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Abstract: Administration of the hematopoietic growth factor granulocyte-colony stimulating Factor
(G-CSF) has been reported to enhance recovery from controlled cortical impact (CCI) in rodent models.
G-CSF exerts actions in both the periphery (stimulation of hematopoiesis) and in the brain, where it
serves as a neurotrophic factor, promoting neuronal survival and stimulating neural stem/progenitor
cell proliferation in the hippocampus. In order to distinguish the direct CNS actions of G-CSF from
its peripheral actions, experiments were designed to block the recruitment of peripheral monocytes
to the site of the lesion produced by CCI. The selective C-C motif receptor 2 (CCR2) antagonist
(RS504303) was co-administered with G-CSF for three days after CCI in a chimeric mouse previously
transplanted with GFP-expressing (GFP+) blood stem-progenitor cells. Results: The drug significantly
impaired infiltration of GFP+ bone marrow-derived cells to the frontal cortex and striatum without
impeding recovery performance and hippocampal neurogenesis in the behavioral test, the Radial Arm
Water Maze (RAWM). Administration of the CCR2 antagonist alone, without G-CSF, was effective
in promoting recovery in RAWM. These results support the hypothesis that the direct action of
G-CSF on neural cells, independent of its hematopoietic effects, is primarily responsible for enhanced
recovery from CCI. In addition, this study confirms the importance of CCR2 and its ligand, monocyte
chemotactic protein-1 (MCP-1), in mediating the inflammatory response following CCI.

Keywords: granulocyte-colony stimulating factor; monocyte chemotactic protein-1; radial arm water
maze; bone marrow transplantation; hippocampal neurogenesis

1. Introduction

Granulocyte colony-stimulating factor (G-CSF) is one of several hematopoietic cytokines that
regulates the production of circulating blood cells by the bone marrow. G-CSF is commonly used to
treat leukopenia, but it has also been investigated in animal models of stroke. G-CSF administration
was reported to reduce brain damage and improve functional outcomes [1–4]. G-CSF treatment has
been shown to promote recovery from traumatic brain injury traumatic brain injury (TBI) in rodent
models. Administration of intraperitoneal G-CSF (via osmotic minipump) in a rat model of TBI was
shown to improve recovery of motor function compared to the control group [5]. In another study,
intravenous (i.v.) administration of G-CSF (300 µg/kg) seven days after controlled cortical impact
(CCI) to rats promoted transient motor benefits. In addition, G-CSF modestly increased hippocampal
and subventricular zone (SVZ) neurogenesis and diminished microgliosis eight weeks after the TBI [6].
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A recent study in mice examined the sub-acute response (up to two weeks after mild CCI) to
a lower dose of G-CSF (100 µg/kg) given for three consecutive days after the injury [7]. That study
was designed, in part, to determine the role and extent of infiltration into the brain of circulating
monocytes, which serve to reinforce the microglial response to the injury. In order to track the transport
and infiltration of monocytes, chimeric mice were generated by bone marrow transplantation of green
fluorescent protein-expressing (GFP+) bone marrow stem cells into C57BL mice [7]. Following CCI
to the right cerebral cortex, significant microgliosis and astrocytosis were observed in vehicle-treated
mice, with the side of the trauma showing the greatest increase. G-CSF treatment increased astrocytosis
on both sides of the brain, with the side of injury showing the greatest increase. G-CSF treatment
also increased the extent of infiltration of GFP+ bone marrow-derived cells (BMDC). Approximately
one third of the microglial signal (Iba1) overlapped with the GFP+ signal in the striatum on the
side of the lesion by day 14 after CCI [7]. In addition, G-CSF treatment improved performance in
a hippocampal-dependent learning task, the radial arm water maze (RAWM) on both days 7 and
14 after CCI. This behavioral improvement correlated with the enhanced expression of doublecortin
(DCX), a surrogate index of hippocampal neurogenesis, in G-CSF-treated mice. The stimulation of
neurogenesis is consistent with earlier reports that G-CSF enhanced neurogenesis in normal and AD
mice [8,9] as well as in mice that had undergone CCI [6].

In addition to its impact on hematopoietic cells, G-CSF readily passes the blood–brain barrier [10]
and interacts with G-CSF receptors, expressed by adult neural stem/progenitor cells, to promote
neurogenesis [8–11]. G-CSF and its receptor are expressed by neurons in the CNS; their expression is
induced by ischemia, implying an autocrine protective signaling mechanism [12]. G-CSF is now
recognized to have multiple actions that contribute to long-term CNS plasticity. G-CSF exerts
anti-apoptotic activity in mature neurons, triggers neuronal differentiation of adult neural stem
cells in the brain, and promotes long-term recovery in more chronic stroke models [1,11,12].

