
Cancer stem cells (CSCs) are rare, tu-
mour-initiating cells that exhibit stem 
cell properties: capacity of self-renew-
al, pluripotency, highly tumorigenic 
po tential, and resistance to therapy. 
Cancer stem cells have been charac-
terised and isolated from many can-
cers, including breast cancer. Devel op-
mental pathways, such as the Wnt/ 
β-catenin, Notch/γ-secretase/Jagged, 
Shh (sonic hedgehog), and BMP sig-
nalling pathways, which direct prolife-
ration and differentiation of normal 
stem cells, have emerged as major 
sig nalling pathways that contribute to 
the self-renewal of stem and/or pro-
genitor cells in a variety of organs and 
cancers. Deregulation of these sig-
nalling pathways is frequently linked 
to an epithelial-mesenchymal tran-
si tion (EMT), and breast CSCs often 
possess properties of cells that have 
undergone the EMT process. Signal-
ling networks mediated by microRNAs 
and EMT-inducing transcription fac-
tors tie the EMT process to regulatory 
networks that maintain “stemness”. 
Recent studies have elucidated epi-
genetic mechanisms that control plu-
ripotency and stemness, which allows 
an assessment on how embryonic and 
normal tissue stem cells are deregu-
lated during cancerogenesis to give 
rise to CSCs. Epigenetic-based mecha-
nisms are reversible, and the possibil-
ity of “resetting” the abnormal cancer 
epigenome by applying pharmacolo-
gical compounds targeting epigenetic 
enzymes is a promising new thera-
peutic strategy. Chemoresistance of 
CSCs is frequently driven by various 
mechanisms, including aberrant ex-
pression/activity of ABC transporters, 
aldehyde dehydrogenase and anti- 
oncogenic proteins (i.e. BCL2, B-cell 
lymphoma-2), enhanced DNA damage 
response, activation of pro-survival 
signalling pathways, and epigenetic 
deregulations. Despite controversy sur-
rounding the CSC hypothesis, there is 
substantial evidence for their role in 
cancer, and a number of drugs intend-
ed to specifically target CSCs have en-
tered clinical trials. 
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Introduction

The “cancer stem cell theory” has attracted a great deal of attention fol-
lowing the identification of a rare population of leukaemia-initiating cells 
exhibiting stem-like features [1]. It has been further strengthened by the 
isolation and characterisation of cancer stem cells (CSCs, named also tu-
mour-initiating cells or stem-like cells) from solid tumours such as breast [2], 
glioblastoma [3], colon [4], lung [5], ovary [6], and thyroid [7]. Besides the 
properties shared with adult, tissue-specific stem cells, such as self-renewal 
and the ability to differentiate into other cells, a subpopulation of candidate 
CSCs must meet certain criteria: 1) the strong ability to engraft; 2) the ability 
to recapitulate the tumour of origin both morphologically and immunophe-
notypically in xenografts; and 3) the ability to be serially transplanted. 

To distinguish CSCs from other tumour cells and normal stem cells, 
a search for specific surface and intracellular biomarker phenotypes has 
been ongoing in recent years. The most common method used to identi-
fy CSCs is fluorescence-activated cell sorting (FACS). Breast cancer stem 
cells (BCSC) have been identified as CD44+, CD24−/low, and ESA+ (epithelial 
specific antigen) and lacking expression of specific lineage markers (ESA+ 

CD44+CD24−/low Lin−) [2]. Amongst primary breast tumours, there is an as-
sociation between the metastatic status and a high prevalence of markers 
such as CD44+/CD24−/low, ESA+, CD133+, CXCR4+, and PROCR+ in tumour cells. 

Wnt (wingless), Shh (sonic hedgehog), Notch, and BMP/TGF-β (bone mor-
phogenetic proteins/transforming growth factor β) signalling pathways con-
tribute to the self-renewal of stem and/or progenitor cells in a variety of 
organs. When deregulated, these pathways can contribute to oncogenesis. 

