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A B S T R A C T

COVID-19 is the most transmissible disease, caused by the SARS-CoV-2 virus that severely infects the lungs
and the upper respiratory tract of the human body. This virus badly affected the lives and wellness of millions
of people worldwide and spread widely. Early diagnosis, timely treatment, and proper confinement of the
infected patients are some possible ways to control the spreading of coronavirus. Computed tomography (CT)
scanning has proven useful in diagnosing several respiratory lung problems, including COVID-19 infections.
Automated detection of COVID-19 using chest CT-scan images may reduce the clinician’s load and save the
lives of thousands of people. This study proposes a robust framework for the automated screening of COVID-19
using chest CT-scan images and deep learning-based techniques. In this work, a publically accessible CT-scan
image dataset (contains the 1252 COVID-19 and 1230 non-COVID chest CT images), two pre-trained deep
learning models (DLMs) namely, MobileNetV2 and DarkNet19, and a newly-designed lightweight DLM, are
utilized for the automated screening of COVID-19. A repeated ten-fold holdout validation method is utilized
for the training, validation, and testing of DLMs. The highest classification accuracy of 98.91% is achieved
using transfer-learned DarkNet19. The proposed framework is ready to be tested with more CT images. The
simulation results with the publicly available COVID-19 CT scan image dataset are included to show the
effectiveness of the presented study.
1. Introduction

Coronaviruses are a vast group of viruses that may induce a variety
of infections ranging from the common cold and cough to serious
respiratory problems. The majority of coronaviruses are not very harm-
ful. SARS-CoV-2 is a new variant of coronavirus that has never been
detected earlier in humans [1]. This virus was found at the end of 2019
in the Wuhan province of China and critically affects the lungs of an
infected person [2]. COVID-19 is the most transmissible disease caused
by the SARS-CoV-2 virus [3]. COVID-19 is the name given to this new
strain by the World health organization (WHO), which causes millions
of fatalities worldwide. The majority of people affected by COVID-19
are suffering from mild to medium respiratory problems and recover
without any specific treatment. However, some patients are severely
suffering from respiratory problems and require specific medical as-
sistance [4]. Serious infection is more likely to strike people over the
age of 55, as well as those who had been earlier diagnosed with some
medical illnesses such as diabetes, hypertension, chronic respiratory
disease, cardiac abnormalities, or cancer [5]. Since March 2020, the
COVID-19 virus has spread aggressively with incompletely unresolved
transmission procedures and has become a worldwide pandemic with
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the number of cases and mortality continuing to rise on a daily ba-
sis [6]. Moreover, in several countries, along with the United States,
animals like cats and dogs are also infected with SARS-CoV-2. In March
2020, WHO decided to declare this a ‘‘Public health emergency of
international concern’’ [7]. Real-time reverse transcription-polymerase
chain reaction (RT-PCR) testing is commonly used by front-line health
workers or clinicians to diagnose COVID-19 infections [8]. RT-PCR test
is a molecular test that specifically targets a particular section of the
ribonucleic acid (RNA) of the virus that could not be present in other
subfamilies [9]. RT-PCR testing is currently one of the most widely
used methods for screening COVID-19 infections, but it is a painful,
time-taking, and complex process. Some previous research showed
its low sensitivity (below 70%) in the early stages [10]. To perform
RT-PCR testing, healthcare workers are required to come in contact
with patients, which can also increase the risk of infection with the
coronavirus [11]. There are several other problems with using RT-
PCR, such as a shortage of suitable test kits, expenses, hazards to the
safety of health workers, and a long wait time for test results [12].
To address these limitations and the availability and accessibility of
commercial examinations, several different diagnostic approaches were
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investigated, particularly when RT-PCR is not available or the test re-
ports are delayed [13]. Chest computed tomography scanning (CT-scan)
is one of them, that has been proven to be beneficial in monitoring
the effects of COVID-19 on lung tissue [6]. Chest CT scanning provides
a precise image of blood arteries, organs, soft tissues, and bones. CT
scans provide a much more extensive picture of the patient’s health
that helps clinicians to detect internal structures and assess their size,
shape, texture, and density [14]. Manual scanning of COVID-19 using
chest CT scans is tedious, time-taking, and subject to human mistakes.
Also, the number of COVID-19 cases rises at an accelerating rate [15].
Therefore, an automated COVID-19 screening system is needed. This
will aid in faster virus diagnosis at various stages, relieving healthcare
workers from the tedious process of manual annotation [3]. Conse-
quently, researchers have presented a variety of approaches for the
automated screening of COVID-19 using different scanning techniques,
which are summarized in the next section. The remainder of this article
is structured as follows: Section 2 provides the previous work; the
proposed method is presented in Section 3; experimental setup and
findings are depicted in Section 4; discussion of this work with previous
works on the same CT-scan data is depicted in Section 5; conclusion of
this work is drawn in Section 6.

