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Abstract: Nanoparticles (NPs) present in the environment and in consumer products can 

cause immunotoxic effects. The immune system is very complex, and in vivo studies are the 

gold standard for evaluation. Due to the increased amount of NPs that are being developed, 

cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly 

needed. Effects on the unspecific immune system, such as effects on phagocytes, might be 

suitable for screening for immunotoxicity because these cells mediate unspecific and specific 

immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. 

This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer 

and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon 

nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through 

different routes are compared to the effects on isolated phagocytes. In addition, general problems 

in the testing of NPs, such as unknown exposure doses, as well as interference with assays are 

mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of 

inflammation in normal animals and aggravation of pathologies in disease models. The evalua-

tion of particle action on several phagocyte functions in vitro may provide an indication on the 

potency of the particles to induce immunotoxicity in vivo. In combination with information on 

realistic exposure levels, in vitro studies on phagocytes may provide useful information on the 

health risks of NPs.

Keywords: immunotoxicity, phagocytes, cytokines, respiratory burst, nitric oxide generation, 

phagocytosis

Introduction
Nanoparticles (NPs) are used in many industrial applications and consumer products, 

and they are also being developed for targeted drug delivery, imaging, and implants 

in the medical sector. In addition to cytotoxicity, NPs can act on the immune system. 

Potential immunotoxic effects of NPs are relevant for human health because the immune 

system is present at all potential portals of entry of NPs and a variety of immuno-

modulatory actions of NPs has been proposed.1 The immunmodulatory action of a 

compound usually describes a desired change in the immune system – for instance, for 

therapeutic intervention – while “immunotoxicity” is used for adverse immunomodu-

lation indicating nondesired effects on the immune system. Immunotoxicity includes 

interactions with blood (hemolysis, coagulation, and protein binding), accumulation 

in the mononuclear phagocyte system (MPS), adjuvant properties, binding of haptens, 

interference with phagocytosis, and modulation of the Th2/Th1 response to antigens. 

Epidemiological studies in regions with increased concentrations of ultrafine particles 

suggested that NPs could influence the immune system. High levels of airborne par-

ticles caused worsening of asthma and pneumonia in exposed individuals.2–5 Ultrafine 

particles in the atmosphere do not meet the size requirements of NPs because their 
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upper size limit is usually 2.5 µm, but the reports stimulated 

further studies on size-related particle effects and raised the 

awareness that the large surface area of NPs was the reason 

for their high biological reactivity and toxicity.6

In contrast to cytotoxicity, the role of in vitro immuno-

toxicity testing is not well established. This is firstly due to 

general problems in simulating the complexity of the immu-

nological system in vitro, as well as in the extrapolation of 

in vitro and animal data to human reactions and, secondly, to 

NP-specific problems. The immune system is redundant and  

has the capacity to compensate for minor immunotoxicologi-

cal effects. High interindividual variations of the immune 

system further complicate the identification of a link between 

NP exposure and immunotoxicity in humans. Due to the high 

proliferation rate and compensation capacity of the immune 

system, only extreme alterations will result in clinical symp-

toms. On the other hand, decreased immunosurveillance 

may have long-term consequences, which cannot be directly 

linked to immunotoxicity. One example of such effects is the 

three- to fourfold increase in cancer incidence by immuno-

suppression with cyclosporine A for 5 years.7

Engineered NPs, to which humans might be exposed, 

comprise titanium dioxide (TiO
2
) and zinc oxide (ZnO) NPs 

in consumer products, silver (Ag) NPs in clothing, and silica 

(SiO
2
) NPs in food. For medical products, gold (Au), carbon 

nanotubes (CNTs), and iron oxide are likely candidates. 

The main exposure routes are dermal for NPs in consumer 

products and oral for NPs in food and intravenous for NPs 

in medical use. The exposure of humans to engineered NPs, 

due to the different use of these products, is expected to be 

highly variable. Site-specific composition and reaction of 

the immune system (lung, skin, blood, etc) affords exposure-

specific models because the same NPs might cause no immune 

effects when applied by the oral and dermal route, but they 

may induce sensitization after intradermal injection.8 This cre-

ates a high number of different testing scenarios and renders 

the testing of all variations in vivo ethically and financially 

problematic. In this situation, prescreening by in vitro assays, 

similar to cytotoxicity screening for systemic toxicity, would 

be helpful. Of course, in vitro testing has the limitation that 

only one or a few cell types can be evaluated. Data produced 

after exposure to high doses for a short period are not rep-

resentative for the exposure to most NPs.9 Furthermore, the 

protective mechanisms of the body – for instance, mucociliary 

clearance in the lung and radical scavenging by glutathione in 

the blood – will mitigate the toxic effect observed in vitro.

According to the Agence Française de Sécurité Sanitaire 

des Produits de Santé (AFSSAPS), immunotoxicity testing 

of NPs should focus on macrophages, granulocytes, and 

dendritic cells (DCs), and the testing should use cytokines 

as readout parameters.10 Since phagocytes are involved in 

the unspecific defense, as well as in the specific immune 

response, impairment of phagocyte function can indicate 

a decreased reserve of the immune system in NP-exposed 

individuals.