To further understand the mechanisms for the beneficial effects of G-CSF in models of
TBI, the present study was designed to determine the extent to which the recruitment of bone
marrow-derived cells (BMDC), in particular monocytes, from the blood into the brain is responsible
for enhanced recovery from TBI. The approach taken here utilized a selective chemokine receptor
antagonist of monocyte chemoattractant protein-1 (MCP-1) to decrease the infiltration of monocytes
into the CNS. If enhanced recovery from TBI occurs despite inhibition of monocyte recruitment to the
site of injury, then the direct actions of G-CSF on neural cells can be considered a critical mechanism
for enhanced functional recovery from TBI.

2. Results

Two weeks after CCI, the cohort of mice treated with G-CSF exhibited an increased infiltration of
GFP+ (bone marrow-derived) cells into the right frontal cortex and striatum (Figures 1 and 2). The
GFP+ signal was reduced to a greater extent with the lower dose of CCR2 antagonist than the higher
dose in the cortex (Figure 1C,D). In the striatum, the extent of the reduction of the GFP+ signal with
the higher dose of CCR2 antagonist was the same as with the lower dose (0.5 mg/kg). See Figure 3.

Quantitative image analysis of the GFP+ signal revealed a six- and three-fold increase of the
GFP+ signal in the right frontal cortex and the striatum, respectively. In addition, G-CSF treatment
increased microglial activation in those regions (indicated by Iba1 immunolabeling) consistent with
earlier reports [7,13]. Co-administration of both doses of CCR2 antagonist (0.5 and 2.0 mg/kg) blocked
the infiltration of GFP+ to both the cortex and the striatum. One-way ANOVA followed by Sidak’s
multiple comparison tests show that co-administration of the CCR2 antagonist with G-CSF resulted in
significant decreases in the GFP+ signal compared to G-CSF treatment (p < 0.05) (Figure 3). When the
effects of the CCR2 treatments (with and without G-CSF) were compared to vehicle treatment, only
the low dose of the CCR2 antagonist was significantly different than the vehicle control (p < 0.05). The
GFP+ signal in the hippocampus was not significantly increased two weeks following CCI compared
to vehicle-treated controls (Figure 3).
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Figure 1. Effects of right-sided controlled cortical impact (CCI) on microgliosis (Iba1+ cells) and 
infiltration of green fluorescent protein-expressing (GFP+) cells into the right cerebral cortex at two 
weeks. The left-hand panels show GFP+ cells; middle panels show Iba1+ cells (microglia); right-hand 
panels show the composite image (GFP/Iba1). (A) Effects of vehicle treatment; (B) effects of 
granulocyte colony-stimulating factor (G-CSF) (100 µg/kg daily × 3 days) treatment after CCI. Note 
that many microglia co-express GFP+, indicating their origin from peripheral monocytes; (C) Effect 
of G-CSF and CCR2 antagonist treatment (0.5 mg/kg daily × 3 days); (D) effects of G-CSF and CCR2 
antagonist treatment (2.0 mg/kg daily × 3 days) (scale bar = 20 µm). 

Figure 1. Effects of right-sided controlled cortical impact (CCI) on microgliosis (Iba1+ cells) and
infiltration of green fluorescent protein-expressing (GFP+) cells into the right cerebral cortex at two
weeks. The left-hand panels show GFP+ cells; middle panels show Iba1+ cells (microglia); right-hand
panels show the composite image (GFP/Iba1). (A) Effects of vehicle treatment; (B) effects of granulocyte
colony-stimulating factor (G-CSF) (100 µg/kg daily × 3 days) treatment after CCI. Note that many
microglia co-express GFP+, indicating their origin from peripheral monocytes; (C) Effect of G-CSF and
CCR2 antagonist treatment (0.5 mg/kg daily × 3 days); (D) effects of G-CSF and CCR2 antagonist
treatment (2.0 mg/kg daily × 3 days) (scale bar = 20 µm).
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Figure 2. Effects of right-sided CCI on microgliosis (Iba1+ cells) and infiltration of GFP+ cells into the 
right corpus striatum at two weeks. Left-hand panels show GFP+ cells; middle panels show Iba1+ 
cells (microglia); right-hand panels show the composite image (GFP/Iba1). (A) Effects of vehicle 
treatment. Most of the GFP+ cells are within capillaries; (B) effects of G-CSF (100 µg/kg daily × 3 days) 
treatment after CCI. G-CSF increased the infiltration of GFP+ cells into the striatal parenchyma. Note 
that many microglia co-express GFP+, indicating their origin from peripheral monocytes; (C) effect of 
the CCR2 antagonist treatment alone (0.5 mg/kg daily × 3 days). Note that the CCR2 antagonist 
markedly diminishes the GFP+ signal, even in the capillaries of the striatum; (D) effects of G-CSF and 
CCR2 antagonist treatment (0.5 mg/kg daily × 3 days). Similar to the panels in (C), the CCR2 
antagonist blocked the recruitment of GFP+ cells. The effects of the combination of G-CSF and 2.0 
mg/kg CCR2 antagonist are not shown, but are similar to those produced by G-CSF and 0.5 mg/kg 
CCR2 antagonist as in Figure 2D (scale bar = 20 µm). 

