by Lu et al.124

to form cell clusters to construct local graphs. Features are then extracted
from graphs and associated with other descriptive features to describe
tumor region heterogeneity and determine cancer grade. Heterogeneity es-
timation is also employed by Hayward et al.78 for ductal carcinoma in situ
(DCIS) breast cancer detection and grading. The study considers processing
ducts separately and in groups. Morphological features are extracted from
nuclei within ducts and used to detect normal and DCIS ducts and
score them.

Graph-based features and morphological features extracted from ob-
jects in segmented WSI images are used by Lopez et al.122 to predict the bi-
ological behavior of prostate carcinoma and detect Gleason pattern grades.
Grading of colorectal cancer and Gleason score is conducted by Zhou
et al.219 and Wang et al.195 using GCN, where nodes represent cells and
edges represent Euclidean distance. A set of shape and texture features
are employed to describe nodes, where K-nearest neighbor is utilized to
connect nodes in the graph. On the other hand, nodes are described by
Chen et al.41 using a ResNet-50 model, where WSI images are represented
as a graph by dividing images into patches. Patch-level graph representa-
tion is fed into a GCN model for survival prediction of cancer patients.
Deep learning features extracted using LeNet, AlexNet, and GoogleNet are
utilized by del Toro et al.189 for Gleason pattern grading. Features are ex-
tracted based on both gray-level intensity values and RGB channels.

Tumor region reconstruction

Tumor size and shape are 2 critical elements in cancer prognosis and
treatment. These 2 elements can be estimated using automatic tumor re-
gion detection. In radiography images, malignant tumors in breast cancer
can be identified by their rough boundary, which is also associated with
lung cancer’s worst prognosis.194 However,WSIs are privilegedwith higher
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spatial context and resolution, allowing for higher tumor region detection
accuracy. Boundary roughness can as well be measured from WSIs.61 The
development of accurate tumor shape and boundary detection and identifi-
cation using WSIs is a growing research field in digital pathology. WSIs are
a rich source of information that can be used to characterize tumor region
shape and boundary. Zhang et al.212 develop a model-based Bayesian land-
mark detection approach to determine a set of landmarks setting on the
boundary of the tumor region to characterize tumor shape andmeasure het-
erogeneity. Region of interest localization is conducted by Mercan et al.138

using a set of color and texture features. The authors use the visual bag of
words model to localize diagnostically important regions in breast cancer.
Results show that basic image features such as color and texture could be
enough to characterize tumor regions.

Tumor micro-environment quantification

Modulating tumor progression can be significantly influenced by the
tumor micro-environment. For instance, the influence of the tumor on
the resistance of the immune checkpoint molecules and its evasion abil-
ity can be clearly observed in the tumor micro-environment. Analyzing
the tumor micro-environment promoted the discovery of immunother-
apy which stimulates anti-tumor immunity. This discovery led to many
treatments that have been found to be successful for cancer. These immu-
notherapies resulted in the overall survival of patients with advanced
programmed death-ligand 1 (PD-L1) positive TNBC. Melanoma cancer
treatment is also promoted by immune checkpoint blockade. Therefore,
understanding the tumor micro-environment is a fundamental step to
characterizing the complex relationship between pro-and anti-tumor
immunity.

To examine the impact of the tumor micro-environment on the triple-
negative breast cancer (TNBC) progression, Mi et al.139 apply spatial analy-
sis to quantify the spatial distribution of immunemarkers tomeasure tumor
micro-environment heterogeneity. They found that intra- and inter-tumoral
heterogeneities vary across different specimens, and the density of immune
cells is higher in the invasive tumor front. The same conclusion is validated
by Hayward et al.,78 who studied the heterogeneity in DCIS breast cancer.
The study used a set of morphological features to describe nuclei in a
duct-by-duct manner. They perform image segmentation to identify and
label different ducts classified as normal and DCIS ducts, which are then
classified into grade 1, grade 2, and grade 3 DCIS ducts. The Simpson’s di-
versity index172 is used to estimate heterogeneity within each duct. They
find that the higher the DCIS ducts grade, the higher the diversity index,
where the lowest is 0.1 for grade 1 ducts and the highest is 0.6 for grade
3 ducts.