2. Previous work

Nowadays, various artificial intelligence-based techniques are
widely investigated in large fields from neuroscience to computer sci-
ence. Deep learning models (DLMs) can be used in both 1-dimensional
single-channel, 1-D multi-channel, and 2-D (images) data analysis.
In [16], the author proposed an emotional complexity marker for
classifying different emotions induced by affective video film clips.
They classified nine different emotional states using DLM and reported
the highest classification accuracy. In [17], the Support Vector Ma-
chines (SVMs) classifier has been utilized to classify discrete emotional
states. In another study [18], authors proposed a machine learning
model for the classification of various cognitive and behavioral emotion
regulation strategies. The deep learning-based technique also has the
potential to diagnose different cardiovascular diseases. For example,
Gupta et al. [19] proposed a novel DLM for the screening of bun-
dle branch blocks using vectorcardiogram signals. In [20], authors
proposed a new deep learning framework namely Hyp-Net for the
automated detection of hypertension using time-frequency images of
1-D ballistocardiogram signals. Sometimes, for the better classification
of medical images, authors compute the features like moments from the
images. For this reason, authors [21] proposed a new set of polar har-
monic Fourier moments and invariant continuous orthogonal moments.
Wang et al. [22] presented continuous orthogonal moments using
Trinion Fractional-Order. Medical image protection without degrading
the quality of original images is also a challenging task. A color medical
image watermarking scheme has been proposed by Xia et al. [23]. By
motivating from the facts described above, researchers have explored
a variety of automated detection systems for screening COVID-19
using different scanning methods. Various DLMs with decision fusion
techniques have been utilized to diagnose COVID-19 infected persons
using CT-scan images by Mishra et al. [24]. In [25] a new DLM has
been presented to identify COVID-19 patents. Pre-trained DenseNet201
has been employed to classify COVID-19 infected patients by Jaiswal
et al. [26]. Wang et al. [27] presented a novel deep convolutional-
based method for the screening of coronavirus disease. In [28] authors
utilized a pre-trained DensNet-121 to detect COVID-19 patients using
CT-scans. Benchmark DenseNet121 has been used to classify COVID-
19 subjects by Sarkar et al. [29]. They utilized the transfer learning
method for model training. Gaur et al. [30] utilized 2D-empirical
wavelet transformation (EWT) technique to select the best perform-
ing channel. They detected COVID patients by classifying wavelet
sub-bands using the benchmark DenseNet121 model. Classifier fusion
method has been employed to detect COVID-19 by Kaur et al. [3]. They
2

explored different variants of ResNet architecture and used transfer
learning techniques to build the model. eXplainable deep network has
been proposed to categorize COVID and non-COVID data by Soares
et al. [31]. A whale optimization algorithm has been employed to opti-
mize the hyper-parameters of a generative adversarial network (GAN)
by Goel et al. [32]. They proposed an optimized GAN for automatic
screening of COVID-19. Deep learning based COVID-19 detection sys-
tem has been proposed by Lu et al. [33]. Basu et al. [34] utilized three
different pre-trained DLMs (DenseNet, ResNet, and XceptionNet) to
extract the deep features from CT scan images. A combination of local
search techniques with optimization algorithms has been employed
for feature selection. They fed selected features into dense layers and
classify normal and COVID patients.