Figure 2. Effects of right-sided CCI on microgliosis (Iba1+ cells) and infiltration of GFP+ cells into the
right corpus striatum at two weeks. Left-hand panels show GFP+ cells; middle panels show Iba1+ cells
(microglia); right-hand panels show the composite image (GFP/Iba1). (A) Effects of vehicle treatment.
Most of the GFP+ cells are within capillaries; (B) effects of G-CSF (100 µg/kg daily × 3 days) treatment
after CCI. G-CSF increased the infiltration of GFP+ cells into the striatal parenchyma. Note that many
microglia co-express GFP+, indicating their origin from peripheral monocytes; (C) effect of the CCR2
antagonist treatment alone (0.5 mg/kg daily × 3 days). Note that the CCR2 antagonist markedly
diminishes the GFP+ signal, even in the capillaries of the striatum; (D) effects of G-CSF and CCR2
antagonist treatment (0.5 mg/kg daily × 3 days). Similar to the panels in (C), the CCR2 antagonist
blocked the recruitment of GFP+ cells. The effects of the combination of G-CSF and 2.0 mg/kg CCR2
antagonist are not shown, but are similar to those produced by G-CSF and 0.5 mg/kg CCR2 antagonist
as in Figure 2D (scale bar = 20 µm).
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Figure 3. Summary data of GFP+ signal in the frontal cortex, striatum and hippocampus two weeks 
after CCI. The left panel shows an analysis of the GFP+ signal in the right frontal cortex. G-CSF-treated 
mice exhibited a significant increase in the GFP+ signal that was blocked by co-administration of the 
CCR2 receptor antagonist at both 0.5 and 2.0 mg/kg doses. One-way ANOVA (p = 0.0001) was 
followed by Sidak’s multiple comparison tests. * p < 0.05. It is noteworthy that the low dose CCR2 
antagonist group alone significantly decreased the GFP+ signal compared to the vehicle-treated 
group. One-way ANOVA was run on all groups excluding the G-CSF group: multiple comparisons 
of the CCR2 antagonist (with and without G-CSF) compared to the vehicle-treated group revealed 
that the low dose CCR2 (0.5 mg/kg) groups exhibited a significant decrease in signal. ** p <0.05. The 
middle panel shows an analysis of the right striatum. G-CSF significantly increased the GFP+ signal 
compared to vehicle treatment. The GFP+ signal was blocked by co-administration of the CCR2 
receptor antagonist at both doses. One-way ANOVA (p = 0.001) was followed by Sidak’s multiple 
comparison tests. * p < 0.05. The right panel shows an analysis of the right hippocampus. G-CSF did 
not increase the GFP+ signal. The administration of the CCR2 receptor antagonist alone tended to 
decrease the GFP+ signal compared to the vehicle-treated group, but this did not reach statistical 
significance. 

G-CSF treatment improved performance in the RAWM compared to vehicle-treated controls 
(Figure 4). Interestingly, CCR2 antagonist co-administration with G-CSF did not prevent improved 
performance associated with G-CSF treatment. In fact, CCR2 antagonist treatment alone resulted in 
better performance in the RAWM compared to vehicle treatment. 

G-CSF treatment, with or without CCR2 antagonist co-administration, triggered an increase in 
hippocampal DCX expression, a marker of immature neurons (Figure 5). In addition, the CCR2 
antagonist administered alone at the low dose also significantly increased hippocampal neurogenesis 
(p < 0.05). DCX+ cell counts were not performed in this study because an earlier report from this 
laboratory showed a positive correlation between the DCX+ signal in the hippocampus and the DCX+ 
cell count in that structure [13]. 