Dodington et al.57 study the role of nuclei- and tissue-level texture
and morphological features extracted from tiled WSIs on quantifying
breast tumor response to neoadjuvant chemotherapy treatment. The
study concludes that nuclear intensity and GLCM are strongly associ-
ated with response to neoadjuvant chemotherapy. Another study, con-
ducted by Pezoa et al.,146 performs segmentation of Human Epidermal
growth factor Receptor 2 (HER2) in immunohistochemistry-stained
WSIs. HER2 is a typical biomarker observed on the cell membrane sur-
face of various organs. In tumor tissue, this biomarker can be observed
in high abnormal amounts leading to abnormal cellular growth. Analy-
sis and quantification of HER2 overexpression are used to evaluate the
progression of various cancers. The study concludes that color and
texture features extracted from tiled images can be used for HER2
segmentation.

Glomerulosclerosis identification

WSI can best be used for the detection and characterization of
glomeruli, which is a key procedure in many nephropathology studies.30

Glomeruli are capillary clusters that are responsible for the disposal of
waste and surplus fluids that are not needed by the human body. Several
symptoms, etiology, immunopathology, and morphological changes can
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be exploited for the classification of Glomerular diseases. The morphologi-
cal alterations can be used to describe glomerulosclerosis by presenting the
glomerulus with different degrees of sclerosis. The quantification of the
total glomeruli in renal biopsy provides an indication of the clinical state
of the kidney. This process is tedious and cumbersome. Therefore, manual
feature extraction methods31,168,170,214 and deep learning techniques30 are
widely used for the quantification of glomeruli based on WSI analysis.

WSI volume reconstruction

For some clinical analyses, such as phenotyping the percentage of
glomerulosclerosis, 2D images might not be enough to produce accurate
quantitative assessment.53 In tubular glomeruli, for example, 3D visualiza-
tion of allWSI nephron sections is required to confirmpathological changes
and quantification assessment. Manual and semi-automated approaches to
perform 3D reconstruction and quantification are technically costly with
low throughput and prone to errors. The need to develop automatic 3D re-
construction for WSI images is increasing to generate more precise and re-
producible assessments.53 These images are commonly used for multi-scale
analysis of microscopic images and visualization of the different anatomical
structures.108

To obtain a 3D volume of organ tissue, a set of images scanned from
stained slides of sliced sectioned chemically fixed tissue are stacked up
and aligned. Aligning section slides are prone to errors due to inevitable tis-
sue folding and tearing inconsistency resulting from the imperfect mount-
ing of the tissue sections onto the glass slides.77

Images can be aligned using intensity-based methods where intensity
similarity is used to match corresponding pixels. Geometric-based methods
can also be used to find matching points on the 2 images. To this end,
Kugler et al.108 propose a landmark-based method to map corresponding
landmark locations between consecutive images using evaluation criteria
based on the location and smoothness of landmark trajectories. They use
templatematching to detect landmarks. Trajectories of landmarks at folded
or blurred portions are terminated to generate smoothed trajectories.

WSI images registration

In many cases, pathologists might need to view and align multiple
scans of tissue simultaneously for evaluation and comparison purposes.
They need to manually find and match similar regions, which is a time-
consuming task, especially when comparing scans of different
samples.199 Image registration can be used to align multiple WSIs
based on morphological similarity.29 Yet, it is not a straightforward
process due to the complexity of the WSIs emerging from large image
sizes and different scanning parameters, such as staining, in addition
to the artifacts generated by the scanning process.174 Image alignment
can be achieved using feature- and intensity-based techniques. The
registration process aims to find a transformation operation to match
the source or moving image with a fixed target single or multiple im-
ages. Different spatial transformation operations are conducted to
map the source image to the target image. In feature-based matching,
a set of shape features, such as points, lines, and contours, are extracted
from both source and target images for alignment. Intensity-based reg-
istration approaches use correlation and spatial moments metrics
based on entire images or sub-image. After features matching, geomet-
rical transformation is then applied on the source image to the target
image.222

