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A lift in snail’s gut provides an efficient colonization route
for tardigrades
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Colonization dynamics of microscopic invertebrates and
the relative importance of different dispersal vectors are
largely unknown. Although wind and water are generally
assumed to be the dominant dispersal mechanisms for
meiofauna, animal-mediated dispersal has received rela-
tively little attention (Fontaneto, 2019). A few observa-
tional studies suggest the capability of tardigrades to
colonize new habitats via ingestion (endozoochory) by
gastropods and birds (Fox & García-Moll, 1962;
Robertson et al., 2020), but direct evidence is lacking. An
astonishing diversity of organisms has been found to sur-
vive the passage through the gut of terrestrial gastropods,
both from field surveys and experimental studies: lichen
(Boch et al., 2011), moss and fern spores (Boch
et al., 2013), plant seeds (Türke et al., 2010), protozoans,
rotifers, nematodes, collembolans, and oribatid mites
(Türke et al., 2018). Gastropods can disperse whole
micro-ecosystems and have a deep influence on the
genetic and spatial structure of microinvertebrate
populations (Türke et al., 2018). Here we report both
observational and experimental evidence for the ability of
tardigrades to survive, and later reproduce, after a pas-
sage through the gastrointestinal tract of the terrestrial
gastropod Arianta arbustorum (Linnaeus 1758).

We recovered active tardigrades from two genera
(Macrobiotus and Hypsibius) in 25% of the feces from wild

A. arbustorum (n = 7/28 individuals, Figure 1c), con-
firming an earlier report by Fox and García-Moll (1962).
A total of 10 tardigrades were recovered from wild snail
feces of which 5 were alive. This proportion (50.0%) is
not statistically different from the proportion of live mites
recovered by Türke et al. (2018) (69.9% [n = 120/172];
Fisher Exact probability test p = 0.337). In addition, two
thriving cultures of tardigrades (Hypsibius cf. allisoni)
were obtained from individuals collected from the snail
feces. To our knowledge, this is the first record of tardi-
grades’ ability to reproduce after passing through an ani-
mal’s gut. Tardigrades of the species Macrobiotus ripperi
Stec, Vecchi & Michalczyk, 2021 were artificially fed to
A. arbustorum snails in a laboratory experiment to quan-
titatively assess (1) the survival of ingested tardigrades,
and (2) the time spent in the snail’s gut. Overall, 31.4%
[n = 218/694] of the ingested tardigrades were defecated
alive. Although this survival is statistically different and
about half of what was observed for oribatid mites by
Türke et al. (2018) (58% [n = 40/69]; Fisher Exact proba-
bility test p > 0.001), it still shows that tardigrades have
the potential to survive snail gut passage, and this could
allow their dispersal through endozoochory. In addition
to 218 tardigrades defecated alive, 78 dead tardigrades
were recovered from the feces of the snails in the labora-
tory experiment. The remaining 398 individuals not
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recovered are supposed to have been digested and
completely destroyed by the snail’s digestive system, thus
this proportion does not represent the survival success of
tardigrades in passing through the gut of snails but can
still be compared to the same statistic as for the wild
snails as, in that case, the number of ingested tardigrades
is unknown. The proportion of alive tardigrades among
the ones recovered in the feces did not significantly differ
between the wild snails and the snails from the experi-
ment (wild snails 50.0% [n = 5/10], experiment snails
73.6% [n = 218/296]; Fisher Exact probability test
p = 0.196). Tardigrades were not defecated uniformly
after the ingestion (Figure 1d): 1 day after ingestion, on
average only 4.2% of the ingested tardigrades were defe-
cated alive, whereas the peak of 18.4% was reached at
2 days after ingestion. Those defecation rates then

declined on the third (0.6%) and fourth (<0.1%) day. The
peak of alive tardigrades excreted on day 2 after ingestion
could be caused by the retention time of the gut of
A. arbustorum and/or by an increased probability of
digested tardigrades spending more than 2 days in the
snail’s gut. However, at the moment, it cannot be deter-
mined if and to what extent those mechanisms explain
the observed results.

