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the contribution of microglia priming and systemic
inflammation to chronic neurodegeneration
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Abstract Microglia, the resident immune cells of the cen-
tral nervous system (CNS), play an important role in CNS
homeostasis during development, adulthood and ageing.
Their phenotype and function have been widely studied,
but most studies have focused on their local interactions in
the CNS. Microglia are derived from a particular develop-
mental niche, are long-lived, locally replaced and form a
significant part of the communication route between the
peripheral immune system and the CNS; all these compo-
nents of microglia biology contribute to maintaining homeo-
stasis. Microglia function is tightly regulated by the CNS
microenvironment, and increasing evidence suggests that
disturbances, such as neurodegeneration and ageing, can
have profound consequences for microglial phenotype and
function. We describe the possible biological mechanisms
underlying the altered threshold for microglial activation,
also known as ‘microglial priming’, seen in CNS disease
and ageing and consider how priming may contribute to
turning immune-to-brain communication from a homeostat-
ic pathway into a maladaptive response that contributes to
symptoms and progression of diseases of the CNS.

Keywords Microglia - Neurodegeneration - Priming -
Systemic inflammation

The concept that the central nervous system (CNS) is an
immunologically privileged organ has had a profound im-
pact on the study of immune-to-brain interactions. Even
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though it is now well recognized that this immune privilege
is only partial [1], for many neuroscientists, the nervous
system is still perceived to be isolated from the immune
system, with its components playing little or no role in the
neural networks and communicating pathways. It is also the
case that for many immunologists, the CNS is a foreign
land. It is clear that the interaction between the nervous
and immune systems is a two-way communication, each
having a profound influence on the other. These influences
extend from homeostasis to pathology, with the immune
system acting as a major transducer of both internal and
external environmental challenges to the host. Involvement
of the immune system can arise from CNS resident innate
immune cells or from cellular and soluble factors from the
periphery that act on the CNS via neural or humoural routes.
The heterogeneity of the macrophage populations in the
CNS is reflected in the differential responses in different
tissue compartments each playing distinct roles in homeo-
stasis and pathology.

The macrophage populations of the CNS include the
microglia, perivascular macrophages (PVM), meningeal
macrophages (MM), macrophages of the circumventricular
organs and the macrophages of the choroid plexus. The
most abundant and best studied of these are the microglia
(Fig. 1a, c). We focus here on recent findings that highlight
the role of ‘priming’ of microglia during neurodegenerative
disease and ageing and suggest how this may contribute to
neurological disease.

Microglia in the developing brain

The notion that the microglia are the resident macrophages
of the CNS is well accepted, but precisely from where they
originate and when they populate the tissue has been a
matter of much debate [2]. Microglia are long-lived cells,
and studies in mouse have suggested that they are
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Fig. 1 Microglia in the naive
mouse brain express CD11b (a)
and CD68 (c¢). In an animal with
a chronic neurodegenerative
disease, prion disease, the
microglia increase in number
and become activated, altering
their morphology with
upregulation of CD11b (b) and
CD68 (d). Scale bar in a,
b=20 um, ¢, d=10 um

predominantly maintained via self-renewal under steady-
state conditions [3]. The recent study of Ginhoux and col-
leagues provides good evidence in mouse that a significant
proportion of these cells arise from the yolk sac and popu-
late the neuroepithelium in early (before E10.5) embryogen-
esis [4]. However, what is less clear is whether, and to what
extent, there is a contribution from a bone marrow myeloid
progenitor at later stages of embryonic development or in
the postnatal period. Pioneering work by Rio Hortega in the
early 1900s and subsequent studies showed that the microg-
lia appear to invade the developing brain from the vascula-
ture at a time when bone marrow hematopoiesis is ongoing
[5, 6]. Ginhoux et al. [4] report that only a proportion of the
cells were labelled by the genetic manipulation that defined
them as of yolk sac origin, which was attributed to the
inefficiency of Cre activation by the Runx promotor.
While these studies have provided essential insight into the
developmental origins of microglia, the potential contribu-
tion of non-yolk sac origin macrophages throughout the
entire life course and after repeated immune challenges re-
mains to be resolved.

