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Abstract

Purpose—To develop a novel combination of controlled aliasing in parallel imaging results in 

higher acceleration (CAIPIRINHA) with integrated SSFP (CAIPI-iSSFP) for accelerated SSFP 

imaging without banding artifacts at 3T.

Materials and Methods—CAIPI-iSSFP was developed by adding a dephasing gradient to the 

balanced SSFP (bSSFP) pulse sequence with a gradient area that results in 2π dephasing across a 

single pixel. Extended phase graph (EPG) simulations were performed to show the signal 

behaviors of iSSFP, bSSFP, and RF-spoiled gradient echo (SPGR) sequences. In vivo experiments 

were performed for brain and abdominal imaging at 3T with simultaneous multi-slice (SMS) 

acceleration factors of 2, 3 and 4 with CAIPI-iSSFP and CAIPI-bSSFP. The image quality was 

evaluated by measuring the relative contrast-to-noise ratio (CNR) and by qualitatively assessing 

banding artifact removal in the brain.

Results—Banding artifacts were removed using CAIPI-iSSFP compared to CAIPI-bSSFP up to 

an SMS factor of 4 and 3 on brain and liver imaging, respectively. The relative CNRs between 

gray and white matter were on average 18% lower in CAIPI-iSSFP compared to that of CAIPI-

bSSFP.

Conclusion—This study demonstrated that CAIPI-iSSFP provides up to a factor of four 

acceleration, while minimizing the banding artifacts with up to a 20% decrease in the relative 

CNR.
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INTRODUCTION

Balanced steady-state free precession (bSSFP) is one of the most widely used magnetic 

resonance imaging (MRI) pulse sequences. Due to its high signal-to-noise ratio (SNR) 

efficiency (1–4) and its unique tissue contrast (5, 6), bSSFP has found many applications in 

cardiovascular, musculoskeletal and functional MRI (4). However, similar to other steady-

state imaging techniques, the imaging speed of bSSFP is still limited especially for wide 

volume coverage. Another limitation of bSSFP is the banding artifacts that are commonly 

present in imaging due to its sensitivity to off-resonance effects.

Parallel imaging is one of the most commonly used techniques for accelerated image 

acquisition. However, parallel imaging suffers from SNR penalties due to coil geometry (g-

factor) and an undersampling of k-space lines (7, 8). Simultaneous multi-slice acquisition 

(SMS) has been developed as an alternative accelerated imaging method (9) by employing a 

superposition of radio-frequency (RF) pulses to simultaneously excite multiple slices. The 

advantage of using SMS over parallel imaging techniques is the minimal SNR penalty due to 

the full acquisition of k-space lines (10). However, if the simultaneously acquired slices are 

adjacent to each other, SMS can result in an incoherent reconstructed image (11). Controlled 

aliasing in parallel imaging that results in higher acceleration (CAIPIRINHA) (11) is a 

variant of the SMS technique that uses phase modulated RF pulses to excite multiple slices 

while simultaneously shifting the field-of-view (FOV) of the simultaneously excited slices. 

It can be used to improve the reconstruction of the adjacent slices and SNR.

The application of CAIPIRINHA in bSSFP imaging, however, has been limited because the 

phase modulation of CAIPIRINHA not only results in a spatial shift of the imaging slices, 

but also yields a frequency shift on the off-resonance profile of bSSFP signals and banding 

artifacts in simultaneously excited slices. Stäb et al. (12) proposed a technique to achieve a 

SMS factor of two for bSSFP imaging by shifting the center frequency of the bSSFP to yield 

an off-resonance angle of ± π/2 for the two simultaneously excited imaging slices 

respectively, as a tradeoff between achieving SMS acceleration and minimizing banding 

artifacts. However, expanding such a technique to accelerated bSSFP imaging with SMS 

factors greater than 2 is challenging (1, 3, 4). Phase cycling may be applied to reduce the 

banding artifacts in CAIPI-bSSFP, however the increased scan time will discount the SNR 

efficiency of bSSFP and make it impractical for clinical applications. This issue is the main 

limitation for the application of CAIPIRINHA in bSSFP imaging, especially with high SMS 

acceleration factors (≥ 3).