Both intensity- and feature-basedmethods can also be developed to per-
form the registration. Déniz et al.55 develop an intensity-based multi-
resolution registration approach using a similarity metric based on mutual
information. The study uses a bilinear transformation and an evolutionary
process as an optimizer. Registration of WSI is conducted by Awan and
Rajpoot18 using deep autoencoders by maximizing the mutual information
between the source and target images. The use of the autoencoder reduces
the dimensionality of image features by a factor of 16, enabling a faster and
more tractable representation of images.
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WSI image retrieval

The availability of manyWSI repositories results in many challenges re-
lated to managing these types of images because of their large resolution
and staining variations. These challenges make searching within image re-
positories for similar images for matching a complicated task because it re-
quires more effective descriptive ways than those used for simple natural
images withmanageable resolution and contents. Matching and comparing
images can be attained based on content-based image retrieval (CBIR)
algorithms34 that describe visual properties of images via feature vectors
generated using different kinds of image analysis methods. Feature
vectors can be matched using similarity matching algorithms such as
nearest-neighbor matching.

Contents of images can be encoded using various methods, such as
image texture, color histogram, Fourier and wavelet coefficients, etc., to
generate feature vectors that can be employed to perform similarity
matching. Fig. 4 depicts a typical workflow of image retrieval in WSI.
Caicedo et al.34 exploit a set of features obtained using color histogram,
Tamura texture histogram, Sobel histogram, and LBP to provide a low-
level representation of images. Histograms are then aggregated using a
higher level of semantic features based on statistical functions such as the
mean, deviation, skewness, kurtosis, etc.

Zheng et al.216 use texture features, color histograms, Fourier transfor-
mation coefficients, and wavelet coefficients to generate a signature for
each WSI image. Weighted cosine similarity is then used to measure
the similarity between the query image and images in the database. The
study also performs clustering based on image signatures to reduce the
search space. The study found that images with similar visual properties
form distinct groups, 2 of them representing cancer clusters.

Texture and morphological features are also used by Ma et al.131 for
image retrieval in breast cancer. Features are obtained based on 2 hierarchy
levels where basic features are extracted using Gaborwaveletfilters and nu-
clei region-based descriptors. The high-level semantic description is ob-
tained using the latent Dirichlet allocation model through probabilistic
representations of different hierarchical levels of data abstraction.
Locality-sensitive hashing is then leveraged to generate hash coding for
WSI matching. Signatures can also be used to query sub-images of WSI as
by Mehta et al.,136 who utilize SIFT features to perform image indexing
and sub-image query.

Deep learning features are expected to generate better image encoding
and higher indexing accuracy. Kalra et al.97 propose an intelligent indexing
algorithm to provide easy and fast image retrieval based on similarity in-
dexes. The study uses histograms from image mosaics to cluster similar
patches based on color properties. Driven by clustered groups, patches are
randomly sampled to represent the whole slide image, and barcodes are
built using the DenseNet network. Barcodes are then converted using the
MinMax algorithm135 into lightweight vectors, which are then used to per-
form image retrieval and matching.

WSI visualization

Clinical analysis and diagnosis of tissue diseases involve careful exami-
nation and quantification of different types of nuclei, looking for unusual
changes and abnormal patterns within biopsy, resection, exfoliation, or
fluid tissues. Extracting this information from WSIs is useful for manual ex-
amination and clinical analysis. However, manual examination of WSIs re-
mains a challenging task given the effort spent by pathologists to examine
and estimate a quantitative approximation of the number of nuclei or the
area of invasive inflammation or any other quantitative and qualitativemea-
surements. To enable quick manual examination of WSIs, many WSI visual-
ization solutions are proposed in the literature.60,105,112,125 Visualization
solutions mainly facilitate the estimation of the nuclear density of ROI in
WSI images. These systems can identify different regions within WSI
based on visual attributes and contextual analysis. Clustering techniques
and similarity approximation solutions are generally used to group nuclei
providing a higher-level representation of cancer or non-cancer regions.