The yolk-sac-derived macrophages that invade the prim-
itive nervous system, the neuroepithelium, from the early
vasculature have a typical macrophage morphology and
phenotype, characterized by high expression of F4/80 and
CDI11b. As the neural tissue matures, there is widespread
apoptotic cell death of both neurons and glia, and the em-
bryonic and postnatal microglia are involved in the phago-
cytosis of these apoptotic bodies, implying that embryonic
microglia are involved in determining the circuitry of the
developing CNS [6]. It has been proposed that microglia
may actively kill some neurons during the period of cell death,
but to date, this has only been convincingly demonstrated in
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vitro [7]. The role of microglia in sculpting nervous system
circuitry during this period of development, when there is
exuberant axonal and synaptic connectivity, is a subject of
much interest. In mice lacking components of the complement
cascade, there is an excess convergence of connections from
the retinal ganglion cells of the eye onto neurons in the dorsal
lateral geniculate nucleus (dLGN) of the thalamus that is
maintained until later in development than normal [8, 9]. It
is proposed that complement component C1q decorates syn-
apses that are destined to degenerate and then microglia rec-
ognize and remove these opsonized synapses [8, 9]. The
notion that microglia are actively involved in the removal of
synapses from their postsynaptic targets has a long history,
and it was first invoked as a response by microglia in the
removal of synapses from damaged or injured neurons, so-
called synaptic stripping. As reviewed elsewhere [10], the
evidence that microglia are active participants in synaptic
stripping is unclear, and direct evidence that microglia recog-
nize healthy synapses and select those which are about to lose
the competition for a postsynaptic connection remains
unproven. In contrast to the visual system, studies on the
hippocampus of CX3C-receptor (CX3CR)-null mice describe
the microglia as phagocytosing material derived from the
postsynaptic density of the dendritic spine, the protein PSD-
95 [11], rather than the pre-synaptic elements as described in
the visual system. Although it was suggested that this form of
synaptic pruning by microglia was necessary for normal de-
velopment, the number of spines was only transiently different
from normal at 15 days postnatal and by 40 days postnatal had
achieved normal levels.

If the microglia are exclusively derived from the yolk sac
during development, the interesting question is raised as to
how the population is subsequently maintained during life:
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what are the relative contributions of local proliferation and
recruitment from the blood, and are these pathways similar
under healthy and diseased conditions? Lawson et al. [3],
using tritiated thymidine with immunocytochemistry, dem-
onstrated that microglia, under physiological conditions,
proliferate more slowly than other tissue macrophage
populations and are maintained in large part by local prolif-
eration. To study the degree of recruitment from the blood, a
number of laboratories have used bone marrow chimeras
(BM-chimeras) with protein polymorphisms, genetic labels,
Y-chromosome or more recently GFP to identify the donor
cells [12, 13]. However, these studies have been shown to
suffer from a serious artefact as a consequence of the irra-
diation strategy [14]. Evidence from parabiotic animals [15]
or following the generation of BM-chimeras with a head-
shield to prevent conditioning of the CNS by the radiation
[13, 16] showed very little evidence of invasion of the brain
parenchyma from the bone marrow. It appears, as previously
described [3], that local division regulates the microglia
population at least in mice in pathogen-free laboratory con-
ditions. Using BrdU labelling of dividing cells in animals in
which the microglia are labelled with GFP driven from the
colony-stimulating factor receptor-1 (CSFR1) promotor
[17], there is indeed significant proliferation of the resident
cells with some variation from one region of the brain to
another [18]. The turnover of the microglia is influenced by
systemic events: microglia in the neurohypophysis prolifer-
ate during osmotic stress [19] and more generally following
systemic challenge with lipopolysaccharide (LPS) [20]. The
increase in macrophages and microglia in the autoimmune
disease experimental allergic encephalomyelitis (EAE)
comes from both the proliferation of the microglia and
invasion of monocytes [21].

One important message from the generation of BM-
chimeras is that microglia morphology is not unique to
yolk-sac-derived cells since some donor BM-derived cells
can invade the parenchyma and develop morphology typical
of microglia. This simple observation indicates that microg-
lia morphology is a property largely imposed by the local
microenvironment rather than their developmental origin.
Deletion of microglia by another paradigm, using local
cortical injection of ganciclovir to locally kill CD11b +
microglia expressing HSV-thymidine kinase, led to re-
population of the cortex by blood-derived monocytes within
2 weeks. While these cells developed morphological fea-
tures of microglia, they were subtly distinct from the resi-
dent cells, and they had higher CD45 expression, even many
months after invasion [22].

An important point to highlight is the marked species
difference in the response to generation of BM-chimeras.
The invasion of the irradiated CNS by grafted bone-marrow-
derived cells may be a particular property of mice since the
same experimental approach in rats, including irradiation of

the brain, results in population of the perivascular space by
BM-derived cells but not the brain parenchyma [23]. Few
studies have been carried out in larger animals, but in
macaque monkey, the evidence suggests that transplanted
adult CD34-positive stem cell progeny does not invade the
parenchyma but only the perivascular space [24], and sim-
ilarly, in humans with bone marrow transplants, BM-derived
cells appear only to enter the perivascular space [25].