In this study, we present a special case of the SSFP-FID sequences termed integrated SSFP 

(iSSFP) that removes the sensitivity of the bSSFP signals to off-resonance by using an 

additional gradient to dephase the spins in a pixel across a 2π cycle (13, 14). We 

demonstrated that there was similar tissue contrast between the two sequences by conducting 
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numerical simulations and performing brain and abdominal imaging, where banding often 

occurs. Due to the dephasing gradient, there were flow-related artifacts. The addition of flow 

compensated gradients made it feasible to improve the iSSFP signal in the presence of blood 

flow. We also combined iSSFP with CAIPIRINHA, herein termed CAIPI-iSSFP, to achieve 

highly accelerated SSFP imaging (acceleration factors ≥ 3). Combining these two techniques 

made high acceleration achievable while still removing banding artifacts and maintaining 

sufficient T2/T1 contrast of bSSFP.

MATERIALS AND METHODS

iSSFP with CAIPIRINHA (CAIPI-iSSFP)

The iSSFP sequence, as shown in Figure 1, is based on a previously proposed idea (i.e., an 

additional dephasing gradient is applied to bSSFP to fully dephase spins across a 2π cycle 

within a single pixel), but has not been systematically studied yet (13–16). In a nutshell, the 

iSSFP method integrates a 2π cycle of the bSSFP signal profile into the width of a single 

pixel (Fig. 1b), which eliminates its sensitivity to off-resonance. The dephasing gradient can 

be applied along any direction, but for the sake of simplicity, in this study, the application of 

the gradient along the readout or x-direction is described. The strength of the gradient is 

determined by the phase dispersion equation:

[1]

where ΔΦ is the amount of desired phase dispersion per pixel (2π), γ is the Larmor 

frequency, Gx is the magnitude of the dephasing gradient, and Δx is the width of the pixel. 

The integral of Gx over TR is simply the 0th moment or area of the dephasing gradient. 

Having the spins dephase across 2π within a single pixel will result in the averaging of the 

bSSFP signal profile (14). The advantage of this approach is that it removes the dependence 

of off-resonance effects, however the iSSFP signal decreases compared to the bSSFP signal. 

Nevertheless, iSSFP largely preserves the unique T2/T1 contrast of bSSFP since it averages 

the bSSFP signal profile.

As mentioned, iSSFP is a special case of the SSFP-FID sequences. However, it is important 

to differentiate iSSFP from the other types of gradient echo sequences. If the dephasing 

gradient area is further increased or is also applied along other directions, then the phase 

dispersion will increase and ultimately spoil the signal. The sequences that use these 

gradients that are applied in multiple directions and/or with a larger gradient area (causing a 

4π or greater phase dispersion) to spoil the transversal magnetization are called gradient-

spoiled echo (GRE) or RF spoiled gradient echo (SPGR) when accompanied by RF spoiling 

(14, 17–19). Reducing the area of the spoiling gradient such that the resultant phase 

dispersion is less than 2π will cause steady-state SSFP-FID and SSFP-Echo signals with 

complicated spin phase pathways (20). Also the signal is still dependent on off-resonance 

effects and may present banding artifacts. This category of pulse sequences is commonly 

known as a steady state gradient echo such as fast imaging with steady-state free precession 

(FISP) and gradient recalled acquisition in the steady state (GRASS).
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Since iSSFP is not sensitive to off-resonance, accelerated SSFP imaging can be achieved by 

combining iSSFP and CAIPIRINHA, herein termed as CAIPI-iSSFP, with a high SNR 

efficiency and T2/T1 contrast that is similar to that of bSSFP (12, 21). The added dephasing 

gradient removes the inherent flow compensation of bSSFP along the direction of the 

applied gradient and can cause the iSSFP signal to be susceptible to blood flow artifacts. 

While this is not as much of an issue in the brain, the flow artifacts are more severe in body 

applications. Flow compensation is a technique to overcome the additional phase accrual 

caused by velocity (M1) and acceleration (M2) motion of the spins in the blood vessels (22–

24). The M2 flow artifacts were assumed to be negligible; so, MI flow compensation was 

performed by adding bipolar gradients (Fig. 1) after the dephasing gradient to reduce the 

flow artifacts and improve the tissue signal (22, 23).

