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Emission of single photons 
in the weak coupling regime 
of the Jaynes Cummings model
Changsuk Noh

A recently proposed variant of an unconventional photon blockade scheme is studied for a single 
emitter weakly coupled to a resonator mode. By controlling two weak coherent fields driving the 
emitter and the resonator mode, a strongly nonclassical output field is obtained, which is not only 
antibunched, but has vanishing higher photon number coincidences. For a given set of system 
parameters, the frequencies and strengths of the driving fields that yield such an output are given.

Producing nonclassical light, especially single photons, is an important goal in quantum optics with applica-
tions in quantum technologies1–4. In cavity QED systems single photons can be produced through the so-called 
photon blockade effect5, in which a strong coupling between an emitter and a cavity mode yields an effective 
photon-photon interaction that prevents occupation of multiple photons in the cavity mode6,7. Photon blockade 
is characterized by vanishing second-order correlation functions at zero delay, and have been observed in many 
physical systems8–11. It is generally associated with the so-called strong coupling regime, but actually can be 
observed in weak coupling regimes12 just like other nonclassical features13,14.

More recently, it has been found that photon blockade can be observed for arbitrarily small coupling strengths 
by carefully tuning parameters in a two-cavity system15. The system under investigation was a coupled weakly 
Kerr-nonlinear oscillators where individually the nonlinearity was not large enough to induce photon blockade. 
Soon after, the cause of the phenomenon was identified to be quantum interference, and it was further shown 
that only one of the oscillators needs to be nonlinear and that the effect persists if the nonlinearity is provided 
by coupling a two-level atom to the oscillator16. This inspired interference-based phenomena in similar setups 
involving two cavity modes and a quantum dot17,18 and led to experimental demonstrations19,20. Generalizations 
such as asymmetric losses21, cavities with second order susceptibility22, with two driving fields23–25, under pulsed 
excitation26 have also been investigated. Effects of mixing the output channels have also been investigated27 
and the antibunching obtained by interfering a nonclassical and a classical states of light has been shown to be 
related to UPB28.

In Ref.29, it was discovered that the fine-tuning can be relegated to an additional driving field. The experi-
mentally difficult task of fine-tuning the required system parameters can therefore be bypassed, making it much 
easier to produce antibunched photons with weakly nonlinear cavities. The purpose of this work is to investigate 
the scheme in detail for an emitter–resonator system described by the Jaynes–Cummings model. The emitted 
photons are found to be not only antibunched, but have suppressed higher-order photon coincidences to all order. 
This feature therefore goes beyond UPB, which was shown to be equivalent to optimizing a Gaussian state to 
suppress the two-photon coincidences30, with enhanced probabilities for higher photon numbers29. This means 
that photons are emitted one-by-one. The cause of this behaviour can be attributed to the strong nonlinearity in 
the two-level emitter, as will be explained throughout this work.

Model.  The Jaynes–Cummings Hamiltonian reads

which describes a resonator with a natural frequency ωr coupled to a two-level emitter with a transition fre-
quency ω0 . If both the resonator mode and emitter are driven with monochromatic fields of frequencies ωp and 
ωd respectively, it becomes

(1)HJC = ωra
†a+ ω0σ+σ− + g

(

aσ+ + a†σ−
)

,
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Going into the frame rotating at the probe frequency ωp , the Hamiltonian changes to

in which �r = ωr − ωp , �0 = ω0 − ωp and �d = ωd − ωp . For ωp = ωd , the Hamiltonian becomes time 
independent:

This case was briefly studied in29 showing that, surprisingly, �d can always be tuned to obtain UPB given an 
arbitrary �p.

To see this, consider the quantum master equation, which includes dissipations in the emitter and resonator 
modes:

in which

κ and γ denote dissipation rates for the resonator and atom, respectively. Next, approximating the dissipative 
part by ignoring the cρc† parts of the dissipators, the above master equation reduces to the Schrödinger equation 
with a non-Hermitian Hamiltonian,

which amounts to making changes �r → �r − iκ/2 ≡ �̃r and �0 → �0 − iγ /2 ≡ �̃0 in Eq. (4)
Now let us label the state as |n,α� , in which n indicates the number of excitations in the resonator mode and 

α = {g , e} denotes the ground and excited state of the atom, respectively. Then to a low number of excitations, 
a general state is given by

In this basis, ignoring the contributions from the states with a higher number of excitations, the equations of 
motion are

in which �̃ ≡ �̃r + �̃0.
To solve for the steady state, one assumes c0g ≈ 1 and solves for c1g and c0e ignoring the contributions from 

higher number of excitations13. This yields

which can be substituted into the last two equations of motion to give

The condition for vanishing two-photon excitation, c2g = 0 , is then approximated by

The solutions

(2)H = HJC +�∗
pe

iωpta+�pe
−iωpta† +�∗

de
iωd tσ− +�de

−iωd tσ+.