Figure 3. Summary data of GFP+ signal in the frontal cortex, striatum and hippocampus two weeks
after CCI. The left panel shows an analysis of the GFP+ signal in the right frontal cortex. G-CSF-treated
mice exhibited a significant increase in the GFP+ signal that was blocked by co-administration of
the CCR2 receptor antagonist at both 0.5 and 2.0 mg/kg doses. One-way ANOVA (p = 0.0001) was
followed by Sidak’s multiple comparison tests. * p < 0.05. It is noteworthy that the low dose CCR2
antagonist group alone significantly decreased the GFP+ signal compared to the vehicle-treated group.
One-way ANOVA was run on all groups excluding the G-CSF group: multiple comparisons of the
CCR2 antagonist (with and without G-CSF) compared to the vehicle-treated group revealed that the low
dose CCR2 (0.5 mg/kg) groups exhibited a significant decrease in signal. ** p <0.05. The middle panel
shows an analysis of the right striatum. G-CSF significantly increased the GFP+ signal compared to
vehicle treatment. The GFP+ signal was blocked by co-administration of the CCR2 receptor antagonist
at both doses. One-way ANOVA (p = 0.001) was followed by Sidak’s multiple comparison tests.
* p < 0.05. The right panel shows an analysis of the right hippocampus. G-CSF did not increase the
GFP+ signal. The administration of the CCR2 receptor antagonist alone tended to decrease the GFP+
signal compared to the vehicle-treated group, but this did not reach statistical significance.

G-CSF treatment improved performance in the RAWM compared to vehicle-treated controls
(Figure 4). Interestingly, CCR2 antagonist co-administration with G-CSF did not prevent improved
performance associated with G-CSF treatment. In fact, CCR2 antagonist treatment alone resulted in
better performance in the RAWM compared to vehicle treatment.

G-CSF treatment, with or without CCR2 antagonist co-administration, triggered an increase
in hippocampal DCX expression, a marker of immature neurons (Figure 5). In addition, the CCR2
antagonist administered alone at the low dose also significantly increased hippocampal neurogenesis
(p < 0.05). DCX+ cell counts were not performed in this study because an earlier report from this
laboratory showed a positive correlation between the DCX+ signal in the hippocampus and the DCX+
cell count in that structure [13].
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Figure 4. Effects of G-CSF and CCR2 antagonist treatment on performance in the Radial Arm Water 
Maze (RAWM). Summary data is plotted as the mean number of errors on the y-axis and trials on the 
x-axis. Baseline training on the RAWM was performed for three days before CCI. Drugs were then 
administered daily for three days after CCI. The RAWM was repeated on day 12 with reversal testing 
on day 14 post CCI (bar graphs). Asterisks indicate significant differences between treatments 
compared to each other and compared to baseline performance (* p <0.05), based on one-way ANOVA 
(*** p = 0.008) followed by Bonferroni multiple comparison tests (** p < 0.05).  

 

Figure 4. Effects of G-CSF and CCR2 antagonist treatment on performance in the Radial Arm Water
Maze (RAWM). Summary data is plotted as the mean number of errors on the y-axis and trials on
the x-axis. Baseline training on the RAWM was performed for three days before CCI. Drugs were
then administered daily for three days after CCI. The RAWM was repeated on day 12 with reversal
testing on day 14 post CCI (bar graphs). Asterisks indicate significant differences between treatments
compared to each other and compared to baseline performance (* p <0.05), based on one-way ANOVA
(*** p = 0.008) followed by Bonferroni multiple comparison tests (** p < 0.05).
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Figure 5. Effects of G-CSF and CCR2 receptor antagonist treatment on the expression of hippocampal 
doublecortin (DCX), a surrogate marker of neurogenesis. Arrows point to DCX+ cells in the 
subgranular zone. (A) Vehicle (left panel) compared to G-CSF treatment (right panel); (B) CCR2 
receptor antagonist (0.5 mg/kg) alone (left panel) compared to G-CSF co-administered with the CCR2 
receptor antagonist (0.5 mg/kg); (C) CCR2 receptor antagonist (2.0 mg/kg) alone (left panel) 
compared to G-CSF co-administered with the CCR2 receptor antagonist (2.0 mg/kg). Scale bar = 20 
µm; (D) Summary of signal analysis. Mean ± SEM of the DCX+ signal (% of area) is plotted against 
specific treatment. Both G-CSF administered alone, and the CCR2 receptor antagonist administered 
alone increased the DCX signal in the subgranular zone of the hippocampus compared to vehicle 
treatment. One-way ANOVA was followed by Sidak’s correction for multiple comparisons (* p < 0.05). 