Numerical Simulations

Extended phase graph (EPG) (25) simulations of the iSSFP sequence were performed to 

assess its signal profile as a function of the off-resonance frequency and flip angle (FA) 

using custom MATLAB (The MathWorks, Natick, MA, USA) programs. For comparison, 

simulations were also performed for the bSSFP and SPGR sequences. The following 

parameters were used in the simulations: TR = 4 ms, TE = TR/2, T1 = 1331 ms and T2 = 80 

ms for gray matter (GM), T1 = 832 ms and T2 = 110 ms for white matter (WM) (26), T1 = 

809 ms and T2 = 34 ms for liver, T1 = 1627 ms and T2 = 34 ms for venous blood (VB), FA = 

30° when simulating off-resonance and a range of 0–50° when simulating FA dependency. 

The numerically simulated off-resonance range was −360°/TR to 360°/TR.

In Vivo Imaging: Brain

Seven healthy volunteers (age range: 27 ± 4 years; 6 male, 1 female) provided informed 

consent according to a protocol approved by the local Institutional Review Board (IRB). All 

brain studies were performed on a Siemens TIM Trio 3T scanner (Erlangen, Germany) using 

a 32-channel head receiver coil. A whole brain scan was performed on each subject to 

demonstrate the susceptibility of banding artifacts that are common in the nasal cavity and 

ear canal with bSSFP sequences and the removal of the artifacts with iSSFP. Each subject 

was scanned using CAIPI-bSSFP and CAIPI-iSSFP with SMS factors of 1, 2, 3, and 4. Each 

SMS pulse excited multiple imaging slices with a relative shift spaced evenly along the 

phase encoding direction, i.e., a relatively spatial shift of FOV/2, FOV/3 and FOV/4 for SMS 

factors of 2, 3 and 4, respectively. The inter-slice gaps between the simultaneously excited 

slices were 72 mm, 48 mm, and 36 mm for SMS factor of 2, 3, and 4, respectively.

The common imaging parameters were: 24 slices with a thickness of 5 mm, with a gap of 1 

mm between slices, matrix size = 192 × 192, FOV = 256 × 256 mm2, repetition time (TR) = 

4.2 ms and 8.4 ms, echo time (TE) = TR/2, and FA = 30°. The total scan time for the CAIPI-

iSSFP and CAIPI-bSSFP scans with a SMS factor of 1, 2, 3, and 4 were 19.7, 9.8, 6.6, and 

4.9 seconds, respectively. For comparison, a SPGR scan without SMS acceleration was 

performed with identical imaging parameters as those of the SSFP scans except TR = 366 

ms, TE = 1.23 ms, FA = 7°. All CAIPI-iSSFP and CAIPI-bSSFP images were reconstructed 

offline using a slice-GRAPPA reconstruction algorithm implemented by using custom 
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MATLAB programs (27); whereas, single-band SPGR, iSSFP and bSSFP images were 

reconstructed online by vendor programs.

The regions-of-interest (ROIs) were manually drawn in the GM and WM, and the ventricles 

determined the relative contrast-to-noise ratio (CNR) of GM, WM, and cerebrospinal fluid 

(CSF) for SPGR, CAIPI-bSSFP, and CAIPI-iSSFP signals. The relative CNR was calculated 

by:

[2]

where S1 and S2 are the signals from tissues 1 and 2, respectively, and σ is the standard 

deviation of the background. A ROI was drawn on the image background while avoiding 

ghosting or leakage artifacts to estimate the standard deviation of the noise. A two-way 

ANOVA statistical analysis was performed to determine if there was a significant difference 

of the measured relative CNR between the bSSFP and iSSFP sequences and across the four 

SMS factors.