The Wnt/β-catenin signalling pathway modulates a balance between 
stemness and differentiation in several adult stem cell niches, such as the 
hair follicles in the skin, the mammary gland, and the intestinal crypt. Con-
stitutive Wnt signalling activation resulting from mutations in genes encod-
ing its downstream components underlies tumorigenesis in these tissues. 
Loss of adenomatous polyposis coli (APC) tumour suppressor function or 
oncogenic β-catenin mutations occur in the majority of sporadic colorectal 
cancers and melanoma [8]. Monoclonal antibodies against the Wnt cascade 
and several inhibitors of Wnt signalling compounds are under investigation 
in several cancers [9]. 

The Hedgehog (Hh) family of secreted proteins includes Sonic (Shh), In-
dian (Ihh), and Desert (Dhh). The Hh proteins exert their activity by binding 
to a transmembrane protein, Patched (PTCH), which constitutively represses 
Hh pathway activity through its interaction with a transmembrane pro-
tein Smoothened (SMO). Several groups have exploited cyclopamine (SMO 
signaling inhibitor), to inhibit the Hh cascade, and thereby inhibiting the 
growth, invasion, and metastasis of breast, prostatic, pancreatic, and brain 
malignancies both in vitro and in vivo [10, 11].

Notch signalling is initiated through the interaction of a receptor on the 
signal-receiving cell and a ligand on the neighbouring cell. Upon binding to 
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Delta-Serrate LAG2 (DSL) ligand, the Notch receptor is ac-
tivated by an ordered proteolytic cleavage. Release of the 
Notch intracellular domain from the cell membrane medi-
ated by γ-secretase results in its translocation to the nucle-
us where it interacts with DNA-binding proteins of the CSL 
family (CBF1 or RBPJ in humans) and induces target gene 
transcription. The best-characterised Notch target genes 
are the basic helix-loop-helix (bHLH) transcriptional repres-
sors of the Hairy enhancer of split (Hes) and Hairy-related 
(Hrt) protein families [12]. Inhibition of Notch1 with spe-
cific antibodies significantly reduced the CD44+CD24−/low  
subpopulation (BCSC) and diminished the incidence of 
brain metastases from breast cancer cells [13]. 

Bone morphogenetic proteins (BMPs), TGF-β and GDFs 
(growth and differentiation factors), belong to the TGF-β su-
perfamily and are pluripotent factors involved in the regula-
tion of embryonic development and postnatal homeostasis 
of various organs and tissues by controlling cellular differ-
entiation, proliferation, and apoptosis [14]. TGF-β and BMP/
GDF form homo- and hetero-dimers that interact with het-
erodimers of type I and type II receptor to produce signalling 
complexes, leading to the activation of SMAD transcription 
factors [15]. Stimulation of an epithelial-to-mesenchymal 
transition (EMT) by TGF-β is accompanied by the generation 
of breast CSCs [16]. Many of the genes actively transcribed 
by CD44+/CD24−/low BCSCs are classical TGF-β targets, associ-
ated with a mesenchymal, migratory phenotype. In a breast 
cancer model of MDA-MB-231 cells injected to athymic mice, 
BMP7 or BMP2/7 heterodimer antagonised the pro-tumor-
igenic and pro-metastatic actions of TGF-β, and reduced  
TGF-β-driven Smad signalling and cancer cell invasiveness. 
The maintenance of a subpopulation of ALDHhi/CD44hi/
CD24–/low BCSCs and formation of bone metastases by MDA-
MB-231 cells growing in nude mice was strongly reduced by 
heterodimeric BMP2/7 [17].