Fig. 4. Typical workflow of WSI images retrieval applications.
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Visualization of WSIs captures the underlying contextual shape and
structure relationship between the cellular, regional, and hierarchical ar-
chitecture of WSI image contents. These relationship descriptions in-
volve a complex processing pipeline starting with image segmentation,
cellular description, regional aggregation, representation, and visual
analysis. Representation of relationships between elements of WSIs can
be described using topological analysis, where images are divided into
smaller components and connected based on visual attributes and con-
textual analysis. Fig. 5 shows a typical pipeline of WSI visualization.
Levy et al.112 propose a topological description of WSIs based on learn-
ing patch-level CNN features to construct a graph embedding representa-
tion which is then used to train a GNN model to generate patch-level
embedding. A topological data analysis tool called Mapper is employed
to build a higher-order graph embedding to represent the region of inter-
est based on the similarity distance between patch-level embedding. The
Mapper graph is established based on the relationship between different
regions identified using patch-level similarity overlapping. Visualization
based on dimensionality reduction is used by Faust et al.63 to depict
histomorphological information embedded in WSI images. CNN features
embedding is learned by discretizing the relationships between different
classes. The probability scores learned by CNN are used as input to t-
distributed stochastic neighbor embedding (t-SNE) to learn new unde-
fined classes in the data.
Fig. 5. Typical workflow of WS
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WSI stain normalization

Color variations in digital slides impact the accuracy of the deep learn-
ing algorithms negatively. The tissue slide preparation process involves bio-
chemical staining, which produces different physical color variations based
on differences in staining protocols and variability in the staining amount
and time.204 Other imaging and digitization parameters can also result in
color variations.91 Therefore, color normalization of digital slides is an im-
portant step in digital pathology applications for pre-processing WSIs. Pre-
processing histopathological WSIs is critical for improving image quality
before applying AI learning algorithms. Öztürk and Akdemir129 demon-
strated the importance of pre-processing WSIs by evaluating the impact of
various pre-processing techniques on the classification output of a CNN
architecture.

GAN-based techniques and approaches are state-of-the-art for color nor-
malization of WSIs based on a style transfer method. The target image is
generated by modifying the style of the input image using another input-
style image while preserving the details of the input image.142 GAN-based
architecture is used by BenTaieb andHamarneh24, Cho et al.46, and Zanjani
et al.211 to stain normalize WSI from different visual domains. CycleGAN
model is also adopted by Zhou et al.218 and Shaban et al.163 for pre-process-
ing WSIs before feeding them as input to another model for the classifica-
tion of breast cancer.
I visualization applications.
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Other applications

As newAI technologies emerge, the application of these technologies to
WSIs analysis and feature extraction is rapidly increasing. Recent applica-
tions include the prediction of tissue type and gene mutation from pathol-
ogy images.95,148 Genomic analysis, such as high-throughput molecular
profiling, identifies key drivers of genetic alterations connected to targeted
therapy of different types of cancers. The prediction of gene expression is
also conducted by Schmauch et al.161 using a deep learning framework im-
proving the prediction of a specific molecular phenotype, such as microsat-
ellite instability.