In Vivo Imaging: Abdomen

A healthy volunteer (39-year-old man) underwent an abdominal MRI to evaluate the artifact 

removal of CAIPI-iSSFP on liver images compared to CAIPI-bSSFP as well as the MI flow 

compensation improvement on iSSFP. The volunteer was scanned on a Siemens Prisma 3T 

scanner (Erlangen, Germany) using a 30-channel body array coil. Due to the fewer channels 

of the body array coil, only SMS factors of 2 (FOV/2 shift) and 3 (FOV/3 shift) were 

achieved for CAIPI-iSSFP and CAIPI-bSSFP. The inter-slice gaps were 54 mm and 36 mm 

for the SMS factor of 2 and 3, respectively. In addition, an MI flow compensated iSSFP 

image without CAIPIRINHA was obtained to display the feasibility of signal improvement.

The common imaging parameters were: 12 slices with a thickness of 5 mm, with a gap of 4 

mm between slices, matrix size = 192 × 192, FOV = 320 × 320 mm2, TR = 7.06 ms, TE = 

3.53 ms and 1.36 ms for iSSFP without and with M1flow compensation, respectively, and 

FA = 60°. The total scan time for the CAIPI-iSSFP and CAIPI-bSSFP scans with SMS 

factors of 1, 2, and 3 were 18, 10, and 6 seconds, respectively. All scans were performed 

with breath hold.

RESULTS

iSSFP Imaging

Figure 2 provides the brain scans from bSSFP, iSSFP, and SPGR sequences without 

CAIPIRINHA acceleration. The iSSFP contrast was more similar to that of bSSFP 

compared to SPGR. The ventricles (CSF) and the gray and white matter contrast were 

comparable between the two sequences (see Slice 3). In slice 2, for the bSSFP and iSSFP 

images, there were bright blood signals in the internal carotid arteries (white arrows); 

although it was not as prominent in the SPGR sequence. In slice 2, there was also a banding 
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artifact in the bSSFP image that was not apparent in the SPGR and iSSFP images identified 

by the blue arrows.

Numerical Simulations

Figure 3 displays the simulated signals of iSSFP, bSSFP, and SPGR for the GM and WM, 

liver, and VB using the steady-state portion of the EPG. The simulated signal for iSSFP and 

SPGR did not have an off-resonance dependency, while the bSSFP signal profile varied with 

the off-resonance of the spins.

The FA dependency of iSSFP, bSSFP, and SPGR for the different tissue types shown in 

Figure 3 (top) demonstrated that the iSSFP signal was located in between the SPGR and 

bSSFP curves for both gray and white matter as well as liver tissue and venous blood. At a 

FA of 30°, which is the FA for in vivo imaging, there was an approximately 20% decrease in 

the iSSFP signal compared to the bSSFP signal. In contrast, the SPGR signal decrease was 

approximately 85% of the bSSFP signal at a FA of 30°.

In Vivo Imaging: Brain

Figures 4 and 5 display the brain images of simultaneously acquired slices using an SMS 

factor of 2, 3, and 4 using a short and long TR, respectively. In the CAIPI-bSSFP images, 

there were clearly visible banding artifacts near the ear canals and the nasal cavity. The 

banding artifacts were even more severe in the longer TR images (Fig. 5). However, CAIPI-

iSSFP completely removed the banding artifacts while maintaining a good GM, WM, and 

CSF contrast.

Figure 6 provides the average relative CNR of all the subjects between the ventricles (CSF) 

and white matter (CNRV_WM) and between white and gray matter (CNRWM_GM) for the 

CAIPI-iSSFP, CAIPI-bSSFP, and SPGR sequences. The measured relative CNR was similar 

to the simulations such that the iSSFP signal was located between bSSFP and SPGR. The 

relative CNRWM_GM for iSSFP was on average about 18% less than that of bSSFP, and the 

reduction of CNR using iSSFP was significant (p = 0.001). The relative CNRV_WM for 

iSSFP was on average about 20% less than that of bSSFP (p = 0.04). As the SMS factor 

increased, the relative CNR decreased due to the increased g-factor, and the effect of SMS 

factor was significant for the relative CNRWM_GM (P = 0.04) but not for the relative 

CNRV_WM (P = 0.57).