Perivascular and meningeal macrophages

In contrast to the microglia, the other populations of CNS
macrophages have received much less attention with regard
to their developmental origin and turnover. These macro-
phages have a distinct morphology and phenotype when
compared to the microglia, illustrating the profound effect
of the local microenvironment. The BM-chimera studies, be
they in mouse with a head shield [16], rats or primates, show
that perivascular macrophages are regularly replaced by
cells recruited from the blood [23, 24]. The precise time
period for replacement is not well described but usually
reported as periods of months rather than days. The turnover
of the macrophages in the circumventricular organs (CVOs)
and choroid plexus has not been systematically studied.
Recent studies have described the role of pericytes in the
regulation of local blood flow and blood-brain barrier per-
meability, but their role in neuroinflammation and interac-
tions with PVMs and microglia remains to be defined [26].

Cellular and solute drainage from the brain

An important question with regard to immune-brain com-
munication is whether immune cells in the CNS can migrate
from the CNS to lymphoid organs. The brain lacks a typical
lymphatic drainage system, although interestingly, it is not
known what components of the CNS microenvironment
prevent the formation of lymphatic vessels. Despite the
absence of lymphatics, there are well-described drainage
routes for soluble molecules from the brain parenchyma
along the perivascular space of the arteries into the cerebro-
spinal fluid and hence to the cervical lymph nodes in the
neck [27]. It is a contentious issue as to whether these routes
might also be a lymphatic-like drainage route for PVMs and
MM s to carry CNS or pathogen-derived antigens to cervical
lymph nodes. In the normal healthy brain, it has been argued
that the absence of dendritic cells in the brain parenchyma or
perivascular space and the lack of migratory capacity of
both microglia and PVMs account for the immune privilege
of the CNS parenchyma [1] and permit bacterial and viral
particles to persist in the parenchyma undetected by the
immune system [28]. By contrast, delivery of bacterial or
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viral particles to the ventricles or surface of the brain leads to a
prompt immune response [29]. This distinct compartmentali-
zation of macrophage phenotypes may also be related to the
very different responses of the parenchyma and meninges to
challenge with agents such as lipopolysaccharide or cytokines
that evoke stereotypic acute inflammatory responses in the
meninges but not in the brain parenchyma [30].

Regulation of microglia phenotype

Under steady-state conditions, microglia display a striking
down-regulated phenotype when compared with other CNS
macrophages with low expression of CD45, Fc receptors
and MHC class II. A recent study assessing gene expression
in tissue macrophages from various mouse organs showed
that all tissue macrophages express mRNA encoding diverse
receptors such as the Mer tyrosine kinase receptor (MerTK),
involved in phagocytosis of apoptotic cells, and mRNA
encoding the toll-like receptors TLR4, TLR7, TLR8 and
TLR13 involved in the recognition of microbial pathogen-
derived molecules [31]. Microglia in the normal healthy
CNS display particularly low-level expression of hundreds
of transcripts that are expressed in other macrophage
populations, but enrichment of genes related to oxidative
metabolism. This study not only extends the notion of the
down-regulated phenotype of microglia under steady-state
conditions, but also points to the role of microglia in ho-
meostasis and first line of defence: they are well equipped to
remove debris and apoptotic cells, respond to infectious and
non-infectious danger signals and regulate oxidative
processes.

The local microenvironment and, in particular, neurons
and astrocytes play an integral role in regulating microglia
phenotype via interaction with both soluble and membrane-
bound mediators. Neurotropic factors released by neurons
contribute to the down-regulated state of microglia and
dampen inflammation in the CNS. For example, nerve
growth factor inhibits MHC class II expression on microglia
[32], and brain-derived neurotrophic factor down-regulates
expression of co-stimulatory molecules B7 and CD40 [33].
Microglia express diverse receptors for neurotransmitters
[34], and neurotransmitters such as norepinephrine (NE)
and 'y-aminobutyric acid (GABA) have immune modulatory
effects by suppressing pro-inflammatory cytokine produc-
tion. For example, microglia and astrocytes, which are in
intimate communication with microglia, express GABA(A)
and GABA(B) receptors; activation of these receptors sup-
presses LPS or interferon-y-mediated inflammation by in-
hibition of NFkB and P38 MAP kinase [35].