In addition, pro-survival and anti-apoptotic pathways 
are frequently overactivated in cancer stem cells. STAT (sig-
nal transducers and activators of transcription) proteins 
are activated in response to extracellular ligands that bind 
to appropriate receptors and activate receptor-associated 
tyrosine kinases (i.e. as Janus kinase – JAK) and non-recep-
tor tyrosine kinases (i.e. as Src kinase). Phosphorylated 
STAT proteins form dimers and translocate to the nucleus 
where they activate target genes [18]. Increased levels of 
STAT3 were found in CSCs comparing to bulk cells in brain, 
breast, colon, and liver cancers. Blocking STAT3 function 
in BCSC correlated with lower proliferation and viability of 
stem-like cells, suggesting the involvement of this factor in 
the maintenance of CSCs [19]. 

Nuclear factor-κB (NF-κB) transcription factors are con-
stitutively active in many solid tumours, including breast, 
colon, and liver cancers [20]. Nuclear factor-κB activation 
is regulated by the IκB kinase (IKK) complex composed of 
IKKα and IKKβ catalytic subunits. IKKα activity is required 
for self-renewal of ErbB2/Her2-transformed mammary tu-
mour-initiating cells [21]. IKKα phosphorylates p27/Kip1, 
the cyclin-dependent kinase inhibitor, and stimulates its 
nuclear export or exclusion. Reduced p27 expression re-
stored mammary tumorigenesis in IKKα knockout mice 
and self-renewal of mammary tumour-initiating cells.

Mechanisms that regulate self-renewal of breast 
cancer stem cells 

The best characterised signalling pathways controlling 
self-renewal and differentiation in normal stem cells, 
such as Wnt/β-catenin, Notch, Hedgehog, and TGF-β/
BMP pathways, are frequently deregulated in breast 
cancer cells, which leads to acquisition of the stem-cell 
phenotype [22, 23] (Fig. 1). Furthermore, networks of 
co-ordinately working proto-oncogenes and tumour sup-
pressors have evolved to control self-renewal of stem cells 
throughout their life. For example, the Polycomb group 
(PcG) protein, Bmi-1, a proto-oncogene consistently re-
quired for the self-renewal of diverse adult stem cells, is 
also essential for the proliferation of cancer stem cells in 
the same tissues [24–26]. Moreover, EMT also may impart 
a self-renewal capability to cancer cells [16]. This process 
enables reprogramming of polarised epithelial cells to-
wards a mesenchymal motile phenotype, and a growing 
body of evidence links EMT to the acquisition of stem 
cell properties by breast cancer cells [27, 28]. While over-
expression of OCT3/4, SOX2, KLF4, and c-MYC genes in 
somatic cells leads to dedifferentiation into induced plu-
ripotent stem cells (iPSCs) [29, 30], the activation of the 
molecular targets of these pluripotency-associated genes 
is frequently observed in poorly differentiated breast tu-
mours and other cancers [31–33]. Of interest, accumu-
lating evidence indicates that the expression of Oct3/4, 
Nanog, and Sox2 transcription factors have a strong cor-
relation with CSCs; knockdown of these genes decreased 
tumour sphere formation and inhibited tumour formation 
in xenograft tumour models [34–38].

Epigenetic regulation of the expression  
of pluripotency markers in breast cancer stem cells 

Recent studies have elucidated epigenetic mecha-
nisms that control pluripotency and stemness, thus al-
lowing an assessment of how embryonic and normal 
tissue stem cells are deregulated in cancer to give rise 
to CSCs. Levels of transcription factors acting in embry-
onic stem cells (ESCs), such as Oct3/4, Nanog, or Sox2, 
strongly correlate with acquisition and maintenance of 
CSC phenotype. The expression of these factors in can-
cer stem cells is regulated by epigenetic mechanisms 
[37, 38]. Wang et al. demonstrated that DNA methylation 
acts synergistically with histone modifications in regula-
tion of NANOG, OCT3/4, and c-MYC gene expression and 
contribute to the metastatic potential of CSCs. Results 
from this work suggest that the reactivation of pluripo-
tency circuits by aberrant epigenetic alterations is one 
of the key events of CSC initiation [39]. Furthermore, 
Rivenbark et al. have shown that active expression of the 
SOX2 gene in breast cancer cells is critically controlled 
by its promoter demethylation. Direct methylation of this 
region by zinc-finger (ZF)-based artificial transcription 
factors (ATFs) having a methyltransferase activity led to 
repression of the promoter activity and down-regulation 
of SOX2 expression [40]. Further examples of epigene-
tic alterations affecting the expression of pluripotency 
markers are presented in Table 1.
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Deregulation of Wnt/β-catenin pathway  
by altered methylation and aberrant histone 
modifications