The grading of interstitial fibrosis and tubular atrophy based on WSIs
processed from human renal biopsies is widely conducted using deep learn-
ing techniques.217 It is an important prognostic predictor primarily relying
on visual assessment and semi-quantitative grading, whichmay not capture
finer details or heterogeneity throughout the entire slide.75 Therefore,
many studies propose leveraging advances in digital pathology and devel-
oping modern data analytic technologies, such as deep learning, for com-
prehensive image analysis of kidney pathology.68

The detection of mitotic events is critical in many biomedical activities,
including biological research andmedical diagnostics. Cell division is a key
stage in the cell’s life cycle, and mitosis detection can reveal valuable infor-
mation about cell activities. The proliferation of different cancers is one of
the most important prognostic markers that is typically evaluated by
counting mitotic figures in WSIs. However, mitotic counting is time-
consuming, subjective, and prone to high inter-observer variations, which
enables a new research domain for automatic analysis using computer
vision technologies.126,185,193

Discussion

The rapid development and success of computational pathology is,
among other factors, fueled by feature engineering and deep learning tech-
nologies. These form the technical foundation for the development of vari-
ous solutions seeking to automate whole slide image analysis. Recent
advances in the development of deep learning techniques and solutions in
particular opened numerous new research opportunities and challenges.
In the following, we discuss the challenges we deem most important.

• Manual annotation and validation: The grand challenges of our data-driven
age are no stranger to computational histopathology. While AI offers
unique opportunities to turn data into insights and, thus, to provide effi-
cient decision-support systems to specialists, AI requires extensive
human effort for data cleaning, annotation, and labeling. In a sense, su-
pervised AI is still parasitic, feeding on human labor. This, in turn, limits
the amount of data suitable for training and prohibits supervised AI from
unlocking its full potential. While the first frameworks for supervised-to-
unsupervised200 have demonstrated some success, they still rely on large
quantities of labeled data. We believe that there is a dire need for tools to
support this transition from supervised to semi-supervised, weakly super-
vised, or unsupervised learning. In our survey, we presented multiple so-
lutions developed based on these approaches to tackle this
issue.43,56,103,130,195,213 Whereas the annotation process can be crowd-
sourced for many data sets, this is not the case for histopathology. We,
therefore, see an acute demand for visual tools supporting histopathology
workflows from annotation to computation. Such tools can come in the
form of better tools for annotation, improving on existing solutions such
as NuClick104,92 with advanced user interfaces and modern input devices
such as digital pens. In the ideal case, such tools integrate elements of on-
line learning, in which a model suggests labels and positions to histopa-
thologists whose proofreading then triggers a continual training process
of the network. Recent efforts72 go towards the direction of developing
human–AI collaborative tools mimicking the examination process carried
out by pathologists, in order to improve AI’s integration into routine ex-
aminations. In this context, collaborative digital histopathology
platforms93 could also gain importance, as they provide the means for
22
effective parallelization of the workload across multiple domain experts.
We believe that the development of such tools will significantly boost
the amount of data available for modeling in the public domain.

• Image super-resolution: Challenges more specific to histopathology include
compensating for ill-sliced nuclei in the tissue glass slide preparation pro-
cess, better alignment/registration algorithms for scans of deformed tis-
sue glass slides, and, potentially, further increases in the image
resolution. As an example, transmission electron microscopy (TEM) pro-
vides a much higher resolution than optical microscopy, lowering the
learning curve in annotating nuclei for non-experts and potentially open-
ing the door to crowd-sourced annotations. However, the preparation
process for TEM is much more involved, including, among others, expert
selection of individual nuclei, and is, thus, unlikely to produce data at the
same rate. Due to the difference in WSI preparation, it is not possible at
the time of writing to image the same sample using optical and electron
microscopes. As a result, improvements in image resolution must either
come from super-resolution techniques or from the optical domain. This
article also shows that most data sets and applications focus on cancer re-
search. While an important and high-impact topic, data sets suitable for
training models for other applications, e.g., pediatrics (in which inflam-
matory cells are of high importance), are scarce, and adequate tools to
generate data annotations at scale could alleviate this problem. Deep
learning architectures have shown superior image super-resolution in
several fields and they represent a good solution for this problem. The
earliestwork to explore this research direction is conductedbyMukherjee
et al.143 who developed a new variant of RNNs based on a sequence of
CNNs to address this issue. Li et al.113 developed a deep learning-based
approach for WSIs super-resolution using CNN and self-supervised color
normalization. An unsupervised deep learning approach is also proposed
by Ma et al.130 using hyperspectral images. Further research is needed to
address this challenge.