Apart from soluble factors, cell-cell-mediated modulation
of microglia also contributes to a down-regulated phenotype.
Membrane-bound proteins on neurons include CD200 and the
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chemokine fractalkine (CX3CL1) [36, 37], and each binds
their receptor on microglia CD200R and CX3CRI, respec-
tively. Both CD200R and CX3CRI1 are transmembrane pro-
teins on microglia that carry ITIM motifs (immunoreceptor
tyrosine-based inhibitory motif) in their intracellular domain.
Upon crosslinking, these ITIM-bearing receptors recruit SHP-
1 and SHP-2 phosphatases, which inhibit down-stream im-
mune signalling [38]. Thus, these neuron-microglia ligand-
receptor interactions play an important role in the down-
regulation of the microglia phenotype. This is in contrast to
transmembrane receptors that signal via ITAM motifs
(immunoreceptor tyrosine-based activation based motif),
which, following crosslinking, recruit Syk which results in
phosphorylation of down-stream signalling pathways and
subsequent cell activation [39]. There is a growing list of
ligand-receptor interactions regulating the microglia pheno-
type which includes the receptors TREM-2 and Siglecs
expressed on microglia, for example, Siglec 11 (human) or
Siglec F (rodent) contribute to immune regulation by binding
sialic acid residues on neurons (Fig. 2) [40]. TREM-2 may
contribute to immune regulation via recruitment of the ITAM-
containing adapter protein DAP-12, which results in inhibito-
ry cell signalling following tonic or monovalent engagement
with intact neurons [41].

An important consequence of these interactions between
neurons and microglia is that in conditions where neurons
degenerate, either acutely or in chronic neurodegenerative
disease, the microglia will be released from the tonic inhi-
bition provided by neurons. There is also evidence that in
animal models mimicking aspects of human neurodegener-
ative disease, the neuropathology may be enhanced by
blockade of CD200—CD200R interactions [42] or deletion
of CX3CRI1 [43]. Mutations in TREM-2 and CD33 have
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Fig. 2 Electron micrograph of a microglia cell in the mouse brain
labelled with F4/80. Note the sparse cytoplasm and limited organelles
typical of the down-regulated phenotype of microglia. Ligands
expressed by neurons (left column) bind receptors on microglia (right
column) that inhibit their activation
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been associated with increased risk of Alzheimer’s disease,
highlighting the importance of immune suppression, medi-
ated by this class of immune receptors in maintenance of
CNS homeostasis [44—46].

Microglia in the adult brain

Microglia are ubiquitously distributed in the adult CNS, but
their distribution is not uniform. In the rodent brain, their
density varies from regions with a high density, for example,
the substantia nigra, to a low density, such as the molecular
layer of the cerebellum; the fibre tracts also have a low
density [47]. The microglia each occupy their own territory,
and in vivo imaging studies reveal that they continually
palpate the neurons and glia within their territory such that
they survey their ‘sphere of influence’ about every hour
[48]. The significance of the differential density distribution
and the differences in morphology, the length and density of
processes and local territory covered is largely a matter of
conjecture, but it is not simply related to the extent of
developmental cell death, the density of the vasculature or
routes of entry into the CNS [47]. The microglia express
receptors for diverse neurotransmitters [34], but the distri-
bution of microglia has not been readily related to any
particular transmitter.

The regional differences in microglia density and mor-
phology have led to investigations into possible functional
differences in the adult naive state, but expression of im-
mune molecules such as CD80/CD86, CD11b, F4/80 and
CXCR3 has only revealed subtle differences in young ro-
dents [49]; the similarities are more striking than the differ-
ences. Recent evidence suggests that there is heterogeneity
in the microglia response to a local inflammatory challenge,
but whether this represents the response of distinct sub-
groups of microglia [50] or the stochastic nature of the
transcriptional response [51] remains to be established. In
the ageing CNS, the microglia show readily detectable re-
gional differences, as discussed below.

CNS macrophages and microglia: the immune—brain
interface

Although the phenotype and function of macrophages and
microglia have predominantly focused on their role within
the CNS and their very local interactions, it is known that
these cells play an important role in communication between
the systemic immune system and the brain. Systemic infec-
tion and inflammation lead to metabolic and behavioural
changes that play an important role in protecting an organ-
ism and promoting recovery. The typical signs of a systemic
infection lead to behaviours commonly referred to as