Wnt/β-catenin is an important pathway involved in 
the regulation of stem cells as well as cancer stem cells. 
In breast cancer, many genes coding for components  
of Wnt/β-catenin signalling, including the Wnt inhibitor 
– WIF1 (Wnt inhibitory factor1), SFRP1-5 (Secreted Friz-
zled-Related Protein 1), and DKK1 (Dickkopf-related pro-
tein 1), are methylated and silenced, which leads to ab-
errant activation of the Wnt-pathway and acquisition of 
stem-cell phenotype [52–54, 57]. Among various antago-
nists of the Wnt pathway, DACT1 (Dapper/Frodo) has been 
identified as a protein interacting with Dishevelled (Dvl), 
a central mediator of Wnt signalling. As demonstrated by 
Yin et al., DACT1 expression was silenced in breast tumour 
through promoter methylation leading to overactivation 
of Wnt signalling and enhanced migratory behaviour of 
breast cancer cells [58]. Upregulated Wnt signalling was 
also observed when the APC gene promoter was found 
methylated. Loss of APC favours β-catenin accumulation 
and stimulates TCF/LEF-induced transcription [52, 86]. 

Further studies demonstrated aberrant histone modifica-
tions such as enrichment of EZH2-mediated H3K27me3 
histone mark on Wnt genes in parathyroid tumour cells, 
which leads to deregulated Wnt signalling [87]. Further-
more, miRNAs have also been implicated in the regulation 
of different players of Wnt/β-catenin in different types of 
cancer modulating the acquisition of stem cell properties 
[43, 45, 48], as recently reviewed elsewhere [22, 23, 88].

Posttranscriptional modifications impair Notch 
signalling in BCSCs 

The Notch pathway is associated with the regulation 
of cell fate at several distinct developmental stages of the 
mammary gland and has been implicated in cancer ini-
tiation and progression. Recent reports have shown that 
Notch signalling is essential for maintaining the CSC pop-
ulation in breast cancer cell lines [89, 90]. In a large pro-
portion of breast carcinomas, epigenetic mechanisms that 
activate Notch signalling were related to the role of miR-
146a, which targets NUMB, a negative regulator of Notch. 
Numb is known to down-regulate Notch signalling through 
direct interaction and the subsequent ubiquitin-mediated 
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Fig. 1. Schematic representation of signalling pathways that control maintenance of BCSCs

Wnt binds its co-receptors: Frizzled (Fz) and LRP5/LRP6. Various molecules that interact with the receptors and GSK-3 and CK1 (casein kinase 1). In the presence of 
Wnt, β-catenin is stabilised and induces gene expression by complexing with various transcription factors such as TCF/LET. The Delta-like and the Jagged proteins 
produced by signal-sending cells serve as ligands for Notch receptors. Upon ligand binding, the receptor fragment is cleaved by TACE (TNF-α ADAM metalloprotease 
converting enzyme) then γ-secretase to create NICD (Notch intracellular domain), which translocates to the nucleus, forms a complex with transcription factors RBPJ 
and CSL (CBF1/Suppressor of Hairless/LAG-1), and activates the expression of target genes (f.e. Hes1 and Herp). Sonic Hedgehog (SHH) binds to a transmembrane 
protein Patched (PTCH), which constitutively represses Hh pathway activity through its interaction with a transmembrane protein Smoothened (SMO). Shh-bound 
PTCH activates SMO, and activated SMO releases GLI1 (Glioma-Associated Oncogene Homolog 1) from cytoplasmic sequestration, and, in turn, GLI1 translocates 
into the cell nucleus to regulate gene expression. Activation of TGF-β type I and type II receptors leads to activation of receptor kinases and phosphorylation of the 
R-Smads, forming a complex with co-Smad 4, which translocates to the nucleus
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protein degradation. Recent reports demonstrate a role 
of miR-146a in mediating the induction and maintenance 
of breast CSCs during EMT and provide new insights into 
the mechanisms for breast cancer progression [65, 91, 92]. 
Furthermore, an epigenetic enzyme EZH2, which belongs 
to the Polycomb group, was demonstrated to regulate 
NOTCH signalling in breast carcinoma. Gonzalez et al. have 
identified EZH2 as a direct regulator of NOTCH1, inducing 