• Continual learning and integration: Another challenge relates to continual
learning and integration, which refers to the ability of amodel to incorpo-
rate multiple sources of information and make use of prior knowledge.
Histopathology images often containmultiple types of tissue andmultiple
regions of interest, and incorporating this information in a deep learning
model can be difficult. Additionally, histopathology images are often ac-
companied by other types of data, such as patient demographics and clin-
ical information, which can be used to improve diagnostic accuracy.
Incorporating these additional sources of information into deep learning
models is expected to boost classification and detection accuracy, but it
requires additional engineering and development efforts. The research
in this field is in the early stages.21,99,100

• Uncertainty quantification: Another research direction that is gainingmore
traction in the machine-learning community is uncertainty quantifica-
tion. Although a model’s output is typically interpreted as “hard” labels,
models usually generate fuzzy classifications and segmentations
(i.e., probability distributions). The information lost in the process of
converting these probabilities into a hard decision is valuable to experts,
and methods such as conformal predictions14 have already been applied
to cancer detection.110 The resulting labels, be they point annotations or
segmentations, further require novel visualization techniques as the re-
sulting data is nominal and no longer continuous. First advances in this di-
rection have been made,11,12 but more research into the effective
visualization of nominal annotation at scale is needed.

• Size of WSIs: WSIs are huge and complex. Developing effective solutions
for extracting features meaningfully supporting the diagnostic process
from these images is one of the most challenging tasks in digital pathol-
ogy. The development of deep learning models that accurately represent
information embedded in these images is evolving rapidly. The demand
to provide better solutions is increasing, leading to potential research
challenges and opportunities. The size of WSIs is one of the challenges
that most image analysis techniques in AI have to overcome in order to
extract useful information from these images. Therefore, a sliding patch
strategy is widely used to deal with the enormous size of the WSIs. It is
usual in the pathology area to have 2 classification steps: one for
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fine-grained patch-level classification and another, coarse-grained, for
slide-level classification, using the patch-based classification as an input
parameter.153 Moreover, fine-grained manual annotations are exceed-
ingly expensive and time-consuming due to their large size. Thus,
patch-wise target labels are usually not available, and only the labels of
eachWSI are known,making traditional supervised learning inaccessible.
To tackle this problem, some studies adopt multiple-instance learning ap-
proaches based on unsupervised and weakly supervised learning. Each
WSI is regarded as a bag containing several patches (instances). If a WSI
(bag) is designated positive, it contains at least 1 positive instance. If a
WSI is negative, all patches in the bag are negative.215 Several approaches
in the literature are proposed to reduce the complexity of the multiple-
instance learning approach using intelligent sampling and grouping as
proposed by Su et al.177 However, research aimed to address this issue
is needed to reduce the processing time and labeling effort of WSIs.

• Data quality: The clinical analysis of WSI images requires identifying and
quantifying various nuclei, glandular structures, and anatomical regions
with varying visual characteristics. The diversity of human tissue struc-
ture and topology is reflected by wide variations of WSIs in color and tex-
ture. Generating effective solutions for WSIs analysis requires handling
this diversity by taking into consideration a broad spectrum of input
data. Moreover, the accurate annotation and labeling of these images is
another challenge since the clinical prognosis of each case varies depend-
ing on the annotator’s personal experience and perspective. Therefore,
the availability of sufficient input data used to train deep learning models
and ensuring the quality and consistency of this data is another problem
in computational pathology. Recently, several data sets have been re-
leased to fulfill these requirements,7,66,87,137,158 yet the enormous
amount of available unlabeled data and the huge number of diseases
and diagnosis procedures increase the need for clean labeled input data
for developing efficient and accurate algorithms.