“sickness behaviours” that include fever, malaise, lethargy,
anorexia and depression [52]. The routes by which systemic
inflammation communicates with the brain include both neural
and humoural pathways. Receptors for cytokines and other
inflammatory mediators on afferent vagus nerve fibres respond
to these molecules and signal to the nucleus of the solitary tract
and hence to other regions of the CNS [53]. Circulating cyto-
kines and inflammatory mediators may communicate with
macrophages in the circumventricular organs: regions of the
CNS that lack a typical tight blood-brain barrier. Signals gen-
erated in the CVOs then communicate with neural signalling
pathways in the brain [54]. A further route of communication
involves signalling from mediators in blood to the cerebral
endothelial cells, which signal to the perivascular macrophages
which, in turn, signal to the microglia. The signalling from the
cerebral endothelium involves activation of COX-1 and COX-
2 and the generation of prostaglandins and likely other medi-
ators [55]. The synthesis of cytokines such as interleukin-1f3
(IL-1) in the PVMs, microglia and cerebral endothelial cells
has been demonstrated following systemic LPS challenge [56].
Indeed, microinjection of IL-1 and other cytokines into the
cerebral ventricles or local regions of the CNS can evoke
sickness behaviours [57].

The signalling of systemic inflammation to the CNS,
arising as a consequence of injury or disease, is part of
normal homeostasis; it takes place across an intact blood-
brain barrier and does not lead to damage of the neurons of
the CNS. Although most of what we know about signalling
from the peripheral immune system to the brain has been
studied in rodents, experimental studies in humans provide
evidence for similar effects of systemic inflammation. LPS
challenge in humans leads to fever and neuropsychological
symptoms. For example, low-dose endotoxin in healthy
volunteers reduced declarative memory performance that
was inversely correlated with cytokine increases [58] and
increased symptoms of depression [59]. Other clinical
symptoms include fatigue and decrease in social interest.
Similar findings have been described following influenza
HINI virus infection; individuals reported symptoms of
anxiety and depression up to 1 year after the infection
[60]. The use of biologicals as therapeutic agents has also
provided valuable insight, and it is well known that periph-
eral injection of (3-interferon leads to flu-like symptoms in
patients with multiple sclerosis, that a-interferon therapy in
patients with hepatitis C may lead to serious symptoms of
depression in some individuals and that anti-tumour necro-
sis factor-oc (anti-TNF) therapy in patients with psoriasis can
lead to improvements in mood [61]. There are likely multi-
ple systemic inflammatory mediators that impact on innate
immune cells in the CNS, leading to changes in behaviour.

The regulation of the microglia phenotype by the micro-
environment of the CNS appears to be an important part of
CNS immune physiology. The fact that these cells are
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derived from a particular developmental niche, are long
lived, locally replaced and play a key role in signalling from
the peripheral immune system to the brain, raises interesting
questions on how disturbances of the CNS microenviron-
ment such as neurodegeneration and ageing affect immune
system to brain signalling. There is now a growing body of
evidence to show that during neurodegeneration and normal
ageing, the loss of the down-regulated phenotype of the mi-
croglia can have profound consequences for signalling from
the immune system to brain: what was once an important part
of homeostasis can become a maladaptive response.

Microglia priming in chronic neurodegeneration

The microglia are highly responsive to almost any form of
injury or disease of the CNS and become activated. This
activation is characterized by alterations in their morphology,
such as hypertrophy of the cell soma, increased branching,
upregulation or de novo synthesis of cell surface or intracel-
lular molecules, and proliferation (Fig. 1b, d). Some of the
most important diseases afflicting society today are the chron-
ic neurodegenerative diseases of the CNS such as Alzheimer’s
disease (AD), Parkinson’s disease, frontotemporal dementia
and amyotrophic lateral sclerosis. Age is the single most
important risk factor for the sporadic forms of these diseases,
and with the demographic shift to longer lifespan, it is clear
that the prevalence of these diseases will increase [62]. The
role of inflammation in disease progression is of much interest
as manipulations of inflammation may help to ameliorate
disease progression. There are many useful reviews on the
possible roles of microglia in chronic neurodegeneration [63,
64], but we focus here on the concept of microglia priming
and the impact of systemic inflammation.

Although there are numerous animal models that mimic
aspects of AD, the deposition of amyloid and the accumu-
lation of phosphorylated tau, these models are not models of
chronic neurodegeneration. These models do not replicate
the widespread and devastating loss of neurons in the AD
brain: the loss of neurons is modest or absent. A tractable
laboratory model of chronic neurodegeneration that in-
volves the accumulation of a misfolded protein and is a fatal
progressive neurodegenerative disease is murine prion dis-
ease. In this disease, microglia take on an activated mor-
phology at discrete sites in the brain early in disease, and as
the pathology spreads in a systematic fashion through the
brain, the microglia take on an activated morphology [65].
The stimulus that leads to this activation is not known but
may include the loss of inhibitory contact with the neuronal
ligands such as CD200, C3XCL1 described above, the
accumulation of the misfolded protein, phagocytosis of ap-
optotic bodies and neuronal debris and other yet
unidentified routes. Despite their apparent morphological
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activation, the microglia appear to have a predominantly
anti-inflammatory phenotype.