3. Discussion 

G-CSF administration (100 µg/kg daily × 3 days) promoted the recovery of performance in a 
hippocampal-dependent task assessed two weeks after CCI. The improved RAWM performance in 
the G-CSF treated cohort was associated with an increased recruitment of GFP+ bone marrow-
derived cells to the site of the lesion and increased neurogenesis. This finding replicates earlier reports 
from this and other laboratories [5–7,13,14]. 

In addition to G-CSF actions in the periphery to increase circulating monocytes and increase 
their infiltration into CNS, G-CSF readily passes the blood–brain barrier [10] and interacts with G-
CSF receptors, expressed by adult neural stem/progenitor cells, to promote neurogenesis [8,9,11]. G-
CSF and its receptor are expressed by neurons in the CNS; their expression is induced by ischemia, 
implying an autocrine protective signaling mechanism [12]. G-CSF is now recognized to have 
multiple actions that contribute to long-term CNS plasticity. G-CSF exerts anti-apoptotic activity in 
mature neurons, triggers the neuronal differentiation of adult neural stem cells in the brain, and 
promotes long-term recovery in chronic models of stroke [1,11,12]. 

In order to distinguish the direct CNS actions of G-CSF from its peripheral actions, experiments 
were designed to block the recruitment of peripheral monocytes to the site of the lesion produced by 
CCI. The choice of the drug to block chemotaxis of monocytes was based on results from an in vitro 
study that showed an inhibitor of the chemokine receptor CCR2 (RS504303) was effective in blocking 

Figure 5. Effects of G-CSF and CCR2 receptor antagonist treatment on the expression of hippocampal
doublecortin (DCX), a surrogate marker of neurogenesis. Arrows point to DCX+ cells in the subgranular
zone. (A) Vehicle (left panel) compared to G-CSF treatment (right panel); (B) CCR2 receptor antagonist
(0.5 mg/kg) alone (left panel) compared to G-CSF co-administered with the CCR2 receptor antagonist
(0.5 mg/kg); (C) CCR2 receptor antagonist (2.0 mg/kg) alone (left panel) compared to G-CSF
co-administered with the CCR2 receptor antagonist (2.0 mg/kg). Scale bar = 20 µm; (D) Summary of
signal analysis. Mean ± SEM of the DCX+ signal (% of area) is plotted against specific treatment. Both
G-CSF administered alone, and the CCR2 receptor antagonist administered alone increased the DCX
signal in the subgranular zone of the hippocampus compared to vehicle treatment. One-way ANOVA
was followed by Sidak’s correction for multiple comparisons (* p < 0.05).

3. Discussion

G-CSF administration (100 µg/kg daily × 3 days) promoted the recovery of performance in
a hippocampal-dependent task assessed two weeks after CCI. The improved RAWM performance in
the G-CSF treated cohort was associated with an increased recruitment of GFP+ bone marrow-derived
cells to the site of the lesion and increased neurogenesis. This finding replicates earlier reports from
this and other laboratories [5–7,13,14].

In addition to G-CSF actions in the periphery to increase circulating monocytes and increase
their infiltration into CNS, G-CSF readily passes the blood–brain barrier [10] and interacts with G-CSF
receptors, expressed by adult neural stem/progenitor cells, to promote neurogenesis [8,9,11]. G-CSF
and its receptor are expressed by neurons in the CNS; their expression is induced by ischemia, implying
an autocrine protective signaling mechanism [12]. G-CSF is now recognized to have multiple actions
that contribute to long-term CNS plasticity. G-CSF exerts anti-apoptotic activity in mature neurons,
triggers the neuronal differentiation of adult neural stem cells in the brain, and promotes long-term
recovery in chronic models of stroke [1,11,12].

In order to distinguish the direct CNS actions of G-CSF from its peripheral actions, experiments
were designed to block the recruitment of peripheral monocytes to the site of the lesion produced by
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CCI. The choice of the drug to block chemotaxis of monocytes was based on results from an in vitro
study that showed an inhibitor of the chemokine receptor CCR2 (RS504303) was effective in blocking
migration of monocytic cells across a fibronectin-coated micropore filter in vitro [15]. Hence, RS504393,
the selective CCR2 antagonist was co-administered with G-CSF for three days after CCI. As reported
here, the drug significantly impeded infiltration of GFP+ bone marrow-derived cells to the frontal
cortex and striatum. In addition, both low and high doses of the CCR2 antagonist did not prevent
recovery of performance from CCI. In fact, the performance in the RAWM following G-CSF was
identical to the performance in the presence of the CCR2 antagonist. From these observations, it can be
inferred that the direct actions of G-CSF in the CNS was sufficient to stimulate recovery from CCI and
the infiltration of BMDC from the periphery was not necessary to improve performance in the RAWM
after CCI.