In Vivo Imaging: Abdomen

Figure 7 provides the liver images acquired with CAIPI-bSSFP and CAIPI-iSSFP 

respectively, with an SMS factor of 3. Due to a large FOV, there were severe banding 

artifacts, identified by blue arrows, in the CAIPI-bSSFP images, which were completely 

absent in the CAIPI-iSSFP images. However, the blood signals of the portal vein and hepatic 

artery were largely spoiled in CAIPI-iSSFP and flow artifacts were seen in the aorta and 

portal vein. The figure also demonstrates that an acceleration factor up to three was 

achievable for abdominal imaging. The flow compensation appeared to restore some of the 

lost signal compared to CAIPI-iSSFP (red arrows), as well as reduce the flow artifacts in the 

aorta and portal vein.
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Figure 8 provides the images at the same window and leveling that was acquired by using 

bSSFP, iSSFP with and without flow compensation, and SPGR respectively. The bSSFP 

image had the brightest signal of VB and overall tissue contrast, but there was a signal 

dropout near the edges of the different organs, particularly around the stomach area. The 

banding artifacts were removed in the iSSFP images; however, the flow artifacts were 

present in the portal vein and aorta regions. Furthermore, iSSFP had a more similar contrast 

to bSSFP than to SPGR especially when the flow compensation was applied.

DISCUSSION

This study presented an SMS SSFP imaging technique by combining an iSSFP sequence 

with CAIPIRINHA to achieve an acceleration factor up to four for brain imaging and three 

for abdominal imaging while removing banding artifacts. By adding a 2Π dephasing 

gradient after the readout gradient, the phases of the spins within a single pixel were evenly 

spread across 2Π, thereby averaging the bSSFP signal profile and effectively removing the 

off-resonance dependency. Another advantage of iSSFP is that it maintains the similar T2/T1 

contrast of bSSFP as exhibited by both simulations and in vivo experiments. This unique 

T2/T1 contrast was particularly useful for imaging tissues with a high T2/T1 ratio such as 

CSF and blood.

Compared to phase cycled bSSFP imaging with multiple acquisitions, iSSFP did not 

increase the scan time nor require advanced post-processing algorithms, such as the elliptical 

model (28). Since MRI is trending towards a higher magnetic field strength, the banding 

artifacts may become a major challenge for bSSFP imaging particularly when a wide 

volumetric coverage is required. The iSSFP sequence offers a simple solution to remove the 

banding artifacts by turning on a dephasing gradient in a standard bSSFP sequence. Due to 

its technical simplicity and robustness, iSSFP can be implemented easily as an option for 

bSSFP sequences. The utility of iSSFP was recently demonstrated in 7T functional MRI and 

interventional MRI applications (29, 30). It is also possible for iSSFP to be implemented in 

other CAIPIRINHA techniques to improve the SNR instead of using a T1-weighted image 

(31–34).

It is worth noting that iSSFP is a special case of the SSFP-FID sequences and was based on 

a previously proposed idea (13–16). However, it is different from the gradient echo 

sequences such as FISP or GRASS which employs no or only a small spoiling gradient 

(phase dispersion < 2Π). The spin pathways in steady state gradient echo sequences are 

highly complicated including contributions from longitudinal and transversal magnetization 

and stimulated echo. These sequences are also sensitive to field inhomogeneity effects. We 

tested FISP scans (images not shown) by eliminating the rephasing gradient in the bSSFP 

sequence, and the results displayed striping artifacts probably due to the sensitivity of FISP 

to the background gradient. In contrast, all iSSFP scans performed in our experiment 

exhibited excellent image quality without banding or striping artifacts.

We demonstrated that the banding artifacts could also be removed from abdominal imaging 

by using CAIPI-iSSFP, which is a major limitation of the application of bSSFP in the body. 

CAIPIRINHA can be used to accelerate the image acquisition without compromising the 
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SNR compared to other parallel imaging techniques. However, with the added dephasing 

gradient, the net gradient area was non-zero, and the inherent flow compensation of bSSFP 

no longer existed along the direction that the dephasing gradient was applied. This outcome 

may have caused signal voids for flowing spins in that direction (35) as seen in Figures 7 

and 8. Composite bipolar gradients were applied in iSSFP for the liver images to satisfy both 

requirements in terms of the 0th (2Π phase dispersion) and 1st moments (0 for flow 

compensation). The flow artifacts were decreased, and some signal was restored, but the 

tissue contrast was still less than the bSSFP sequence, which was expected.