Most tissue macrophages, following the appropriate stim-
ulus, can polarize into M1 and M2 or M2-like phenotypes
[66]. Classical activation and M1 polarization require
interferon-y (IFN-y) combined with TLR4 signalling and
are characterized by increased expression of pro-
inflammatory mediators and effectors enabling phagocytosis
and killing of pathogens. Alternative activation and M2
polarization occur in response to IL-4 and are distinguished
by increased expression of transforming growth factor-f3
(TGFB), IL-10, scavenger receptor CD206, MS4A4a/6A
and fibrinogenic and coagulation factors, enabling regula-
tion of wound healing, tissue repair, collagen formation and
recruitment of Th2 cells. ‘Regulatory’ macrophages with an
M2-like phenotype share many characteristics with M1 mac-
rophages, including expression of pro-inflammatory cytokines,
but have an immunosuppressive function due to secretion of
large amounts of IL 10. These regulatory macrophages, or
M2b macrophages, appear following Fc receptor ligation, have
both pro- and anti-inflammatory function and recruit regulato-
ry T cells. Finally, in response to IL-10, TGFf3, glucocorticoid
or after ingestion of apoptotic cells, microglia polarize into
deactivated or M2c cells, characterized by increased expres-
sion of scavenger receptor CD163 and CD206 and down-
regulation of pro-inflammatory mediators. Microglia can ex-
hibit different phenotypes that have some of the characteristics
of M1- and M2-phenotypes, but they are also highly plastic
cells and may transition between different states depending on
both local and systemic influences.

The microglia in prion diseased brain, even early in the
disease, are associated with high levels of TGFf,
prostaglandin-E2 (PGE2), colony-stimulating factor-1 (CSF1)
and IL-34 [18, 67]. The microglia appear to have a relatively
anti-inflammatory phenotype, which we have previously re-
ferred to as ‘benign’ with regard to driving disease progression
[65, 68]. The microglia do not appear to be involved in the
removal of the misfolded protein [69] nor in the removal of the
degenerating synapses [70], although it is clear that they have
phagocytic potential. Furthermore, a microarray analysis re-
vealed upregulation of various genes which encode receptors
of immune regulation (i.e. CD33, TREM-2, FcRs, Dectin-1)
and down-stream ITIM signalling pathways [71]. It has only
recently became clear that this phenotype is not ‘benign’ since
preventing microglia proliferation in the prion diseased ani-
mals using an inhibitor of the CSF1R kinase activity led to a
delay in the onset of behavioural symptoms and prolonged
their survival [18]. The CSFIR kinase inhibitor not only
reduced the numbers of microglia but also led to a further
shift towards an M2-like phenotype with further upregulation
of arginase-1 (ARG1) and YM1 mRNA [18].

The apparent anti-inflammatory or M2-like profile of the
microglia in murine prion disease is in accord with that seen
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in some murine models of AD [72], where mice express
human genes encoding for the AD-related proteins, but at
odds with reports of pro-inflammatory cytokines in post-
mortem tissue from AD patients. To investigate how sys-
temic inflammation, a common component of end-stage
disease in AD patients, might impact on the microglia
phenotype, we injected LPS into the peritoneum of mice
with prion disease. These experiments showed that systemic
inflammation can lead to a dramatic change in the pheno-
type of the microglia, which switch towards a pro-
inflammatory phenotype with the expression of cytokines
such as IL-1, IL-6 and TNF [73, 74]. We have also shown
that systemic LPS challenge results in increased expression
of a wide range of immune regulatory receptors that mediate
their function via activating ITAM signalling, including IgG
Fc receptors [71]. The upregulation of FcRs was further
investigated using prion-infected Fcy-deficient mice, which
failed to increase IL-1 expression in the CNS following
systemic LPS challenge, despite a normal peripheral im-
mune response. The systemic inflammation led to increased
expression of serum-derived IgG in the brain parenchyma,
suggesting a role for IgG-FcR interaction in switching
primed microglia to an aggressive pro-inflammatory pheno-
type [71]. A similar switch in microglia phenotype is seen
with systemic challenge with the TLR3 agonists poly I:C to
mimic a viral infection [75] and following intranasally ad-
ministered live PR3 influenza (Teeling et al., unpublished
observations). These changes in microglia phenotype are
associated with an exaggeration of sickness behaviours,
such as fever, loss of activity, loss of burrowing behaviour
and an acceleration of disease progression with earlier onset
of cognitive impairments and motor deficits [74, 76]. We
proposed that the microglia are ‘primed’ by the ongoing
neurodegeneration and that the systemic mediators signal-
ling across the blood-brain barrier lead to a switch in mi-
croglia phenotype.