Interestingly, cohorts of mice that were treated with the CCR2 antagonist alone performed as well
as animals that received G-CSF alone. To understand this finding, it is important to clarify and discuss
the chemokine system impacted by the drug. CCR2 (C-C motif receptor 2) is a G-protein-coupled
receptor that binds to its natural ligand, the chemokine CCL2 (commonly known as monocyte
chemoattractant protein-1 or MCP-1 [16]. MCP-1 mediates recruitment of inflammatory cells to sites of
tissue injury [17,18]. MCP-1 has been reported to play an important role in the inflammatory response
triggered by ischemia, traumatic brain injury, multiple sclerosis and excitotoxicity [19–22]. The receptor
for MCP-1, CCR2, binds other chemokines, but MCP-1 is the major ligand and is considered to be the
most potent in activating the signal transduction pathways that mediate monocyte recruitment [23].
The beneficial effects of CCR2 antagonism following TBI have previously been reported in a rat
model [24]. Although the methodology and rodent species used by Liu et al was different, the findings
reported here confirm the importance of the chemokine CCR-2/CCL-2 system in TBI. In the Liu et
al study, local TBI in the adult rat cortex was induced by a weight-drop method. Expression of both
MCP-1 and CCR2 in the tissue around the contusion site was markedly increased for at least 10 days
after injury, peaking on day 3. The selective CCR2 antagonist, RS504393, decreased apoptosis and
improved performance in the Morris water maze three days post-TBI, suggesting that CCL2–CCR2
signaling has deleterious effects on neuronal survival and learning [24]. Unlike the study by Liu et
al.; the administration of the CCR2 antagonist enhanced hippocampal neurogenesis, an effect that
correlates with improved performance in the RAWM, a hippocampal-dependent task. Mitigation of
the inflammatory response with a low dose of MCP-1 following CCI produced effects very similar to
the effect of G-CSF treatment alone.

4. Materials and Methods

This study was carried out in strict accordance with the recommendations from the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved
by the Institutional Animal Care and Use Committee at the University of South Florida. (IACUC #
V4388, approved on 6 February 2015).

4.1. Animals

C57BL/6 mice, 8–10 weeks old, were purchased from Harlan Laboratories, and transgenic GFP
mice (C57BL/6-Tg [ACTB-EGFP] 1Osb/J, 003291) were obtained from Jackson Laboratory (Bar Harbor,
ME, USA). All the experiments utilized chimeric mice, prepared from C57BL/6 mice transplanted
with green fluorescent protein-expressing (GFP+) bone marrow. More specifically, the procedure for
bone marrow harvesting from transgenic (Tg) GFP+ mice has been previously published [7,9]. Briefly,
bone marrow cells are collected from femurs and tibias of adult male GFP transgenic mice by flushing
the bone shaft with PBS + 0.5% bovine serum albumin (BSA) + 2mM ethylenediaminetetraacetic
acid (EDTA) (Sigma, St. Louis, MO, USA). To generate chimeric mice, C57BL/6J mice were lethally
irradiated with 8 Gy total body irradiation (delivered in two fractions of 4 Gy, an interval of 4 h) at
a dose rate of 1.03 Gy/min in a Gammacell 40 Exactor Following irradiation, the mice were given
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a bone marrow transplant (10 × 106 mononuclear cells) from transgenic GFP mice infused via tail
vein. Bone marrow-derived cells in the rescued mice were readily tracked by virtue of their green
fluorescence. Examination of blood smears from tail clippings for the presence of green monocytes
confirmed successful engraftment.

A total of 48 chimeric mice were prepared for this study. Cognitive performance in
a hippocampal-dependent task (the radial arm water maze, or RAWM) was assessed at baseline,
and 14 d after controlled cortical impact (CCI) in groups of eight mice. See Table 1 for distribution of
the treatment groups.

Table 1. Schedule of G-CSF and CCR-2 antagonist administration.