activation of Notch1 expression and signalling, leading to 
stem cell expansion in triple-negative breast cancer [93].

Epigenetic regulation  
of epithelial-to-mesenchymal transition 

Epigenetic changes may influence acquisition of stem 
cell-like phenotype by cancer cells via methylation of 
genes implicated in EMT. Taube et al. identified micro-

Table 1. Epigenetic regulation of selected pathways and mechanisms in cancer stem cells

Mechanism/Pathway Target Epigenetic modification Epigenetic modulator Reference

Wnt/β-catenin APC Promoter DNA 
hypermethylation

DNMTs 41 

miRNA targeting miR-135a, miR-135b 42

β-catenin miRNA targeting miR-200a 43

miR-203 44

miR-214 45

miR-1826 46, 47 

miR-320 48, 49

WNT3A miRNA targeting miR-15a cluster 50

miR-16-1 50

AXIN2 H3K27me3 repressive mark EZH2 51

WIF1 Promoter DNA 
hypermethylation

DNMT1, DNMT3b 52–54

SFRP1-5 Promoter DNA 
hypermethylation

DNMTs 52

DKK1 Promoter DNA 
hypermethylation

DNMTs 52

Decreased H4K16Ac and 
increased H3K27me3

Polycomb group proteins 55

miRNA targeting miR-371-373 cluster 56

DKK3 Promoter DNA 
hypermethylation

DNMTs 54, 57

DACT1 Promoter DNA 
hypermethylation

DNMTs 58

DACT3 Bivalent H3K27me3 and 
H3K4me3 histone modifications

Polycomb group proteins 59

NOTCH NOTCH1 miRNA targeting miR-34a 60

NOTCH2 miRNA targeting miR-34a 60

NOTCH4 miRNA targeting miR-34c 61

JAGGED 1 miRNA targeting miR-200c 62

miR-141 62

miR-34a 63, 64

JAGGED 2 Acetylated histone Down-regulated HDACs 
activity

65

miRNA targeting miR-34a 63, 64

NUMB miRNA targeting miR-146a 66

Hedgehog Gli1 miRNA targeting miR-324-5p 67

TGF-β TGF-β miRNA targeting miR-106b-25 cluster;  
miR-179-92 cluster 

68
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RNAs, which are regulated by DNA methylation and which 
regulate EMT-derived stemness properties [44]. The pro-
moter of microRNA-203 (miR-203) – a known regulator 
of skin cell differentiation – was methylated significant-
ly in cells that had undergone EMT due to Twist overex-
pression, and its down-regulation facilitated the gain 
of mesenchymal/stemness properties. Thus, activating  
miR-203 – either epigenetically or by other means – may 
inhibit invasion and metastasis [44]. Furthermore, miR-200 
family members are also down-regulated due to epigene-
tic alteration in breast CSCs in comparison to non-tumor-
igenic cancer cells [69, 94]. Demethylation of the miR-200  
promoter was strongly inhibited by another group of  
miRNAs, miR-22, expression of which correlates with tumour 
invasiveness and metastatic properties. Down-regulation of 
miR-200 expression expanded the stem cell compartment 
and promoted breast cancer progression. Therefore, miR-22 
is a crucial epigenetic modifier and promoter of EMT and 
cancer stemness toward metastasis [69, 94].