The concept of macrophage priming is well known in the
context of in vitro systems with priming of macrophages by
IFN-y prior to a challenge with a TLR agonist. Cross regula-
tion of innate immune receptors such as TLR and IFN-y
receptors that activate PI3K and/or NFkB may explain this
enhanced response to the TLR agonist [77]. Although in the
prion diseased brain there are small numbers of T-cells
recruited to sites of pathology [78], these cells do not synthe-
size detectable amounts of IFN-y, and indeed, they appear to
be anergic (Teeling et al., unpublished observations). Further
insight into macrophage priming has come from in vitro
cultures of macrophages with high and low concentrations
of LPS. Low-dose LPS (5-50 pg/ml) failed to induce PI3K
and NFkB and instead utilized IRAK-1 to induce mitochon-
drial ROS, which, in turn, allows the transcription factor ATF2
to bind DNA, resulting in low-grade but prolonged expression
of pro-inflammatory cytokines [79, 80]. Other possible

candidates for priming the microglia in the absence of [FN-y
are the cytokines CSF1 and IL-34, which both signal through
CSFRI1. In vitro and in vivo mouse studies show that pre-
exposure to CSF1 can lead to increased synthesis of cytokines
IL-6 and TNF to a subsequent LPS challenge [81].

The data thus suggest that the normal homeostatic sig-
nalling from the peripheral immune system to brain is
distorted in the diseased brain and leads to the generation
of a response in the brain that can increase disease symp-
toms, increase neuronal loss and accelerate disease progres-
sion. The primed microglia now produce a maladaptive
response during systemic inflammation.

Evidence for this microglia priming phenomenon has now
been described in a number of different animal models of
neurodegeneration with a similar switch in the cytokine pro-
file following systemic challenges. APP transgenic mice chal-
lenged with LPS synthesized increased pro-inflammatory cy-
tokines in the CNS [82]. Degeneration of cells in the
substantia nigra (SN) can be induced with a number of differ-
ent protocols to generate a model of Parkinson’s disease, and
subsequent systemic challenge of animals with IL-1 leads to
enhanced degeneration of SN neurons and pro-inflammatory
cytokine production [83]. It has long been known that system-
ic infection is associated with relapses in multiple sclerosis,
and there is evidence to suggest that relapses precipitated by
an infection may have long-term consequences on clinical
disease [84]. In the animal model of multiple sclerosis, EAE,
systemic challenge with LPS or other bacterial toxins can
exacerbate neurological symptoms [85]. Even in the absence
of clinical symptoms following a systemic challenge, there is
increased axon injury associated with inducible nitric oxide
synthase (iNOS) induction in microglia [86]. There was,
however, significant heterogeneity in the appearance of the
lesions after LPS challenge, with pronounced induction of
axon injury in some and minimal axon injury in others.
Laser dissection of individual lesions and further characteri-
zation showed that lesions with ongoing axon injury were
associated with pro-inflammatory cytokine mRNA profile
and iNOS synthesis, while the lesions with no or limited axon
injury were dominated by the cytokine IL-10 [86]. These data
show that the local regulation by the CNS microenvironment
plays an important role in response to the systemic challenge.

Microglia priming and ageing

It is well known that ageing is characterized by a decline in
the function of the adaptive immune system, resulting in
increased antigenic stress, increased oxidative stress and
increased incidence of autoimmunity. The innate immune
system remains intact and functional, and the reduced activ-
ity of the adaptive immune system results in a low-grade
chronic pro-inflammatory state, so called inflamm-ageing
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[87]. This increased pro-inflammatory peripheral tissue en-
vironment may impact on the brain by activation of cerebral
endothelial cells as well as on innate immune cells in the
CNS. We, and others, have shown that microglia in the
rodent brain take on an activated phenotype during ageing,
characterized by increased expression of CDI11b, CD68,
F4/80, FcRI and CD11c [88]. Although microglia adopt this
activated phenotype, pro-inflammatory cytokines are gener-
ally not increased above baseline levels. The phenotype and
morphological changes in microglia are region specific,
with caudal regions such as the cerebellum more affected
than rostral forebrain regions. Microglia in white matter
showed significant increased expression of CDllc and
FcRI relative to microglia in grey matter.