(3)
H =�ra

†a+�0σ+σ− + g
(

aσ+ + a†σ−
)

+�p(a+ a†)+�∗
de

i�d tσ− +�de
−i�d tσ+,

(4)H = �ra
†a+�0σ+σ− + g

(

aσ+ + a†σ−
)

+�p(a+ a†)+�∗
dσ− +�dσ+.

(5)ρ̇ = −i[H , ρ] +D[
√
κa]ρ +D[√γ σ−]ρ,

(6)D[c]ρ = cρc† −
1

2
c†cρ −

1

2
ρc†c.

(7)HnH = H − i
κ

2
a†a− i

γ

2
σ+σ−,

(8)|ψ(t)� = c0g |0, g� + c1g |1, g� + c0e|0, e� + c2g |2, g� + c1e|1, e� + · · · .

(9)

iċ0g = �∗
pc1g +�∗

dc0e ,

iċ1g = �pc0g + gc0e + �̃rc1g +
√
2�∗

r c2g +�∗
dc1e ,

iċ0e = �dc0g + gc1g + �̃0c0e +�∗
pc1e ,

iċ2g =
√
2�pc1g +

√
2gc1e + 2�̃rc2g ,

iċ1e = �pc0e +
√
2gc2g +�dc1g + �̃c1,e ,

(10)c1g ≈
g�d − �̃0�p

�̃0�̃r − g2
, c0e ≈

g�p − �̃r�d

�̃0�̃r − g2
,

(11)

c1e ≈
�d�p(g

2 + �̃2
r + �̃r�̃0)− g(�2

p�̃+�2
d�̃r)

(�̃0�̃r − g2)(�̃�̃r − g2)
,

c2g ≈
�̃�p(�̃0�r − 2g�d)+ g2(�2

p +�2
d)√

2(�̃0�̃r − g2)(�̃�̃r − g2)
.

(12)g2�2
d − 2g�̃�p�d +�2

p(�̃�̃0 + g2) ≈ 0.
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thus give two values of �d for which the two photon correlation function g (2)(0) vanishes. This condition, first 
derived in29, shows that a low value of g (2)(0) can be achieved in the weakly-driven regime if one carefully tunes 
the amplitude and phase of the field driving the atom.

Single driving field.  Let us first consider the case in which �d = 0 . In this case, antibunching can only be 
observed if both the coupling strength and one of the detunings are chosen carefully. From (12), one readily sees 
that these are

With these parameters, destructive interference occurs between the pathways to reach |2, g� , resulting in an 
almost-vanishing second order correlation function

For example, with �r = 0 , �p = 0.01 , and κ = γ = 1 , we have �opt
0 = 0 and gopt = 1/

√
2 , giving g (2)(0) ≈ 0.003 

in the steady state with the average photon number n̄ ≈ 4× 10−5 . These and all numerical results in this work 
are obtained by numerically solving Eq. (5) using QuTiP31. For a larger value of detuning �r , the required value 
of gopt becomes larger as can be clearly seen from Eq. (14).

In30, UPB was shown to be related to Gaussian states: the fine tuning of the parameters correspond to choos-
ing optimal values of squeezing in a generic Gaussian state. Because of this Gaussianity, the suppression from 
the Poisson photon number distribution is limited to the two-photon manifold for UPB and comes at the cost 
of enhanced probabilities for higher photon numbers29. This means that the output field in the UPB scheme is 
n-photon bunched for n ≥ 3 , i.e. g (n)(0) = �a†nan�/�a†a�n > 1 . Similar behaviour is observed for the current 
weakly coupled case with a single driving field. For the above parameters, g (n)(0) = 13, 158, 903 for n = 3, 4, 5 
respectively. Introducing the atom-driving field changes this—the higher photon number manifolds are also 
suppressed.