Therefore, phagocytes appear to be suitable for discrimi-

nating between NPs interfering or not interfering with the 

immune system. Several studies report interference with 

phagocyte function by iron oxide particles, but the iron oxide 

NPs, which have been approved for medical use (such as 

Ferumoxtran-10 [Sinerem]), did not influence the different 

aspects of phagocyte function. The secretion of proinflamma-

tory cytokines, oxidative burst, phagocytosis, and chemotaxis 

was not affected by the exposure to the particles in vitro.11 The 

few studies in which the same NPs were assessed by animal 

exposure and by exposure of cells to Ag and SiO
2 
NPs show 

that impairment of phagocytes function in vitro accords with 

immune inflammation in vivo.12,13 Proinflammatory action 

was seen in vivo as well as in macrophages isolated from 

animals exposed to TiO
2
 and ZnO NPs.14,15

This review is focused on plain (not pegylated or for-

mulated) metal and metal oxide NPs, such as SiO
2
, iron 

oxide, Ag, Au, TiO
2
, and ZnO NPs, and single-walled CNTs 

(SWCNTs) and multiwalled CNTs (MWCNTs). These NPs 

are relevant for humans because they are used in a variety 

of consumer products and as imaging reagents in medicine. 

Their classification as non- or low biodegradable NPs is often 

used to differentiate these particles from the enzymatically 

degradable NPs, such as liposomes, poly(lactic-co-glycolic 

acid), dendrimers, and so on, which can cause additional 

effects by their degradation products. However, it should 

not be forgotten that metal and metal oxide release ions 

which can interact with proteins and induce inflammation.16 

Nevertheless, the NPs mentioned in this review form a more 

homogeneous group than nanocarriers for drug delivery, 

which consist of different materials and possess different 

surface charges and functionalization. Polystyrene (PS) 

particles are included in this review because they are often 

used as model particles for nonbiodegradable NPs.17

Role of phagocytes in the immune 
system
Professional phagocytes are a group of immune cells that 

share the feature that they can ingest 0.5–10 µm sized particles 

better than epithelial cells. Since they are key players in the 

immune defense, they are represented in almost all organs.18,19 
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Mononuclear phagocytes are derived from myeloid progeni-

tor cells in bone marrow and develop into granulocytes and 

monocytes. Monocytes circulate in the blood and differentiate 

into macrophages (Mφ) in the tissue, where they reside as peri-

toneal Mφ, alveolar Mφ, mesangial phagocytes of the kidney, 

synovial type A cells, bone marrow stromal Mφ, splenic red 

pulp and splenic white pulp Mφ, osteoclasts in the bone, histio-

cytes in the connective tissue, and as microglia in the brain.20 

DCs are a specific lineage of monocytic phagocytes and are 

mainly present as myeloid and plasmacytoid DCs in the blood, 

as interstitial DCs in many organs, and as interdigitating DCs 

in the lymphatic organs. Based on the history of their discov-

ery, some of them received specific names, such as the DCs in 

the epidermis (Langerhans cells) and Mφs in the liver (Kupffer 

cells). Phagocytes express different surface markers and differ 

in their optimum size of phagocytosis. Peritoneal macrophages 

and monocytes in the peripheral blood optimally phagocytose 

0.3–1.1 µm particles. The optimal size for phagocytosis by 

alveolar macrophages is 3–6 µm particles.21–23 Granulocytes 

are classified into neutrophilic, eosinophilic, and basophilic 

granulocytes. The phagocytosis of invading pathogens is the 

main role of neutrophilic granulocytes. After self-destruction, 

they are the main component of pus. Compared to neutrophilic 

granulocytes, eosinophilic and basophilic granulocytes have 

only a low potential for phagocytosis and act mainly against 

pathogens by the release of enzymes, as well as toxic and 

proinflammatory substances.

Macrophages possess a variety of receptors for the binding 

of bacterial constituents (Figure 1). Complement C3b and the 

Fc fragment of immunoglobulin (Ig)G enable better uptake of 

opsonized particles. Distinct adhesion molecules, intercellular 

adhesion molecule (ICAM)-1 (CD54), ICAM-2 (CD102), 

lymphocyte function-associated antigen (LFA)-1 (CD11a), 

and LFA-3 (CD58), together with costimulatory molecules 

B7.1 (CD80), B7.2 (CD86), or CD40, and processed cytoso-

lic proteins presented by major histocompatibility complex 

(MHC) I or extracellular proteins presented by MHC II, 

molecules activate T-cells.24 Cytokines such as tumor necrosis 

factor-alpha (TNF-α) and interferon (IFN)-gamma (IFN-γ), 

as well as their interaction with lipopolysaccharide (LPS)-

binding protein, activate macrophages. Phagocytes ingest a 

variety of pathogens, such as bacteria, mycobacteria, virus, 

fungi, and nonpathogenic particles (for instance, dyes and 

dust) in an unspecific way. On the other hand, they fulfill a 

Figure 1 Receptors linked to main functions of phagocytes.
Note: Activation of these receptors regulates macrophage function, which can be evaluated by a panel of in vitro assays.
Abbreviations: CD14, lipopolysaccharide-binding protein receptor; LPS, lipopolysaccharide; IFN, interferon; TNF, tumor necrosis factor; MHC, major histocompatibility 
complex; LFA, lymphocyte function-associated antigen; ICAM, intercellular adhesion molecule; Ig, immunoglobulin; NO, nitric oxide.
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definite function as antigen-presenting cells for the correct 

function of the specific immune system.