The change in cell surface antigen repertoire seen in the
aged brain is also associated with a primed microglia phe-
notype: challenge of aged rodents with systemic LPS leads
to exaggerated sickness behaviours and enhanced cytokine
synthesis of IL-1 and IL-10, and increased expression of
TLR2, MHCII and indoleamine 2,3-dioxygenase (IDO)
mRNA, and the latter is associated with depressive-like

behaviours [89, 90]. The primed phenotype of microglia
may be a consequence of the loss of molecules, both soluble
and cell-bound mediators, involved in maintaining the
down-regulated phenotype and may also reflect changes in
the responsiveness of the microglia to inhibitory molecules
such as IL-10 [89].

The priming of microglia in the ageing brain is of partic-
ular importance as one of the components by which system-
ic inflammation, associated with infection, trauma or drug
insult, in elderly individuals with no apparent brain disease,
may lead to delirium. Delirium is a condition in which a
patient shows a neuropsychiatric episode typified by fluctu-
ating degree of disorientation, confusion, memory loss and
disturbances of attention. The pathology underlying deliri-
um is not well understood, but the exaggerated sickness
behaviours precipitated by systemic inflammation signalling
across an intact blood-brain barrier to primed microglia
suggest cellular and molecular pathways that may underpin
delirium [91, 92]. Even in the absence of delirium, low-level
systemic inflammation and infections are associated with
more rapid cognitive decline in AD patients [93].
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tion result in prolonged ‘priming’, microglial activation. We
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dysfunction, disease symptoms and disease progression in the diseased
CNS



Semin Immunopathol (2013) 35:601-612

609

Peripheral routes to microglia priming

Local changes in soluble and cell mediators expressed by
neurons and astrocytes are one potential route by which mi-
croglia priming arises and the cells escape from the inhibitory
CNS microenvironment. Since transient systemic inflamma-
tion, such as that induced by a peripheral LPS or poly I:C
challenge, can affect microglia, it is of interest to consider
whether the environment in which animals are raised also
plays a role. Rats raised and maintained in a conventional
animal house showed a robust immune response in the brain
parenchyma following the microinjection of an adenoviral
vector engineered to express beta-galactosidase. In contrast,
animals raised in a specific pathogen-free unit show a much
reduced inflammatory response to the virus and prolonged
expression of the beta-galactosidase gene [94]. More recently,
we have shown that peripheral challenge with Salmonella
typhimurium leads to activation of the cerebral endothelium
and microglia [95]. To investigate whether the microglia in the
brain parenchyma were primed by the systemic inflammation,
we microinjected a very small amount of LPS into the brain
parenchyma, which, in normal animals, evoked little or no
inflammatory response. In animals previously challenged with
S. typhimurium, there was a more robust inflammatory re-
sponse at the site of the LPS injection. The priming of the
innate immune response in the CNS is associated with ageing,
neurodegeneration and systemic inflammation.

Conclusion

Experimental and clinical studies have each provided evidence
for a detrimental role of microglia in age-related CNS disor-
ders, but the biological factors that initiate innate immune
activation in the CNS are still elusive. Normal ageing is asso-
ciated with loss of synapses, changes in the integrity of the
fibre tracts and increases in oxidative stress, and it is likely that
all these changes affect microglial function, due to altered
neuroglial interactions. A heightened innate immune response
has been referred to as inflamm-aging, an adaptive response to
aid re-establishment of homeostasis. This process is under tight
control, and when it fails, chronic inflammation occurs, which
may contribute to tissue damage and disease progression.

We propose that age-related changes in the CNS micro-
environment and age-related neurodegenerative diseases
prime microglia (Fig. 3). Primed microglia respond more
vigorously to inflammatory challenges and, in response to
further innate immune activation, switch from an anti-
inflammatory, potentially protective phenotype to an aggres-
sive inflammatory phenotype, with tissue damage and cell
loss. In healthy individuals, systemic inflammation associ-
ated with infection and tissue injury induces transient acti-
vation of microglia, which is part of the strategy to promote

recovery, repair and a return to homeostasis. Microglia are
long-lived cells derived from the yolk sac, and repeated or
chronic systemic infections during a lifetime may alter the
phenotype and function of these long-lived cells, such that
they become primed for subsequent immune challenges.
Infections are not exclusively responsible for microglial
activation, as evidence is emerging that smoking, obesity
and atherosclerosis are associated with increased onset and
progression of cognitive decline. These lifestyle choices
induce low-grade inflammation which may explain the in-
creased incidence of chronic degenerative diseases of the
CNS such as AD and PD, and possibly age-related macular
degeneration. Further understanding of the biological path-
ways underlying microglial priming in experimental models
and humans will not only provide insight into the pathogen-
esis of CNS disorders, but may also generate novel targets
for drug discovery.
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