Two driving fields.  With two driving fields, it is no longer necessary to tune the ‘internal’ values g and �0 . 
The addition of 2 more control parameters is enough to guarantee vanishing second order correlation function 
even in the weak coupling regime g � κ , γ . Figure 1a shows the contour plot of g (2)(0) in the steady state as a 

(13)�±
d =

�p

g

(

�̃± sgn(�p)

√

�̃�̃r − g2
)

(14)�
opt
0 = −

γ�r

κ + 2γ
, gopt = ±

√

γ�2
r (κ + γ )

(κ + 2γ )2
+

(κ + γ )γ

4
.

(15)g (2)(0) =
�a†a†aa�
�a†a�2

.

(a) (b)

(c) (d)

Figure 1.   Contour plots of (a) g (2)(0) , (b) g (3)(0) , (c) g (4)(0) , and (d) g (5)(0) as functions of g and �p for � = 0 
and ωp = ω− . All units are in terms of κ = γ = 1.
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function of g and �p . The driving frequency is fixed to the first excited state (assuming ωr ≥ ω0 ) of the JC model, 
ω− = (ωr + ω0 −

√

�2 + 4g2)/2 , with � = ωr − ω0 and will remain so unless otherwise stated. �d = �+
d  is 

chosen for reasons that will be explained below. The result makes sense intuitively. The larger the value of g the 
larger the nonlinearity, which in turn allows for a stronger drive strength until nonclassicality is lost. In other 
words, the strength of the driving field is limited by the value of the coupling strength, which sets the nonlinear-
ity of the system. Unlike in the UPB scheme, higher order correlations are also suppressed as shown in Fig. 1b–d. 
Three photon coincidence as given by g (3)(0) has a smaller region of suppression compared to g (2)(0) , but higher 
order correlations are suppressed in wider regions. Higher order g (n)(0) ’s not shown are also suppressed. For 
weak driving strengths as considered here, average photon number n̄ ≪ 1 and the chance of observing n-pho-
tons decreases exponentially with n, but in view of possible generalization to single photon applications it is nice 
to have suppressed coincidence counting too all orders.

The fact that merely adding another driving field can make such a big change to all orders of correlation 
functions may seem surprising, but one should note that the additional driving field addresses the highly non-
linear two-level emitter as emphasized in11. In fact, in the bad cavity regime characterized by κ ≫ g2/κ ≫ γ , 
the emitter-driven system is commonly used as a single-photon source2. One can therefore understand the sup-
pressed occurrences of two or more photons as resulting from a combination of non-classical light produced by 
driving the emitter and UPB which further suppresses the two-photon coincidence. To see this, let us consider 
the case in which only the atom is driven, i.e. �p = 0 and �d = 0.01 . This simplification allows one to obtain 
an analytic solution for higher-order correlation functions in a manageable form. For a given n the equations of 
motion (9) generalizes to (still ignoring the contributions from the higher number excitations)

In the steady state the solutions are

Repeatedly applying the second equation to itself, one obtains

Using Eq. (10), nth order correlation function at zero delay can thus be approximated by

We get �r = �0 = −g for � = 0 and assuming g ≪ γ , κ , the above equation can be further simplified to

For γ = κ , g (n)(0) ≈
∏n−1

j=0 1/(1+ j)2 . This formula yields g (2)(0) ≈ 1/4 , g (3)(0) ≈ 1/36 ≈ 0.027 , and 
g (4)(0) ≈ 1/576 ≈ 0.0017 for the set of parameters used in Fig. 1, except for �d = 0.01 and �p = 0 . These agree 
reasonably well with the numerically obtained results g (2)(0) = 0.26 , g (3)(0) = 0.03 , and g (4)(0) = 0.002 , for 
g = 0.1, where the differences are due to the terms ignored in going from Eqs. (19) to (20). The above formula 
shows that higher-order correlations are well-suppressed for n > 2 when the atom is driven and the atom-field 
coupling is weak, but that antibunching is not strong.

Upon increasing �opt
p  , which is to be obtained from Eq. (12) after allowing �p to be complex, a numerical 

calculation shows that g (2)(0) varies rapidly while higher-order correlations do not, as illustrated in Fig. 2. This 
shows that one can obtain good suppression of all nth order correlation functions for n ≥ 2, by controlling the 
magnitude of �p . We can therefore understand the single-photon behaviour of the emitted photons as result-
ing from a combination of non-classical light produced by driving the emitter, and UPB which suppresses the 
two-photon coincidence.