According to different studies, A. arbustorum can move
on average 0.18–0.58 m/day with a maximum distance of
4.44–5.48 m/day (Kramarenko, 2014). Accordingly, most
of the tardigrades would be dispersed on the second day
post-ingestion that is, on average 1 m (maximum 10 m)
away from their original location. On a smooth, wet, two-
dimensional surface in laboratory conditions, tardigrades
were reported to move at speeds between 1.98 and

F I GURE 1 Survival of tardigrades after snail gut passage. (a) Macrobiotus ripperi. (b) Arianta arbustorum. (c) Percentage of wild snail

with and without tardigrades in their feces. Whiskers indicate 95% CI. In 25% of the snails, live tardigrades were recovered from their feces.

(d) Percentage of the total ingested M. ripperi recovered alive from A. arbustorum feces collected at days 1 to 4 post-ingestion. Gray lines

connect the time points of each snail individual. The percentage of alive animals defecated peaked on the second day after ingestion.

(e) Percentage of successful M. ripperi culturing trials from A. arbustorum feces. Whiskers indicate 95% CI. In more than 75% of the trials,

populations of tardigrades developed from animals expelled with feces
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15.81 mm/min (Li & Wang, 2005; Nirody et al., 2021).
Hence, theoretically, at directed higher speed movement,
tardigrades could match, or even exceed, the distance trav-
eled by a snail (e.g., 48 h at 15.81 mm/min = 45.5 m).
However, this scenario is not plausible because, to actively
migrate from one point to another, tardigrades must move
along surfaces where water film is present: a dry patch of
just a few square millimeters becomes an insurmountable
dispersal barrier, not to mention the three-dimensional
nature of a natural environment.

Last, we investigated if the tardigrades defecated alive
can reproduce (i.e., establish a new population). From the
laboratory experiment, all the feces containing live tardi-
grades from a given snail were pooled and kept in plastic
Petri dishes and checked periodically for up to 2 months
for the presence of eggs and newborns. These dishes were
kept in the same conditions as the laboratory culture
(Appendix S1). In most of the Petri dishes (81%, n = 13/16,
Figure 1e), new and abundant populations were found.

How common and/or important gastropodochory is for
tardigrade dispersal remains unclear. Compared to wind
dispersal, gastropod-mediated dispersal may be effective
over very small geographic ranges (1–10 m), but it is also
more targeted (Boch et al., 2011, 2013), since terrestrial gas-
tropods actively move between humid habitats, where tardi-
grades are present or can persist. In addition, the deposition
of whole ecological communities and nutrients in gastropod
feces (Boch et al., 2013; Türke et al., 2018) may promote col-
onization success.

The high dispersal potential of tardigrades, nematodes,
and rotifers is typically attributed to their dormant propa-
gules, and particularly their ability to enter anhydrobiosis,
a reversible ametabolic state that allows them to survive
almost complete desiccation (Schill, 2019). When in this
dry state, they can survive months or years without food
and water, resist extreme heat and cold, and be displaced
and dispersed by wind (Fontaneto, 2019; Schill, 2019).
Since the gut environment is constantly hydrated, it pre-
cludes the option of undergoing anhydrobiosis to survive
passage through it. Concordantly, we did not detect any
signs of anhydrobiosis or other types of dormancies in our
experiment.

We propose three possible concurrent mechanisms
for our observed survival: first, tardigrades may be too
small to be damaged by the buccal mass of
A. arbustorum; second, the environment inside the
digestive system of A. arbustorum may simply not be
harsh enough to damage tardigrades (see Charrier &
Brune, 2003 for gut microenvironments of some
helicids), which are shown to tolerate several environ-
mental extremes (Schill, 2019); third, moss or soil par-
ticles that are co-ingested with tardigrades may
provide a mechanical protective effect.

In summary, we found that gastropods are not only a
viable animal vector for tardigrade dispersal but could
also improve the establishment of new populations
thanks to the resources their feces provide and the
targeted deposition (cf. the stochastic wind vector) in
tardigrade-suitable habitats. Our study highlights the
importance of basic ecological research to our currently
limited understanding of microorganism dispersal and its
links with extreme environment adaptations.
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