In vitro assays to study phagocyte 
function
A panel of in vitro assays of different complexities can 

assess phagocyte function. Cytokine secretion, chemotaxis, 

phagocytosis, and respiratory burst can be measured in all 

phagocytes. Nitric oxide generation is used only for mono-

cytes and macrophages, whereas the detection of the release 

of myeloperoxidase and elastase is specific for neutrophilic 

granulocytes.25 The evaluation of DC function is more 

complex because it requires interactions with T-cells. Cell 

isolation, cell exposure, and the detection platform for the 

performance of the respective assays are described in the core 

publication and in the supplements of Current Protocols in 

Immunology.26

Cytokine secretion
A wide spectrum of cytokines is being used in immunotoxic-

ity studies, and phagocytes isolated from exposed animals 

or cultures of primary cells, and cell lines are equally suit-

able for these analyses.27 In the presence or absence of the 

test substance, the release of cytokines/chemokines can be 

analyzed by enzyme-linked immunosorbant assays, enzyme-

linked immunosorbent spot assays, antibody array assays, and 

bead-based assays. To identify proinflammation responses, 

interleukin (IL)-1, IL-6, IL-8, and TNF-α are routinely 

used.28 The classification of allergic responses is based on 

the type of lymphocyte helper cells that are activated. IL-4 

and IL-5 identify T
H
2 responses, while marker cytokines for 

T
H
1 responses are IFN-γ and TNF-β.

Chemotaxis
The migration of leukocytes from an upper chamber across a 

membrane to a lower chamber containing a chemoattractant 

is termed chemotaxis. Human serum-derived complement 

5a, human lymphocyte-derived chemotactic factor, mono-

cyte chemoattractant protein 1, or N-formyl-methionyl-

leucyl-phenylalanine are commonly used attractants.29 All 

leukocytes are able for chemotaxis, but monocytes, either 

as primary cells or as cell lines, are used most frequently. In 

conventional assays, membrane-containing inserts separat-

ing the upper from the lower chamber are used. The amount 

of cells that passed the membrane and reached the lower 

chamber is counted or quantified by viability assays. Alter-

natively, an impedance-based system (eg, xCELLigence and 

ECIS/Taxis) can be used.30,31

Phagocytosis
The phagocytosis assay evaluates the phagocytic activity 

of fluorescein-labeled bacteria (Staphylococcus aureus, 

Escherichia coli) in macrophages, monocytes, and polymor-

phonuclear neutrophils exposed to the test compound.32

Respiratory burst (reactive oxygen 
production)
This assay can be performed in macrophages, monocytes, and 

polymorphonuclear neutrophils by the detection of reactive 

oxygen species (ROS), which is produced upon phagocyto-

sis. For the assays, mostly unlabeled E. coli is used as the 

phagocytic stimulus. Either chemiluminescent detection by 

lucigenin or the oxidation of dyes to fluorescent products 

(eg, rhodamine 123) can be employed for the quantification 

of the produced oxygen species.33

Nitric oxide (NO) generation
Murine macrophages are routinely used because, when 

compared to human monocytes, they possess a much higher 

production of NO.34 An additional advantage of their use is 

that, in contrast to human macrophages, they do not need 

a differentiation step. Differentiation of monocytes with 

the commonly used phorbol 12-myristate 13-acetate or 

vitamin D3 cannot reproduce the phenotype of human mac-

rophages in vivo, and it introduces additional variations in 

the assay.35 The common and very reliable detection method 

of NO uses the Griess reagent.36

Release of elastase and myeloperoxidase
These enzymes are used as indicators for neutrophilic granu-

locyte activation.37 Assays are performed in whole blood or 

in neutrophilic granulocytes isolated from peripheral blood. 

These cells only rarely show direct effects to conventional 

chemicals, but they are activated by particles.38,39 The rel-

evance of granulocyte activation for immunotoxicity in vivo, 

however, is currently unclear.

Function of dendritic cells
DCs for testing cannot be obtained directly from the blood in 

sufficient amounts, but they require differentiation in vitro. 

CD14+ mononuclear cells isolated from peripheral blood 

mononuclear cells (PBMCs) are treated with recombinant 

(rh) granulocyte macrophage colony-stimulating factor and 

IL-4 for 7 days. Maturation to DCs induced by LPS in the 

presence and absence of the test compound is verified by 

the surface expression of CD80, CD83, CD86, and human 

leukocyte antigen-DR, and by the secretion of IL-12.
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DC function requires a mixed lymphocyte culture, 

which analyzes the ability of T-cells to recognize allo-

genic cells as not belonging to the organism (nonself) as a 

result of the presence and proliferation of different MHC 

class II antigens on their surface. This assay is used to 

identify sensitizing agents. A DC to T-cell ratio of 1:100 

is sufficient to initiate vigorous and optimal responses.40  

Splenocytes or lymph node cells from treated animals 

(responder cells) with genetically dissimilar cells (stimulator 

cells) are cocultured. The assay is usually performed in mice, 

where cells from another strain can be used as stimulators.41 

Stimulator cells are inactivated by irradiation or treatment 

with a DNA intercalating agent such as mitomycin C. After 

incubation for several days, proliferation of the responder 

cells is measured using 3H-thymidine uptake.42 The reaction 

can also be performed using human PBMC-derived DCs 

mixed with allogenic lymphocytes,43 and the proliferation of 

the responder T-cells after contact with allogenic lympho-

cytes is assessed using a viability (formazan bioreduction) 

assay. Human myeloid leukemia-derived MUTZ-3 cells 

have the ability to differentiate into DCs,44 and this assay is 

in the process of validation as an alternative to the in vivo 

identification of sensitizing agents.45

Specific issues in the assessment 
of NPs
The specific nature of NPs, mainly linked to their high surface 

reactivity, complicates their assessment by in vitro assays. 

The adsorption of molecules (either bacterial proteins or 

macromolecules from the body to the particle surface) holds 

importance for the in vivo and in vitro testing of phagocyte 

function.