A rapidly growing body of research demonstrates that 
EMT is also epigenetically regulated by chromatin remod-
elling, DNA methylation, and changes to histone modifica-
tion levels. Yang et al. demonstrated that TWIST, a master 

modulator of EMT process, is physically associated with 
SET8, a methyltransferase specifically targeting H4K20 
for monomethylation in breast cancer cells. SET8 was re-
cruited by TWIST to the CDH2 (N-cadherin) gene promot-
er and its H4K20 monomethylation activity contributed 
to activation of the CDH2 expression. On the other hand, 
TWIST protein functions as a transcriptional repressor and 
cooperates with SET8 to repress CDH1 (E-cadherin) expres-
sion, during which SET8 acts as a co-repressor by estab-
lishing H4K20me1 mark on the CDH1 gene promoter [81]. 
The expression of CDH1 could be also regulated by Snai1 
transcription factor. It was previously shown that Snai1 in-
duces repressive histone modifications at the CDH1 gene 
promoter through recruitment of histone deacetylases 
(HDACs) and H3K27 methyltransferase EZH2 [75, 76, 95]. 
Furthermore, Lin et al. demonstrated that Snai1 directly 
interact with LSD1, a histone demethylase, recruiting LSD1 
complex to the CDH1 and other epithelial gene promoters, 
resulting in down-regulation of the active H3K4me2 mark 
and promoter activity. Down-regulation of epithelial gene 
promoters correlates with acquisition of cancer stem-cell 
properties, so targeting the enzymatic components of the 
LSD1 complex with therapeutic agents may offer a new 

Mechanism/Pathway Target Epigenetic modification Epigenetic modulator Reference

Pluripotency factors Sox2 miRNA targeting miR-200c 69, 70

Promoter DNA hypomethylation 39

Oct3/4 Promoter DNA hypomethylation 39

H3K4me3 active mark Trithorax group proteins 71

Klf4 miRNA targeting miR-200c 69, 70

miR-7 72

Promoter DNA hypomethylation 39

Nanog H3K27me3 repressive mark EZH2 73

Promoter DNA hypomethylation 39

H3K4me3 active mark Trithorax group proteins 71

EMT CDH1 
(E-cadherin)

Promoter DNA 
hypermethylation

DNMTs 74

H3K27me3 repressive mark EZH2/PRC2 75, 76

Histone H3 and H4 
deacetylation

HDAC1/Snai1; HDAC2/Snai1 77

miRNA targeting miR-495 78

Decreased H3K4me2 LSD1/Snai1 79, 80

CDH2 
(N-cadherin)

H4K20me1 active mark SET8/Twist 81

ZEB1 miRNA targeting miR-200 family 82–84

ZEB2 miRNA targeting miR-200 family 82–84

miRNA miR-34c DNA methylation DNMTs 61

miR-200c DNA methylation DNMTs 85

miR-203 DNA methylation DNMTs 44

Table 1. Cont.
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way to halt tumour progression and dissemination [79]. 
The protein KAP1 (KRAB-associated protein 1), an interac-
tion partner of members of the family of KRAB (Krüppel-as-
sociated box) domain-containing zinc finger transcription 
factors, may play a role in regulation of EMT. Venkov et al. 
demonstrated formation of a ternary complex composed 
of the CArG box-binding factor-A (CBF-A) and the KAP-1 
protein at the fibroblast transcription site-1 (FTS-1) within 
the promoter of FSP1 gene (also known as S100A4), which 
can activate other known transcriptional regulators of 
EMT, including Snai1 and Twist. However, the exact role of 
KAP1 protein in acquisition mesenchymal-properties by 
EMT is unknown [96–98].