Group Number of Mice Treatments Schedule

A 8 Saline + Saline Daily × 3 days
B 8 Saline + G-CSF Daily × 3 days
C 16 CCR-2 antag (0.5 or 2 mg/kg)+ Saline Daily × 3 days
D 16 CCR-2 antag (0.5 or 2 mg/kg)+ G-CSF Daily × 3 days

4.2. Surgery and Controlled Cortical Impact

Animals underwent an experimental TBI using a controlled cortical impactor (Pittsburgh Precision
Instruments Inc., Pittsburgh, PA, USA) as described previously [13,25]. Briefly, animals initially
received Buprenorphine (0.05 mg/kg, s.c.) at the time of anesthesia induction (with 125 mg/kg
Ketamine, 12.5 mg/kg Xylazine). After deep anesthesia was achieved (by checking for pain
reflexes), individual animals were fixed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA,
USA). Craniectomy of exposed skull over the right frontoparietal cortex was performed (−0.5 mm
anteroposterior and +0.5 mm mediolateral to bregma). This aperture accommodated the impactor tip
of the pneumatically-operated TBI device (with a convex tip diameter = 2 mm), which impacts the
brain at a velocity of 6.0 m/s reaching a depth of 0.5, 1.0 or 2.0 mm below the dura mater layer for
mild, moderate and severe TBI, respectively, and remains in the brain for 150 ms [25]. For the purposes
of the present study, a mild TBI was induced. The impactor rod was angled 15◦ to the vertical to
maintain a perpendicular position in reference to the tangential plane of the brain curvature at the
impact surface. A linear variable displacement transducer (Macrosensors, Pennsauken, NJ, USA),
connected to the impactor, and measured velocity and duration to verify consistency. Bone wax was
used to cover the craniectomized region and the skin incision sutured thereafter. A computer-operated
thermal blanket pad and a rectal thermometer allowed maintenance of body temperature within
normal limits. All animals were closely monitored until recovery from anesthesia and over the next
three consecutive days.

4.3. Drugs

Human recombinant G-CSF (Neupogen®) was purchased from Amgen, Inc. (Thousand Oaks,
CA, USA). The Neupogen was received in preservative-free vials containing 300 µg/mL. It was
diluted to the appropriate concentrations in sterile 5% dextrose solution. The selective CCR-2
antagonist RS 504393 (Chemical Name: 6-Methyl-1′-[2-(5-methyl-2-phenyl-4-oxazolyl)ethyl]-spiro
[4H-3,1-benzoxazine-4, 4′-piperidin]-2(1H)-one) was purchased from Tocris Biosci Inc. (Minneapolis,
MN, USA). This chemokine receptor CCR-2 and its primary ligand, monocyte chemoattractant protein-1
(MCP-1), represent a critical signaling pathway for the recruitment of peripheral blood monocytes to
sites of immune-mediated inflammation, where they become inflammatory macrophages.

4.4. Radial Arm Water Maze (RAWM)

The radial arm water maze (RAWM) task was employed to study the cognitive effects of G-CSF
in mice that had undergone mild to moderate CCI. The RAWM is a hippocampal-dependent, spatial
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learning task that is not based on locomotor ability or swimming speed [26]. The RAWM was started
on day 7 post-CCI. A six-arm radial arm maze was placed into a water tank with an approximately
100 cm diameter, and a 25 cm height, 5 cm diameter platform was used. The platform was submerged
0.5 cm below the water surface. The temperature of the water was kept at 26 ◦C. Mice were placed
in the start arm at the beginning of every trial, and the platform was located in the goal arm. Every
animal had an assigned platform/arm location throughout acquisition of learning, yet the starting
zone was randomly changed per trial. A spatial-training protocol was followed. Mice were given two
blocks of five trials, each block separated by a 30-minute rest period per day, for a total of 10 trials
a day for two days of acquisition of learning for both baseline and post-TBI training. Trials were only
60 s long. Once animals found their goal arm/platform, they were allowed to remain on the platform
for 30 s between trials. If mice were unable to find their goal arm/platform within 60 s, mice were
guided to their goal arm and allowed to rest on the platform for 30 s. On day 3, a probe trial was given;
this was reversal training in which the mice were placed 180 degrees from the goal arm. Mice were
given five trials to train for the new position (reversal training). RAWM performance analysis was
done by averaging the trials per block, using five trials per block, then a total of two blocks per day
(errors are scored every time mice do not enter the goal arm).

4.5. Immunohistology

Mice were anesthetized with 150 mg/kg Ketamine, 15 mg/kg Xylazine and then transcardially
perfused with 0.9% saline followed by 4% paraformaldehyde. Brains were stored in 4%
paraformaldehyde, and then transferred to 25% sucrose solution in 4% paraformaldehyde, until
the brains sank to the bottom. Then brains were slowly immersed into isopentane (cooled on dry-ice),
left in isopentane for 20 s, removed, placed on a small piece of aluminum foil sitting on powdered
dry-ice for 1–2 min (to let the isopentane evaporate) and finally wrapped in the foil and stored at
−80 ◦C until sectioning. Brains slices were cut 30 µm thick, in a cryostat (Leica, Frankfurt, Germany)
set to −25 ◦C.