In vivo and in vitro – binding of endotoxin
NPs may bind endotoxin, an LPS and pyrogenic compound 

of the wall of Gram-negative bacteria. Endotoxin is a strong 

stimulant of the immune response and causes a pyrogenic 

reaction in the human body.46 Endotoxin contamination 

of metal and metal oxide NPs and CNTs is less expected 

because synthesis often includes steps that kill bacteria. 

However, contamination is often difficult to exclude 

because endotoxin can be present in distilled water.47 

Due to the strong stimulation of endotoxin, its presence 

in the sample does not allow for the identification of NP 

effects. The detection of endotoxin is usually achieved by 

evaluation in the limulus amebocyte lysate assay, one of 

the accepted alternatives to the in vivo endotoxin detection 

assays.48 This assay can be performed in different formats, 

generally as clotting tests and by colorimetric detection.49 

Unfortunately, several NPs interfere with this assay. While 

for some NPs (TiO
2
, Ag, CaCO

3
, SiO

2 
NPs), interference 

with the gel-clotting assay was more prominent,50 for other 

particles (Au NPs), interference with the colorimetric 

limulus amebocyte lysate assay has been reported.51 The 

release of inflammatory cytokines (IL-6, IL-8, IL-1) from 

PBMCs produced variable results and it has been suggested 

that NPs and endotoxin compete against each other in the 

induction of cytokines.52

In vivo and in vitro – protein corona
High surface activity leads to the binding of macromolecules 

to the particle surface once they get into contact with physi-

ological solutions. This coating consists mainly of proteins and 

has been termed “protein corona”.53 It is hypothesized that the 

composition of the protein corona determines the trafficking 

and biological effects of NPs. For a description of the composi-

tion and variability of the protein corona, the reader is referred 

to reviews focusing on this topic.54,55 The physicochemical 

parameters of the NPs and the composition of the biological 

fluid are the main factors determining the composition of the 

protein corona. As a general rule, hydrophobic particles bind 

more proteins than do hydrophilic particles,56 and abundant 

proteins in the incubation solution are bound faster on the 

NP surface than the low abundant proteins.57 Dependence on 

size and shape, as well as surface charge, has been reported 

in the following way: Au and SiO
2
 NPs 10 nm bound more 

proteins than particles 10 nm; more proteins were attached to 

TiO
2
 nanospheres than to nanorods and nanotubes; and bind-

ing to positively charged Au, PS, and carbon black particles 

was higher than to particles without charged groups.58–62 While 

the composition of the inner coating (hard corona) appeared 

to be more stable, the composition of the outer part (soft 

corona) was dynamic and changed in its composition when 

the particle was transferred from one medium to the other.63 

The passage through various media left a fingerprint of the 

protein composition of the previous media on the NP.64 NPs 

retained the protein corona during endocytosis; the coat was 

subsequently removed in lysosomes.65

The role of the protein corona composition for biological 

effects is still not entirely clear. The reduction of toxic effects, 

such as cytotoxicity and hemolysis, by protein coating of 

NPs has been observed in several studies of nonphagocytic 

cells.66–70 This decreased effect was linked to reduced cellular 

uptake. Bovine serum albumin (BSA) bound to the surface of 

carboxyl-functionalized PS, quantum dot (Qdot), and Au NPs 

decreased cell uptake. The opposite was observed for BSA 
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bound to these types of NPs when they were functionalized 

with amine groups instead of carboxyl groups.71 All BSA-

coated NPs displayed the same effective surface charge, but 

apparently the BSA structure was influenced by the binding in 

such a way that different groups were visible for the cells. As 

a result, BSA-coated carboxylated NPs bound to the albumin 

receptor, while BSA-coated amine-functionalized NPs were 

ingested after binding to the cellular scavenger receptor.

Protein-coated NPs are expected to produce more pro-

nounced immunological effects because coating with serum 

increased the uptake by phagocytes.72 The secretion of proin-

flammatory cytokines by DCs was higher for spherical-than 

sheet-shaped ZnO NPs, which also bound more proteins 

on their surface.73 While increased protein binding might 

have caused the higher secretion of cytokines, the opposite 

behavior has also been observed: coating of SiO
2
 NPs with 

serum decreased cytokine secretion of murine macrophages.74 

The presence of complement in the protein corona plays a 

specific role because the binding of complement C3b and IgG 

increases uptake by phagocytes by binding to the complement 

and Fc-receptors. Responses to complement binding were 

variable; firstly, complement proteins could be activated or 

inactivated by the binding, and secondly, increased uptake 

could lead to the activation or inhibition of phagocytes.75,76 

Changes in protein conformation appear to be the reason 

for the different effects; binding of fibrinogen to negatively 

charged poly(acrylic acid)-conjugated Au NPs induced acti-

vation of the Mac-1 receptor on THP-1 monocytes, resulting 

in a proinflammatory response.77 While these studies support 

a specific role of the bound proteins, other studies do not 

support the hypothesis of a protein corona-specific effect 

because the composition of the protein corona did not cor-

relate with hemocompatibility.78

In vitro – cellular doses
Dose-dependent effects are more difficult to identify for NPs 