• Transfer learning and model generalization: Transfer learning is an exciting
field of study in computational pathology because it allows models
trained on one type of tissue or disease to be adapted for use on other
types of tissues or diseases. This will reduce the time and effort required
to train deep learning models as it will allow for reusing previous knowl-
edge stored in the form of networkweights. However, transferring knowl-
edge in the form of trained deep learning models requires further
improvement and testing. Much work remains to be done in developing
models that can effectively generalize across various data sources and do-
mains. In our survey, we conducted a thorough review of various studies
that have employed transfer learning techniques for WSI analysis (c.f.
Section 4.5). Through this analysis, we observed that transfer learning
has shown promising results in leveraging pre-trained models to extract
data that support the diagnostic process from WSIs. However, it is
worth noting that the field of deep learning is dynamic, and there have
been recent advances in model architectures and learning strategies that
offer enhanced feature learning and analysis capabilities for WSIs. For in-
stance, models like adversarial-, graph-, and transformer-based networks
have demonstrated state-of-the-art performance in various computer vi-
sion tasks, including image classification and segmentation. To fully ben-
efit from these advances, it is crucial to investigate how these novel
models can be adapted and fine-tuned for WSI analysis. This involves ex-
ploring strategies to transfer the knowledge and expertise acquired by
these models on diverse image data sets to the specific domain of digital
pathology. By leveraging the pre-trained weights and architectures of
these advanced models, research can potentially improve the accuracy,
efficiency, and generalization capabilities of WSI analysis tasks.

• Integration with clinical workflows: Finally, to ensure that computational
pathology tools and models are used successfully in practice, they must
be integrated with clinical workflows. This involves creating
user-friendly interfaces, connecting to electronic medical records, and ad-
dressing privacy and data security concerns. Despite the unprecedented
advances in the development of AI medical solutions achieved by clinical
organizations, there is still a gap between these automated systems and
physicians. One of the primary causes of this disparity is the lack of
23
trust among medical experts in this technology. This lack of trust may re-
sult from the level of uncertainty introduced by this technology, espe-
cially for challenging tasks. Although some sophisticated AI
technologies, such as deep learning, provide a high level of accuracy, it
lacks the ability to provide an explanation or justification to warrant de-
cisions made by this technology, representing another source of doubt
and uncertainty. Providing explicable accurate solutions that can be eas-
ily integrated with clinical workflows is another challenge in research
and practice.

Overall, the field of computational pathology based on whole slide im-
ages and deep learning is quickly evolving, with numerous intriguing re-
search opportunities and challenges. By addressing these issues,
researchers and clinicians will be able to createmore accurate and effective
tools for diagnosing and treating a wide variety of diseases.

Pathologists’ collaboration and expertise in computational pathology
present a vibrant opportunity for further research. Their insights into chal-
lenges and potential solutions contribute to the development of AI-based
models that have a deep impact on related disciplines, such as automated
classification, segmentation, and visualization. Expert involvement ensures
that the research aligns with the requirements of pathological practice and
benefits various applications beyond cancer research, such as pediatrics
and other specialized areas. However, the role of AI is that of a diagnostic
tool supporting pathology work flows, and does not provide means to re-
place pathologists. The role of pathologists in the development of AI and
deep learning solutions may thus include the following:

• Data cleaning, annotation, and labeling: The development of AI applications
mostly relays on the availability of sufficient and clean input data. Pathol-
ogists contribute their expertise in data cleaning and annotation, ensuring
the quality and accuracy of the data sets used for AI analysis. They pro-
vide valuable insights into identifying and quantifying various nuclei,
glandular structures, and anatomical regions with varying visual charac-
teristics. Pathologists’ experience and knowledge help in standardizing
and making annotations consistent, addressing the challenges of diverse
tissue structures and topology.