Selective immunostaining of astrocytes and microglia was performed with antibodies to glial
fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule-1 (Iba-1), respectively.
Iba-1 is protein that is specifically expressed in macrophages/microglia and is upregulated during
the activation of these cells. Antibodies to doublecortin (DBX) were used to label immature neurons
in the dentate gyrus of the hippocampus. Brain sections were preincubated in phosphate buffered
saline (PBS) containing 10% normal serum (goat or donkey; Vector) and 0.3% Triton X-100 (Sigma) for
30 min. The sections were then transferred to a solution containing primary antibodies in 1% normal
serum, 0.3% triton X-100/PBS and incubated overnight at 4 ◦C. The specific antibodies used in each
experiment were: rabbit anti-DCX (Abcam Inc.; Cambridge, UK), 1:1000; 1:500; rabbit anti-Iba-1 (Wako
Chemicals USA Inc., Richmond, VA, USA), 1: 500, rabbit anti-GFAP (BioGenex, Fremont, CA, USA),
1:50 in PBS containing 1:100 normal serum without Triton X-100. After incubation with a primary
antibody, the sections were washed and incubated for one hour with Alexa Fluor 488 goat anti-mouse
IgG diluted 1:400 in PBS (Invitrogen, Carlsbad, CA, USA) at room temperature. The sections were then
rinsed in PBS three times and covered with a cover glass. Green fluorescence signals from the labeled
cells were visualized with fluorescence microscopy using appropriate filters.

4.6. Quantitative Assessment of Bone Marrow-Derived Cells (GFP+ cells), Microglial Cells (Iba1+) and
Hippocampal Neurogenesis (DCX+ Cells)

Quantitation of microgliosis (Iba1+ signal) and astrogliosis (GFAP+ signal) was made by
computerized image analysis. An estimation of hippocampal neurogenesis (DCX+ signal) was also
determined by image analysis. Previous reports from our laboratory documented a strong correlation
between DCX+ signal analysis and stereologic counts of hippocampal DCX+ cells [13].

The method for quantitative image analyses has been previously described [9,27]. Eight mice
per treatment group were analyzed at 14 days after CCI. Images were acquired at a magnification of
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200X as digitized tagged-image format files (TIFF) to retain maximum resolution using an Olympus
BX60 microscope with an attached digital camera system (DP-70, Olympus, Tokyo, Japan). Images of
eight sections (each 30 microns thick and 180 microns apart) were captured from the serially sectioned
striatum (approximately 1.2 mm in the AP dimension, starting at beginning of the lateral ventricles to
the anterior commissure) on both the left and right side from each animal. Using ImageJ software (NIH,
V1.48, Bethesda, MD, USA), the green channel was selected (to isolate the Alexa Fluor 488 signal) and
converted into a monochrome signal. Then, a threshold optical density was obtained that discriminated
staining from the background. Each anatomic region of interest was manually edited to eliminate
artifacts. The thresholded signal was automatically generated by Image J and expressed as the total area
of signal divided by the area of the 20X microscopic visual field (% visual field). Bias was eliminated
by having the image analysis done by a blinded researcher.

4.7. Data Analysis and Statistics

Neurohistologic measures, as well as measures of neurotrophic factors were expressed as mean ±
SEM and statistically evaluated using two-way ANOVA and multiple t-tests (comparing vehicle vs.
G-CSF) with the Holm-Sidak correction for multiple comparisons (GraphPad version 6.01, LaJolla, CA,
USA). Analysis of RAWM data utilized repeated measures analysis of variance (ANOVA) with one
between-subjects factor (treatment) and one within-subjects factor (trials). One-way ANOVAs followed
by Bonferroni’s post hoc test were also used to determine which trials were different between groups
when a significant overall group difference or group × trial interaction was found. All comparisons
were considered significant at p < 0.05.

5. Conclusions

In conclusion, the present study supports the hypothesis that the direct action of G-CSF on neural
cells, independent of its hematopoietic effects, is primarily responsible for enhanced recovery from
CCI. In addition, this study confirms the importance of CCR2 and its ligand MCP-1 in mediating the
inflammatory response following TBI. More importantly, the administration of a drug that blocks
MCP-1 actions (without the need for co-administration of G-CSF) appears to be sufficient to enhance
recovery of cognitive performance in the RAWM. Going forward, it will be important to study the
mechanism by which mitigation of the inflammatory response, by interfering with chemokine signaling,
results in stimulation of the hippocampal neurogenesis.
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