Mechanisms of CSC resistance to anti-cancer 
therapy

The numerous mechanisms of chemoresistance have 
been identified in CSCs of different origin, and these 
mechanisms include the following: aberrant ABC trans-
porter expression/activity, augmented aldehyde dehydro-
genase (ALDH) activity, enhanced DNA damage response, 
activation of self-renewal signalling pathways, and epige-
netic deregulations (for a review see [99]). Cancer stem 
cells also have a slow rate of cell turnover and therefore 
can escape from chemotherapeutic agents that target 
rapidly proliferating cells. Adenosine triphosphate-bind-
ing cassette (ABC) transporters belong to a family of 
transmembrane transporters, amongst which at least 15 
of these genes are implicated in drug resistance. Some 
of them have specific and narrow substrate recognition 
(ABCA3 for anthracyclines) while others exhibit resistance 
to a wide group of chemotherapeutic drugs (ABCC1 for 
anthracyclines, mitoxantrone, vinca alkaloids, imatinib, 
epipodophyllotoxins, camptothecins, colchicine, saquin-
ivir, and methotrexate) [100]. Many studies demonstrate 
that ABCB1 and ABCG2 proteins cooperate at the blood-
brain and blood-tumour barriers to restrict penetration of 
various anti-cancer drugs. Tissue-specific stem cells and 
cancer stem cells express a higher level of specific ABC 
pumps in comparison to their differentiated progeny that 
protect stem cells against toxins, but none of these efflux 
pumps operate as a regulator of “stemness”. The feature 
of higher activity/expression of ABC transporters is used 
to isolate a side population (SP), which could be sorted us-
ing fluorescent rhodamine 123 (ABCB1 specific) or Hoechst 
33342 (ABCG2 specific) dyes and contains cells with high 
capability for efflux anti-mitotic drugs. 

The expression of ABC proteins in cancer stem cells is 
regulated mostly at the transcriptional level. Transcription 
factors that directly regulate the expression of the genes 
coding for ABC pumps include TP53 [101], liver X receptor/
retinoid X receptor – LXR/RXR [102], and thyroid hormone 
receptor [103]. The expression of ABCG2 gene coding for 
breast cancer resistance protein is regulated by progester-
one and oestrogen receptors, nuclear factor-κB (NF-κB), 
hypoxia-inducible factors (HIFs), nuclear factor erythroid 
2-related factor 2 (Nrf2), aryl hydrocarbon receptor (AhR), 
peroxisome proliferator-activated receptors (PPARs), and 
Krüppel-like factor 5 (KLF5) [104]. Oncogenic miR451 and 

miR-27a up-regulate ABCB1/MDR1/p-glycoprotein expres-
sion in multidrug-resistant cancer cell lines [105, 106].

Aldehyde dehydrogenases (ALDH) are a family of-
NAD(P)+-dependent enzymes which catalyse irreversible 
oxidation of endogenous and exogenous aldehydes gen-
erated during cellular metabolism processes. The human 
ALDH superfamily consists of 19 known genes grouped  
in 11 families and 4 subfamilies (www.aldh.org). Aldefluor 
assay is based on staining living cells with aldefluor sub-
strate – BODIPY aminoacetate (BAAA), which is converted 
to a negatively charged compound (BAA–) and becomes 
highly fluorescent, which allows sorting of ALDH bright cells  
(ALDHbri). Aldehyde dehydrogenases 1 activity is higher in 
human progenitor cells (there is a lower level of ALDH activi-
ty in primitive stem cells) and CSCs [107]. Aldehyde dehydro-
genases bright cells of breast cancer are highly tumorigenic 
in NOD-SCID mice [108]. Although ALDH has been detected 
in CSCs from various tumour types, it is not a universal CSCs 
marker and could be used for CSCs derived from tumours 
that do not express ALDH1 at a high level, such as breast, 
lung, or colon, but not of CSCs from tumours that normally 
express a high level of ALDH1 (liver and pancreatic cancers). 