(16)
iċng ≈

√
ngcn−1e + n�̃rcng ,

iċn−1e ≈
√
ngcng +

(

(n− 1)�̃r + �̃0

)

cn−1e +�dcn−1g .

(17)cn−1e ≈ −
√
n�̃r

g
cng , cng ≈

g�d
√
n
[

�̃r

(

(n− 1)�̃r + �̃0

)

− g2
] cn−1g .

(18)

cng ≈
n
∏

j=1

g�d
√
n+ 1− j

[

�̃r

(

(n− j)�̃r + �̃0

)

− g2
]

=
n−1
∏

j=0

g�d
√
j + 1

[

�̃r

(

j�̃r + �̃0

)

− g2
]

=
gn�n

d√
n!

n−1
∏

j=0

1
[

�̃r

(

j�̃r + �̃0

)

− g2
] .

(19)g (n)(0) ≈
n!|cng |2

|c1g |2n
≈

n−1
∏

j=0

∣

∣

∣
�̃0�̃r − g2

∣

∣

∣

2

∣

∣

∣
�̃r

(

j�̃r + �̃0

)

− g2
∣

∣

∣

2
.

(20)g (n)(0) ≈
n−1
∏

j=0

(

− γ κ
4

)2

∣

∣

∣
−j κ

2

4 − γ κ
4

∣

∣

∣

2
=

n−1
∏

j=0

γ 2κ2

κ2
(

γ + jκ
)2

=
n−1
∏

j=0

γ 2

(

γ + jκ
)2

.
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Strength of the atom‑driving field.  In Eq. (13), there were two choices for �d . So far, �+
d  has been cho-

sen, but what if �−
d  were used instead? It turns out that all correlation functions become larger in the parameter 

regimes considered above. For example, for g = 0.1 , �p = 0.01 , g (n)(0) = (0.145, 14.2, 200, 1580) is obtained 
instead of (0.022, 0.026, 0.005, 3.50× 10−4) for n = 2, 3, 4, 5 . The difference is in the magnitude of �d . For our 
choice of the resonator-driving frequency ωp = ω− , |�+

d | > |�−
d | and it is evidently advantageous to drive the 

emitter more strongly. If ωp were chosen to be ω+ = (ωr + ω0 +
√

�2 + 4g2)/2 , such that the second excited 
state is driven, the situation is reversed. The magnitudes of �±

d  are merely reversed although their phases are 
changed. The values g (n)(0) = (0.145, 14.2, 200, 1580) are obtained for �d = �+

d  , and the lower values are 
obtained for �d = �−

d  . Therefore, ωp can be chosen to be either ω+ or ω− as long as the correct �d is used.
This freedom only holds as long as the atomic transition is resonant to the cavity mode, i.e. ωr = ω0 . If this 

were not the case, as in many experimental implementations, merely choosing the larger of �±
d  turns out to be 

insufficient. In addition, the correct resonator-driving frequency must be chosen, which in this case (Δ > 0) is 
ω− . For example, with ωp = ω+ , ωr = 12 and the rest of the parameters remaining the same, neither �+

d  nor 
�−

d  yields single-photon correlations. For �d = �−
d  , g (n)(0) = (0.068, 0.90, 2.06, 10.0) for n = 2, 3, 4, 5 while for 

�d = �+
d  , g (n)(0) = (0.107, 11.9, 160, 1470) . This asymmetry between ω− and ω+ can be understood by noting 

that for � = ωr − ω0 ≥ 0 the first excited state is predominantly in |0, e� , which is the preferred state to be driven 
(because we want to drive the atom, not the cavity). On the other hand, if � < 0 , then the situation is reversed 
and the privileged role is taken by the second excited state.

To quantify the suppression of higher-order photon coincidences let us adopt a measure called n− norm , 

defined as ||(g (k))||n = n

√

∑n+1
k=2[g (k)]32. It measures the distance in the correlation space between the given 

source and an ideal single-photon source. 4− norm s are adopted in this work, but higher-order norms are also 
suppressed. Figure 3a–d show that out of the four different combinations with ωp = ω± and �d = �±

d  , the 
combination (ω−,�

+
d ) gives the best result as explained above. It is not shown but g (2)(0) is always suppressed 

and the corresponding figures are qualitatively similar to Fig. 1a.
Figure 4a gives a close-up view of Fig. 3d, which shows that (ω+,�

−
d ) can in fact yield good single-photon 

characteristics in a limited region of the parameter space. Note the changes in the range of �p and the color cod-
ing. However, the figure shows that it is very difficult to obtain good single-photon characteristics for g ≪ γ , κ . 
Figure 4b is the corresponding figure for ωr = ω0 , showing a much wider region of suppressed ||(g(k))||4 . It is 
exactly the same as the one obtained using (ω−,�

+
d ) . From these facts we see that non-zero detuning breaks 

the symmetry between (ω+,�
−
d ) and (ω−,�

+
d ) , which can again be explained by the relative fraction of |0, e� in 

the addressed state.
To sum up, to obtain good single-photon characteristics one must: (1) choose the driving frequency such that 

the state |0, e� is predominantly driven and (2) choose the driving strength such that the emitter-driving field is 
the stronger of �± in Eq. (13). Then the strong nonlinearity of the atom guarantees that the photons are emitted 
one by one in a large region of parameter space. If a ‘wrong’ choice is made, two-photon coincidences are still 
suppressed but higher-order ones are not, as in UPB.

Lastly, let us briefly consider asymmetries in κ and γ . The bad-cavity regime characterized by κ ≫ g2/κ ≫ γ is 
often invoked for the purpose of creating single photons. The emitter is driven, which mainly emits into the leaky 
cavity mode. Even in this regime, additional cavity-driving field improves the quality of output single photons. 
For example, for κ = 1, g = 0.1, γ = 0.01,ωr = ω0 = 10 , ωp = ω− , and |�d | ≈ 0.11 , the first three values of 
g (n)(0) are (0.10, 0.0032, 0.000046) for �p = 0 and (0.0079, 0.0012, 0.000062) for �p = 0.01 (obtained from �+

d  
in Eq. (13)). On the other hand, if the atom decays much faster, i.e., γ ≫ g , κ the driving field strengths need to be 
reduced and the suppression for higher order photon coincidences are not so good. For γ = 1, κ = g = 0.1 and 

Figure 2.   g (n)(0) for n = 2, 3, 4 as functions of |�opt
p | . g = 0.1, � = 0 , ωp = ω− and �d = 0.01 . The phase of �p 

has been set to its optimal value and only the overall magnitude is varied. All units are in terms of κ = γ = 1.
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�p = 0.01 , the first three values of g (n)(0) are (0.19,0.82,1.2), which reduces to (0.0019,0.54,0.25) for �p = 0.001 . 
Figure 5 shows how ||g (n)||4 changes as a function of g for �p = 0.01 (solid blue curve) and �p = 0.001 (dashed 
red curve). The values differ significantly for g < 0.5 . For �p = 0.01 it is interesting that ||g (k)||4 gets bigger first 
before it decreases, indicating strong multi-photon bunching.

In summary, a generalization of a scheme based on UPB proposed recently in29 has been investigated in detail. 
It is shown that unlike in UPB, the output field has suppressed probabilities for all n-photon coincidences for 
n ≥ 2 . The main reason for the suppression can be attributed to the strong nonlinearity of the 2-lv system, upon 
which the interference effects of UPB are added to reduce the two-photon coincidences further. One aspect not 
discussed in this work is the time-variation of the correlation functions. In the conventional UPB scenario, the 
coupling strength J between the resonators need to be large for weak nonlinearities. This causes the second order 
correlation function to oscillate rapidly on the time scale of order 1/J. Such rapid oscillations are absent in the 
system investigated in this work, because there is no large parameter involved. That the correlation functions 
change on the time scale of 1/γ and 1/κ has been checked by numerical calculations.

As a future work it would be interesting to investigate whether the proposed scheme can be generalized to 
produce an on-demand single photon source which typically requires a multi-level emitter. Due to the small 
coupling strength required and the ease of parameter tuning, such a scheme would prove to be very useful.

(a) (b)

(c) (d)

Figure 3.   Contour plots of ||(g(k))||4 for (a) (ω−,�
+
d ) , (b) (ω−,�

−
d ) , (c) (ω+,�

+
d ) , and (d) (ω+,�

−
d ) as 

functions of g and �p for � = 2 . All units are in terms of κ = γ = 1.

(a) (b)

Figure 4.   Contour plots of ||(g (k))||4 for (a) � = 2 and (b) � = 0 as functions of g and �p . ωp = ω+ and 
�d = �−

d  . All units are in terms of κ = γ = 1 . Note the differences in the contour values.
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