By exploiting the inherent phase modulation of CAIPIRINHA, a phase-cycled CAIPI-

bSSFP technique was recently introduced that acquires multiple phase-cycled bSSFP images 

without a prolonged scan time compared to a standard bSSFP scan (36). This phase-cycled 

CAIPI-bSSFP technique, while successful for reducing/minimizing banding artifacts, has 

limited capability to achieve an accelerated image acquisition. The proposed CAIPI-iSSFP 

technique can simultaneously achieve accelerated image acquisition and removal of banding 

artifacts.

Other challenges of CAIPI-iSSFP include an increased specific absorption ratio (SAR) of 

RF power especially when the FA is greater than 40°. A simple solution would be to 

lengthen the RF duration and TR. The current experiment increased the TR to 8.4 ms with a 

larger FA. The results displayed a dramatic increase of the banding artifacts in CAIPI-

bSSFP, which were not present in the CAIPI-iSSFP images. This result supports the 

robustness of the CAIPI-iSSFP technique in the presence of severe off-resonance effects. 

There are other alternative methods that have been proposed to reduce the RF power for 

SMS imaging (37), which can be applied to CAIPI-iSSFP so that the acquisition time does 

not need to be increased.

We performed a semi-quantitative analysis to compare the relative CNR between the CAIPI-

iSSFP, CAIPI-bSSFP, and SPGR scans. As the SMS factor increased, the relative CNR 

decreased which was expected due to the increased g-factor, with the exception of the 

relative CNR between the ventricles (CSF) and white matter of the CAIPI-bSSFP sequence. 

The CSF signal in the ventricles varied quite dramatically (bright vs. dark), which made it 

difficult to manually draw the ROIs. Another limitation in measuring the CNR was that only 

the relative CNR was measured because the background noise for an image acquired by a 

32-head receiver coil is spatially inhomogeneous.

In conclusion, we have demonstrated that CAIPI-iSSFP is a promising imaging technique 

that offers high acceleration without banding artifacts while maintaining sufficient tissue 

contrast. We were able to achieve whole brain imaging in less than 5 seconds using a 

simultaneous multi-slice acceleration factor up to four while removing banding artifacts and 

compromising on average only 18% relative CNR compared to CAIPI-bSSFP. The 

feasibility of CAIPI-iSSFP in the liver was demonstrated with minimal flow and banding 

artifacts up to a simultaneous multi-slice acceleration factor of three. Using CAIPI-iSSFP 

with flow compensation can lead to more widespread applications of SSFP imaging in the 

body.
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Fig. 1. 
Pulse sequence diagrams for CAIPI-bSSFP (left) and CAIPI-iSSFP (right) and CAIPI-iSSFP 

with flow compensation gradients. CAIPI-bSSFP and CAIPI-iSSFP were the same except 

for the added dephasing gradient in the readout direction, where it caused a 2Π dephasing of 

the spins within a voxel, which resulted in an averaging of the bSSFP signal profile. To 

compensate for and reduce flow related artifacts and signal loss in CAIPI-iSSFP, bipolar 

gradients were added. CAIPI-bSSFP = controlled aliasing in parallel imaging and balanced 

steady-state free precession; CAIPI-iSSFP = controlled aliasing in parallel imaging and 

integrated SSFP; RF = radiofrequency; SMS = simultaneous multi-slice; TR = repetition 

time
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Fig. 2. 
Comparison of bSSFP, iSSFP, and SPGR images without CAIPIRINHA acceleration 

methods. The iSSFP contrast was more similar to that of bSSFP than SPGR. White arrows 

indicate a blood signal that was visible in bSSFP and iSSFP, but not SPGR. Blue arrows 

highlight the banding artifacts in bSSFP image that were not present in iSSFP and SPGR. 