Overexpression of ALDH1 in many drug-resistant cancer 
cell lines, tissues derived from chemotherapy-resistant pa-
tients, and in various CSCs makes it a promising target for 
anticancer treatment. The best-known inhibitors of ALDH 
enzymes are ATRA (all trans retinoic acid) and DEAB (dieth-
ylaminobenzaldehyde). All trans retinoic acid is a differen-
tiation agent with the ability to indirectly down-regulate 
ALDH expression, while DEAB is a small molecule which 
directly inhibits enzymatic activity of ALDH1 [109]. Treat-
ment of breast cancer patients with ATRA in combination 
with tamoxifen gave a more promising outcome than 
ATRA alone [110]. Disulfiram (DSF commercially known as 
Antabuse), which is a potent inhibitor of ALDH1A1 and has 
cytotoxic effects on glioblastoma stem-like cells inhibiting 
the growth of temozolamide-resistant tumour cells and 
blocking self-renewal [111], has entered a phase II clinical 
trial for newly diagnosed glioblastoma (ClinicalTrials.gov 
Identifier: NCT01777919). 

Tissue-specific stem cells are equipped with multiple 
protective mechanisms to ensure the lifetime function of 
tissues. For example, epidermal stem cells show greater 
resistance to DNA-damaging agents than other cells of 
the epidermis, due to higher expression of anti-apoptotic 
molecules, shorter p53 activation, and enhanced non-ho-
mologous end-joining (NHEJ) activity (this repair system 
has lower fidelity of repair than other systems). These 
mechanisms are shared by other tissue-resident stem 
cells, suggesting that stem cells have evolved highly effi-
cient repair mechanisms [112]. Current evidence suggests 
that CSCs have evolved even more efficient repair mecha-
nisms. Comparison of breast tumour biopsies showed an 
increase in CSCs with mammosphere-forming capacity fol-
lowing chemotherapy with the EGFR/HER2 inhibitors lapa-
tinib [113] and cisplatin [114]. In addition, mammary gland 
CSCs harboured lower levels of reactive oxygen species 
(ROS) compared to the rest of the tumour cells. This was 
due to increased levels of genes regulating free radical 
scavenging systems, such as the glutathione metabolism, 
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which may contribute to radioresistance [115]. It has been 
shown that subsets of CSCs in human, and murine breast 
tumours, contain lower ROS levels than corresponding 
non-tumorigenic cells. As ROS are critical mediators of ion-
ising-radiation-induced cell killing; CSCs in these tumours 
exhibit less DNA damage and are preferentially spared af-
ter irradiation compared to normal counterparts. Pharma-
cological depletion of ROS scavengers in CSCs decreases 
their clonogenicity and results in radiosensitisation [115]. 
In general, mechanisms related to DNA repair and repair 
other than DNA (in particular low proliferation, low ROS 
levels, and activation of the DNA damage checkpoint re-
sponse) could be responsible for CSC chemoresistance.

Conclusions

Despite the controversy surrounding the CSC hypoth-
esis, arising due to inconsistencies in phenotypic and 
functional markers, there is growing evidence for their role 
in carcinogenesis and cancer progression. Cancer stem 
cells share many mechanisms described for tissue-spe-
cific stem cells, but due to oncogenic deregulations these 
cells have evolved even more efficient repair mechanisms, 
antioxidant and drug-intoxicating systems that may con-
tribute to tumour recurrence and enhanced resistance to 
chemo- and/or radiotherapy. Wnt, BMP/TGF-β, Shh, and 
Notch signalling pathways contribute to the self-renew-
al of stem and/or progenitor cells in a variety of organs, 
but deregulation of these pathways can contribute to on-
cogenesis and maintenance of CSCs. A number of drugs 
affecting properties specific to CSCs and intended to spe-
cifically target these cells have entered clinical trials. Un-
derstanding intrinsic properties of CSCs resulting in their 
resistance to chemotherapy will help to develop more 
personalised approaches to treating cancer and improve 
clinical outcomes for cancer patients.
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