than for conventional compounds because cellular uptake is 

influenced by the diffusion and sedimentation of the single 

NPs and agglomerates of the NPs. Several mathematical mod-

els have been developed to calculate the deposition of particles 

suspended in liquids on adherent cells.79,80 Particle-dependent 

minimal deposition was seen between 50–200 nm, while 

larger and smaller particles deposited at higher rates.79 Small 

changes in the dispersion factor caused considerable varia-

tions in the deposited dose.80 The differences are due to the 

formation of agglomerates, but the extent of agglomeration 

and its effect on deposition are difficult to quantify by math-

ematical models. The measured deposition of 50–1,000 nm  

plain PS particles on macrophages increased over time and 

showed a minimum for 100 nm particles.17 Carboxyl PS par-

ticles of 20–1,000 nm showed the cellular uptake of 25%–40% 

in macrophages with a minimum at 100 nm.81 The cellular 

dose of the same type of particles with sizes of 20–500 nm in 

endothelial cells increased from 4.6% to 28.4%, demonstrat-

ing higher particle uptake by phagocytic cells, as compared to 

nonphagocytic cells, in general.82 When adherent cells were 

cultured upside-down, they ingested much less NPs than the 

cells cultured in the standard orientation.83 Further complica-

tions arise when cells are exposed to aerosolized NPs because 

cell contact is dependent on the used exposure system, as well 

as on the variations in the size and concentration of the aero-

sol; great variations in deposition rates between 0.037% and 

30% of the applied dose per well for different particles have 

been reported.84–88 Furthermore, the influence on flow has to 

be considered when assessing NP uptake from the systemic 

blood circulation.89 Endothelial cells best ingested Qdots and 

SiO
2
 NPs at a shear stress of 0.05 Pa, which corresponds to 

postcapillary venules and peripheral arteries.89

In vitro – assay interference
The interference of NPs with several assay systems can 

strongly influence the results (Table 1). The absorbance of NPs 

could lead to false-negative results (absence of cytotoxicity is 

detected, although the NP is cytotoxic) because the metabolic 

activity (according to absorbance) is estimated to be higher 

than it actually is.90 Enzyme inhibition by NPs could also 

cause false-negative results. Lactate dehydrogenase (LDH) is 

released into the supernatant of cells when the plasma mem-

brane integrity is lost. Its enzymatic activity correlates to the 

amount of damaged cells. If LDH activity is inhibited by NPs, 

a lower degree of cell damage will be determined.

False-positive results (cytotoxicity is detected although 

the NP is not toxic) are detected when the fluorescent signals 

of dihydrofluorescein (the detection of oxidative stress) or 

of propidium iodide (the disruption of membrane integrity) 

are enhanced by NPs.91–95 Depending on the assays used, the 

masking of toxic effects and the identification of nonexistent 

toxicity by NPs can occur simultaneously. Increased absor-

bance by colored NPs will result in a higher signal of LDH 

(indicating more dead cells) and in the MTT assay (indicat-

ing more viable cells). The use of multiple assays, therefore, 

helps to reveal assay interference. The addition of protein, 

mostly BSA, could prevent interference, but it also could 

increase it. While false-negative results by the inhibition of 

LDH activity by Si, Au, and CdSe NPs96 was avoided, the 

addition of BSA caused false-negative effects in protein 
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Table 1 Mechanisms of interference between nonbiodegradable NPs and in vitro assays

Mechanism Assay(s) Particle(s) Reference(s)
Absorbance Hemolysis Au, C60 128–130

LAL Au, C60 131
MTT Au, CB, C60, Qdots, Ag, AgO,  

iron oxide, SwCNT
90, 92, 93, 129, 132–136

wST-1 Iron oxide 137
MTS Al, Qdots 51, 97, 138
LDH Au, SiO2, iron oxide, CeO2 51, 98, 135, 139

Light scattering MTT, ATP Carbon nanodiamonds 140
Dye absorption MTT SwCNT, CB, Al, iron oxide 95, 141–144

NR CB, SwCNT, C60, Si, TiO2 90, 134, 141, 145–148
AB, AK SwCNT 146
CB, wST-1 SwCNT 145

enzyme inactivation/inhibition LDH Cu, Ag 149, 150
LDH ZnO 135
LDH Si, Au, Qdots 96
LDH Au 151
AK PS 105

enzyme adsorption LDH Cu, Qdots, TiO2 93, 95, 133, 149, 152, 153
Reduction/enzymatic activity MTT Si, SwCNT, C60, TiO2 91, 95, 129, 145, 148, 152, 154, 155

AB Si 148
AK SwCNT 146

Prevention of reduction MTT Zn 93
Oxidation H2DCF CB 135

Hemoglobin Iron oxide 128
Protein binding Cytokines CB, SwCNT, iron oxide, Cu, SiO2,  

Al2O3, CeO2, NiO2, TiO2

93, 135, 141, 146, 156–159

Increase enzymatic activity LAL Iron oxide 131
Hemoglobin PS, SwCNT 129, 146

Physical interaction TB, calcein AM, live/dead SwCNT, C60, CB, Qdots 90
COMeT Ge 160

Quenching of fluorescence H2DCF CB, SiO2, SiO2-iron 161, 162
LDH CB, SwCNT, C60, Qdots 90
Calcein AM/ethD-1 CB, SwCNT 90

Increase of fluorescence H2DCF Au, iron oxide, TiO2, C60, SiO2,  
CB, SwCNT

91–95

PI Qdots, PS 95
Calcein AM/ethD-1 CB, iron oxide 91
AB CB, SwCNT, TiO2, Qdots 90, 97, 145
Resazurin CoO 51
COMeT TiO2, CuO 163