bSSFP = balanced steady-state free precession; CAIPIRINHA = controlled aliasing in 

parallel imaging results in higher acceleration; iSSFP = integrated SSFP; SPGR = spoiled 

gradient echo
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Fig. 3. 
Numerical simulations plotting the signal profiles of bSSFP, iSSFP, and SPGR as a function 

of the flip angle (top) and off resonance (bottom) for white matter (WM), gray matter (GM), 

liver, and venous blood (VB). The simulated signal for iSSFP was less than bSSFP and 

higher than SPGR for all tissue and blood, and was not sensitive to off-resonance. bSSFP = 

balanced steady-state free precession; iSSFP = integrated SSFP; SPGR = spoiled gradient 

echo; TR = repetition time
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Fig. 4. 
Comparison of CAIPI-iSSFP and CAIPI-bSSFP with SMS acceleration factors of 2 (a), 3 

(b), and 4 (c). Examples of unaliased images from a single simultaneously excited slice are 

shown. The phase modulation for each of the images is shown above. There were banding 

artifacts clearly present in b) and c) in the phase modulations of 0 and Π/2 respectively, 

while in the CAIPI-iSSFP images the banding artifacts were not visible. The image contrast 

between the different tissues was comparable between the two sequences, and the noise did 

not significantly degrade the image quality with an SMS factor of 4. CAIPI-bSSFP = 
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controlled aliasing in parallel imaging and balanced steady-state free precession; CAIPI-

iSSFP = controlled aliasing in parallel imaging and integrated SSFP; SMS = simultaneous 

multi-slice
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Fig. 5. 
Example images showing SMS factors of 2, 3, and 4 with CAIPI-iSSFP (bottom) and 

CAIPI-bSSFP (top) sequences using a long TR of 8.4 ms. There were severe banding 

artifacts in the CAIPI-bSSFP images; whereas, the CAIPI-iSSFP images did not have 

banding artifacts. CAIPI-bSSFP = controlled aliasing in parallel imaging and balanced 

steady-state free precession; CAIPI-iSSFP = controlled aliasing in parallel imaging and 

integrated SSFP; SMS = simultaneous multi-slice
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Fig. 6. 
Plots showing the measured relative CNR of white matter and ventricles (a), and white and 

gray matter (b) for bSSFP, iSSFP, and SPGR with CAIPIRINHA acceleration SMS = 2, 3, 

and 4. The relative CNR was less for iSSFP compared to bSSFP, but had a much higher 

relative CNR than SPGR. As the SMS increased, the relative CNR decreased due to the g-

factor. bSSFP = balanced steady-state free precession; CAIPIRINHA = controlled aliasing in 

parallel imaging results in higher acceleration; CNR = contrast-to-noise ratio; iSSFP = 

integrated SSFP; SMS = simultaneous multi-slice; SPGR = spoiled gradient echo
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Fig. 7. 
CAIPI-bSSFP and CAIPI-iSSFP with SMS factor of 3 and iSSFP with flow compensation 

liver scan. The blue arrows identify the banding that was present in the CAIPI-bSSFP 

images. Spinal fluid and VB signal was suppressed in CAIPI-iSSFP due to the spoiling. 

However, the banding artifacts were removed and the aorta still showed a bright signal. 

Adding the M1 flow compensation improved the spinal fluid and VB signal (red arrows). 

CAIPI-bSSFP = controlled aliasing in parallel imaging and balanced steady-state free 

precession; CAIPI-iSSFP = controlled aliasing in parallel imaging and integrated SSFP; 

SMS = simultaneous multi-slice; VB = venous blood
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Fig. 8. 
Comparison of bSSFP, iSSFP, iSSFP with M1 flow compensation, and SPGR sequence 

images without CAIPIRINHA in the liver. The VB signal in the iSSFP and SPGR images 

was significantly less due to the spoiling. However, the banding artifacts were removed 

compared to bSSFP. The flow compensation did improve the VB ghosting artifacts; 

however, some of the VB signal within the liver was not as bright. bSSFP = balanced steady-

state free precession; CAIPIRINHA = controlled aliasing in parallel imaging results in 

higher acceleration; iSSFP = integrated SSFP; VB = venous blood
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