• Transition to semi-supervised and unsupervised learning: The transition
from supervised to semi-supervised, weakly supervised, or unsuper-
vised learning offers a huge potential to reduce the amount of target la-
bels for learning. However, this transition process requires extensive
evaluation and proofreading. Pathologists contribute to this stage of
the deep learning pipeline by evaluating and validating the output of
these modeling techniques. In many cases, pathologists might need to
apply manual corrections for annotations and output generated by
these techniques. Additionally, pathologists’ insights can facilitate
the development of tools that integrate elements of online learning,
allowing AI models to incorporate knowledge inherited from different
sources. This expertise is critical for proofreading and triggering con-
tinual training processes.

• Algorithm development and training: Pathologists collaborate with AI re-
searchers and data scientists to develop algorithms for feature extrac-
tion and engineering. They offer insights into the intricate nuances of
pathological findings. For instance, in breast cancer diagnosis, pathol-
ogists assist in designing algorithms that can detect subtle patterns or
classify different subtypes of tumors based on tissue histological char-
acteristics. Pathologists may also identify relevant morphological fea-
tures, such as cellular patterns or architectural abnormalities, which
are incorporated into AI models to aid in accurate diagnosis and
prognosis.

• Validation and evaluation: Validating the output of deep learning and AI
applications is one of the most critical phases in the development life
cycle of these applications. The results of this phase might involve
the approval of using these applications in real-life scenarios. Patholo-
gists play a crucial role in validating and evaluating the performance of
AI models. They compare AI-generated results with their own interpre-
tations or consensus diagnoses to assess accuracy and reliability. In the
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field of dermatopathology, for example, pathologists may evaluate AI
algorithms for skin lesion classification by comparing their predictions
with histopathological analysis of biopsy specimens.

• Clinical integration and workflow: Pathologists work closely with AI de-
velopers to integrate AI tools into their clinical workflow effectively.
For instance, they provide feedback on user interfaces, workflow inte-
gration, and interpretability of AI-generated outputs. Pathologists may
collaborate with AI engineers to design user-friendly interfaces that
allow seamless integration of AI algorithms into existing pathology sys-
tems. Furthermore, pathologists may take the lead in conducting clin-
ical validation studies for AI models.

By actively engaging pathologists in these roles, AI applications can be
tailored to meet the specific needs and challenges of pathology practice.
The expertise and input of pathologists ensure that AI models are accurate,
reliable, and ethically implemented, thereby enhancing diagnostic accu-
racy, improving patient outcomes, and streamlining clinical decision-
making processes.

Conclusion

In this survey, we have reviewed state-of-the-art machine learning ap-
proaches to automate parts of pathology workflows, for use by histopathol-
ogists, lab technicians, and practitioners and researchers in machine
learning and AI.

WSI has improved clinical practices by facilitating the management
and analysis of scans of tissue glass slides. Researchers have proposed
numerous AI solutions to automate image analysis and extract diagnosis
information fromWSIs. However, challenges include the need for human
effort in data cleaning and annotation, the high resolution and size of
WSI images, integration of clinical data into AI models, reducing com-
plexity in multiple-instance learning, and ensuring data quality and
availability. Transfer learning techniques have shown promise in
leveraging pre-trained models for WSI analysis. More research is needed
to explore the impact of several deep learning approaches, such as semi-
supervised learning, weakly supervised learning, continual learning, etc,
on the analysis of WSIs.

We therefore believe that teams of histopathologists and AI researchers
are needed to drive the development in AI in order to ensure accurate and
reliable models that indeed become clinical tools enhancing diagnostic ac-
curacy.While the field of computational pathology offers plenty of research
opportunities to improve automated classification, segmentation, and visu-
alization, the role of pathologists, both as early adopters as well as in the
validation phase (e.g., leading clinical studies) is of utmost importance.
We hope that this survey will spark many such collaborations between pa-
thologists and engineers, ultimately leading to tools for better disease diag-
nosis and treatment.
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