Increase of luminescence Phagocytosis Qdots 130
ATP SiO2 139

Quenching of luminescence Phagocytosis Au 129, 131
Aggregation Platelet aggregation Au, C60 129
Abbreviations: NPs, nanoparticles; Au, gold; C60, C60 fullerenes; LAL, limulus amebocyte lysate; CB, carbon black; Qdots, CdSe quantum dots; Ag, silver; SwCNT, single-
walled carbon nanotube; wST-1, water soluble tetrazolium salt; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium); Al, aluminum; LDH, 
lactate dehydrogenase; SiO2, silica; CeO2, cerium oxide; ATP, adenosine triphosphate; NR, neutral red; TiO2, titanium dioxide; AB, alamarBlue; AK, adenylate kinase; Cu, 
copper; ZnO, zinc oxide; PS, polystyrene; Zn, zinc; H2DCF, dihydrodichlorofluorescein; Al2O2, aluminum oxide; NiO2, nickel oxide; TB, trypan blue; AM, acetoxymethylester; 
Ge, germanium; ethD-1, ethidium homodimer 1; PI, propidium iodide; CoO, cobalt oxide; CuO, copper (II) oxide.

detection via the Bradford reagent.97 For the identification 

of potential assay interference, the incubation of NPs with 

the assay compounds alone (in the absence of cells) and 

with cells alone (in the absence of assay compounds) can be 

used. These controls are, however, only useful when the NPs 

interact with assay compounds and with the readout; assay 

interactions by Au NPs, which increased the detected amount 

of dead cells by shuttling the indicator dye, propidium iodide, 

into the cells, would not have been revealed.98,99 Similarly, 

the more global effects of NPs on cultured cells, such as the 

depletion of nutrients by SWCNTs,100 would go unnoticed. 

Interference can show dose dependency; dye (acridine) 

fluorescence is increased by low concentrations of Ag NPs 

and quenched at high concentrations of NPs.101
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Some general rules may help identify and prevent the 

false interpretation of results. The use of low NP concentra-

tions reduces the problem of interference, but the removal 

of NPs by centrifugation is generally not recommended 

because analytes adsorbed to the particles might be removed. 

Assay interference of the colored CNTs, carbon black, C
60

 

fullerenes, and Au NPs, and of the fluorescent Qdots, may 

occur more frequently than interference with noncolored 

Si, SiO
2
, TiO

2
, and ZnO NPs. Testing of NPs with several 

assays based on different detection methods can reduce the 

risk of misinterpretation.90,102 In this regard, immunotoxicity 

testing poses more problems than cytotoxicity testing because 

a lower number of assays for a given immunological func-

tion are usually available. On the other hand, compared to 

cytotoxicity testing, NPs are usually studied at much lower 

NP concentrations, reducing the risk for interference.

Immunotoxicological data from NP 
exposure
In vivo exposure includes voluntary inhalation and oral 

application, forced inhalation (intranasal and intratracheal 

instillation, oropharyngeal administration), forced oral 

(intragastric/gavage) application as well as noninvasive der-

mal and invasive (intradermal injection) dermal applications. 

Parenteral applications include intravenous and intraperito-

neal injection. Table 2 shows the general reaction pattern of 

the immune system after in vivo exposure to NPs.

Systemic immune effects
Effects in the respiratory tract with only a thin epithelium 

were more pronounced than effects after dermal or oral inges-

tion exposure, where a horny layer or a thick mucus layer 

separated NPs from epithelial and immune cells.103

Inflammation in the lung is one of the most frequently 

reported effects of respiratory exposure to NPs.104 Since 

cytokines are produced by several cell types, it is not clear 

whether the reported increases in cytokine secretion and 

subsequent inflammation were due to specific activation of 

immune cells, or if they were a consequence of cytotoxic 

action on alveolar epithelial cells. Heavy metal-containing 

NPs reacted in a similar manner as PS particles.105,106 Given 

that heavy metal-containing NPs show ROS generation, 

and since they are expected to have greater cytotoxicity, the 

similarity of the reaction does not support the hypothesis of 

cell death (induced by more cytotoxic heavy metal-containing 

NPs) as a main inductor of inflammation.

Only a few studies have reported the absence of immu-

nological effects, which could be due to restricted access to 

Table 2 effects of NPs after inhal, IN, IG, IP, Iv, oral, oroph, and SC application, and ID and IT in normal animals and in animal models (Model)

Particle Size (nm) Application Model Effect Reference(s)

Polystyrene 25–50 IT Lung inflammation 164
68 IT Coupled antigen Stimulation of antigen response 165
40 ID OvA Increased sensitization 166
58 IT OvA Increased sensitization 167
100 SC OvA Increased sensitization 168
20, 50, 100 ID Atopic dermatitis Aggravation of inflammation 169

SwCNT 1–2 Oroph Decreased lung clearance of bacteria 170
1–2 IT Proinflammatory cytokine secretion 171
1–2 IT OvA Increased sensitization 172
1–2 Inhal, SC OvA Increased sensitization 113
1–2 IT LPS Aggravation of inflammation 173

DwCNT 2 IN Proinflammatory cytokine secretion 174
MwCNT 20–30 SC Proinflammatory cytokine secretion 175

10–20 Inhal Proinflammatory cytokine secretion 176
12.5–25 Oroph Lung inflammation 177
20–30 IT Proinflammatory cytokine secretion 178
25 Iv Proinflammatory cytokine secretion 179
90 IP Proinflammatory cytokine secretion 180
67 IT OvA Increased sensitization 181
10–50 Inhal, SC OvA Increased sensitization 113
30–50 Inhal OvA Increased sensitization 182
67 IT LPS Aggravation of lung inflammation 173
10–50 IT LPS Aggravation of inflammation 183

Ag 10 ID erythema 8

(Continued)
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Table 2 (Continued)

Particle Size (nm) Application Model Effect Reference(s)
18 Inhal Lung inflammation 184
18 Inhal Lung inflammation 185
20 Iv Suppressed immune response to KLH immunization 187
22, 42, 71 Oral Increased TGF-β levels 186
52 IT Proinflammatory cytokine secretion 12
33 IN OvA Increased sensitization 188

Au 50 IT Lung inflammation 189
50, not 10 IP Proinflammatory cytokine secretion 190
21 IP Anti-inflammatory action in adipose tissue 108
15 Oroph TDI Aggravation of asthma 191
5, 15 IP IL-1β inflammation Decrease of inflammation 109

Iron oxide 5.3 IT Lung inflammation and allergic response 193
20 Iv Proinflammatory cytokine secretion 194
36 IT Lung inflammation and cytokine secretion 192
58 Iv Decreased OVA-specific antigen production 195, 196
43 IT OvA Increased sensitization 197, 198
35 IT OvA Increased sensitization 199

SiO2 10 IT Lung inflammation 200
12 IP Proinflammatory cytokine secretion 13
30, 70 IP Proinflammatory cytokine secretion 201
15 Iv Proinflammatory cytokine secretion 202
70 Iv Proinflammatory cytokine secretion 203
30, 70, 100 ID Atopic dermatitis Aggravation of inflammation 204
10–20 IT OvA Increased sensitization 205

TiO2 2–5 Inhal Lung inflammation 207
5 IP Proinflammatory cytokine secretion 215
5.5 IG Infiltration of immune cells in spleen 213
8–10 IN Lung inflammation 206
20 ID, not oral Immune activation 8
20 Inhal Lung inflammation 208
20 IT Lung inflammation 209
25 IT Proinflammatory cytokine secretion 210
25 IT Lung inflammation 211
15, 28 IT Lung inflammation 212
30–40 IT Lung inflammation 200
66 Oral Proinflammatory cytokine secretion 14
20 IG Proinflammatory and allergic cytokine secretion 214
14, 29 Inhal OvA Increased sensitization 217
15 Oroph TDI Aggravation of asthma 191
20 IP LPS Aggravation of lung inflammation 218
28 Inhal OvA Increased sensitization 216

ZnO 10 Inhal Lung inflammation 219
10 IT Lung inflammation 200
21 Oral No effect on oral tolerance to OvA 107
21 IP OvA Increased sensitization 114

55 IP OvA Increased sensitization 115

Abbreviations: NPs, nanoparticles; inhal, inhalation; IN, intranasal; IG, intragastral; IP, intraperitoneal; Iv, intravenous; oroph, oropharyngeal; SC, subcutaneous; ID, 
intradermal; IT, intratracheal instillation; OvA, ovalbumin; SwCNT, single-walled carbon nanotube; LPS, lipopolysaccharide; DwCNT, double-walled carbon nanotube; 
MwCNT, multiwalled carbon nanotube; Ag, silver; TGF, transforming growth factor; KLH, keyhole limpet hemocyanin; Au, gold; TDI, toluene diisocyanate; IL, interleukin; 
SiO2, silica; TiO2, titanium dioxide; ZnO, zinc oxide.

immune cells.107 The absence of immune effects after the oral 

ingestion of and exposure to ZnO and TiO
2
 NPs could be 

explained by the hindered assessment of the particles to the 

cells by mucus.8,107 On the other hand, the low reactivity of 

intraperitoneally applied Au NPs appears to be due to their 

high biocompatibility given that few studies have reported 

on the adverse cellular effects of Au NPs.108,109 This statement 

is supported by a lack of immunological interference in the 

cellular assays showing no increased cytokine secretion,110,111 

and no effect on DC maturation and activation.94,112

When NPs were applied to diseased animals, the pathol-

ogy of the disease was aggravated. This aggravation was seen 
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in asthma models, as well as in atopic dermatitis (Table 2). 

Aggravation of asthma is unlikely to be caused by cytotoxic-

ity of the NPs because exposure by the respiratory tract and 

by other routes (subcutaneous, intraperitoneal), where no 

direct contact with the alveolar epithelium occurred, caused 

the same effects.113–115 The mechanisms for amplifying 

pre-existing pathologies have been proposed through the 

following mechanisms:116 pre-existing inflammation in the 

respiratory tubes could be amplified by enhancing the levels 

of inflammatory factors or humoral immunity. Second, NPs 

within the size range of 100 nm were able to stimulate 

and enhance hypersensitivity, which is primarily mediated 

by Th2 cells.116

In vitro and ex vivo effects
Phagocyte function after in vitro (cells exposed in wells) and 

ex vivo (cells harvested from exposed animals) exposure is 

summarized in Table 3. To evaluate the potential of screen-

ing in phagocytes, first, data obtained from ex vivo and 

in vitro studies have to be compared. Second, the similarity 

of ex vivo and in vitro exposures to in vivo exposure has to 

be tested. In vitro data on cytokine secretion and chemotaxis 

corresponded to the respective ex vivo data (Table 3). NPs 

showed a similar pattern of interference with phagocyte 

functions; proinflammatory cytokine secretion (mostly IL-6, 

IL-1β, and TNF-α) and respiratory burst increased, while 

phagocytosis and chemotaxis decreased. The degranula-

tion of neutrophilic granulocytes has been shown for a few 

particles.81,117 The influence on DC maturation and function 

varied markedly between the particles. MWCNTs inhibited 

maturation, Au and iron oxide showed no prominent effect, 

and SiO
2
 and TiO

2
 activated DCs.94,112,118,119 The different 

results could be due to the use of different readouts (matura-

tion and activation).

Table 3 Immune effects in isolated phagocytes, either after in vivo treatment with nanoparticles (ex vivo) or by in vitro treatment

Particle Effects

Ex vivo In vitro

Polystyrene Proinflammatory cytokine secretion81

Increased respiratory burst81

Neutrophilic granulocyte activation81

MwCNT Proinflammatory cytokine secretion220

Inhibition of DC maturation118

SwCNT Decreased chemotaxis221

Decreased phagocytosis221

Ag Proinflammatory cytokine secretion after IT application8 Proinflammatory cytokine secretion222–224

Proinflammatory cytokine secretion after inhalation225 Decreased phagocytosis12

Proinflammatory cytokine secretion after oropharyngeal application226 Increased respiratory burst227

Proinflammatory cytokine secretion after oral application186 Decreased NO production228

Neutrophilic granulocyte activation117

Au Proinflammatory cytokine secretion112,229,230

No increased cytokine secretion110,111

No effect on DC maturation, no activation94,112

Iron oxide Proinflammatory cytokine secretion after IT application199,231 Proinflammatory cytokine secretion232

Upon LPS challenge, decreased cytokine secretion after IT application233 Decreased phagocytosis234

Increased NO production with and without  
LPS challenge233,234

No effect on DC maturation94

SiO2 Increased NO production after IT application235 Proinflammatory cytokine secretion13,236,237

Activation of DC119

TiO2 Proinflammatory cytokine secretion after IT application235,238,239 Proinflammatory cytokine secretion240

Proinflammatory cytokine secretion after IG application10 Decreased chemotaxis241

Decreased phagocytosis12

Increased NO production after IT application235,239 Increased respiratory burst242

Decreased chemotaxis after IT application235,239 Activation of DC119

ZnO Decrease of cytokine secretion after oral application116 Proinflammatory cytokine secretion243–245

Proinflammatory cytokine secretion after IT application199 Decreased chemotaxis241

Proinflammatory cytokine secretion after inhalation11,219 Decreased phagocytosis12

Increased respiratory burst246

Abbreviations: MwCNT, multiwalled carbon nanotube; DC, dendritic cells; SwCNT, single-walled carbon nanotube; Ag, silver; IT, intratracheal instillation; NO, nitric 
oxide; Au, gold; LPS, lipopolysaccharide, SiO2, silica; TiO2, titanium dioxide; IG, intragastral; ZnO, zinc oxide.
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The secretion of proinflammatory cytokines was 

increased by all NPs when applied by in vitro exposure, and 

after the ex vivo respiratory exposure, to NPs. The lower 

sensitivity of phagocytes by the oral route was confirmed in 

an ex vivo study.120

Uptake of NPs by phagocytes
When NPs are coated with proteins in biological fluids, they 

are well ingested by phagocytes.121 Phagocytosis of NPs 

by primary cells, cell lines, macrophages, monocytes, and 

monocyte-derived macrophages indicated accumulation in 

the MPS and showed a good correlation to the accumulation 

of particles in the MPS of the spleen and liver in vivo.122 Due 

to the crucial function of macrophages and DCs in the spe-

cific immune response, the accumulation of NPs in the MPS 

could result in immunotoxicity. The indication of uptake by 

the MPS or accumulation in lymphatic organs, however, 

was not correlated to adverse effects on the immune system 

in vivo or in vitro.81,123 Accumulation in the spleen was only 

observed for 30 nm Au particles, while adverse effects on 

the immune system according to increases in relative spleen 

weight and immune cell numbers were seen for 5 nm, 10 nm, 

and 60 nm Au particles.123 Small carboxyl PS particles were 

ingested in much higher numbers than 1,000 nm particles by 

macrophages.81 While the 1,000 nm large particles induced 

oxidative burst and cell damage, particles in the size range 

between 40 nm and 500 nm were taken up without obvious 

interference with cell viability and function. Taken together, 

these data suggest that the uptake of NPs may not result in 

impaired phagocyte function.

Guidelines for sample preparation 
and exposure
Physiologically relevant testing is based on sample prepara-

tion, as well as on the use of dispersant and intended exposure 

routes. Most NPs form stable solutions in distilled water, 

which cannot be used for in vitro studies. The presence of 

ions and protein in the physiological solution leads to NP 

agglomerates, which may increase in size, but they may 

also disintegrate. The surface coating of NPs determines 

their penetration of barriers, cellular uptake, and immune 

response.124 The Office of Economic Co-operation and 

Development (OECD) guidelines for sample preparation and 

dosimetry had advised that dose should be indicated in terms 

of mass, surface area, and particle number at a minimum.125 

To get information on the stability of the dispersion, repeated 

measurements are recommended with the documentation 

of agglomeration and ion release. The dispersants should T
ab
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Due to the specific composition of the immune system 

at different portals of entry, exposure-specific coculture 

models including immune cells could serve as a possibility 

to assess immunotoxicants in vitro. Alveolar epithelial cells 

and alveolar macrophages in cocultures released inflamma-

tory cytokines at lower concentrations of TiO
2
 NPs than did 

the respective monocultures.127 At the expense of greater 

complexity, these systems could increase the sensitivity of 

immunotoxicity in vitro screening and enable exposure-

specific testing. However, until a correlation of these findings 

in these systems to data obtained in humans has been shown, 

their value remains elusive.
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