In the existing literature, the majority of COVID-19 screening meth-
ods have chosen to manually select tuning boundaries for the effective
decomposition of physiological data. This human selection of pa-
rameters could lead to mode mixing, time-frequency trade-off, and
band restrictions of the filter bank could result in information loss.
Furthermore, the classification performance of the presented tech-
niques/methods in the literature is limited in the form of accuracy.
Therefore, a more reliable framework is presented in this study for
the accurate detection of COVID-19 using chest CT scans. In this work,
two pre-trained DLMs namely, MobileNetV2 [35] and DarkNet19 [36]
are utilized for the automated and accurate screening of COVID-19.
Transfer learning is applied to re-train the benchmark DarkNet19 and
MobileNetV2. A novel less complex DLM is also proposed in this study
for the classification of chest CT images. To match the input image
size of the employed DLMs, all images are resized to 224 × 224 for
MobileNetV2, 227 × 227 for newly developed DLM, and 256 × 256 for
DarkNet19. The vital contributions of this work are as follows:

1. A new lightweight, less complex DLM is developed for the
automated screening of COVID-19 using chest CT scans. A com-
parative experimental study is also performed with two different
networks namely, Dark-Net19 and MobileNetv2 with a transfer
learning strategy.

2. DLMs are trained using a repeated 10-fold holdout cross-
validation (10-FHCV) scheme.

3. Proposed method

In the proposed method, a DLM-based technique is utilized to detect
COVID-19 infected subjects using chest CT-scan images. Collected chest
CT-scan images are resized as per the requirement of utilized DLMs.
This approach uses a transfer learning technique to re-train the bench-
mark DarkNet19 and MobileNetV2. A newly designed less complex,
lightweight DLM has also been employed to classify the chest CT images
into COVID and non-COVID classes. A repeated 10-FHCV scheme is
used to develop a robust framework. Eight performance characteristics
are evaluated to check the efficiency of the developed framework. The
layered architecture of the proposed methodology is depicted in Fig. 1.
A brief description of DLM, transfer learning techniques, repeated 10-
FHCV schemes, and performance metrics are given in the subsequent
subsections.

3.1. Deep learning model

Deep-learning methodologies, such as deep feature extraction, fine-
tuning of benchmarked DLM by transfer learning, and end-to-end train-
ing of a newly developed DLM are employed to identify COVID-19 and
healthy (non-COVID) chest CT images. The DLM is one of the most
powerful neural networks in use today, with several tasks in pattern
recognition applications, including image classification, segmentation,
object location, and detection. It has also proven its effectiveness in
the biomedical field for signal classification and disease detection,
image classification, and segmentation problems, particularly in lung
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Fig. 1. Layered architecture of the presented methodology.
disorders such as lung nodule identification, pneumonia detection, and
pulmonary TB detection [37]. DLMs are based on a representation-
based learning system, in which a DLM automatically learns a variety
of useful feature representations and combines feature extraction and
classification steps into a single pipeline that can be trained from start
to end without the need for manual setup or expert human involve-
ment [38]. The DLM mainly consists of an input layer, one to many
convolutional 2-D layers (Conv2DL), pooling layers (PL), and some
fully connected layers (FCL). The functioning of each layer is given as
follows:

1. Conv2DL: It consists of 2D kernels (filters) that move over the
input image. A 2-D filter is a 𝑛× 𝑛 dimension matrix that will be
convolved with the input images, and the stride specifies how
much the kernel will convolve over the input image. A stride
(𝑠) of one is frequently chosen, and a stride greater than one
is used to downsample the feature maps. The 2-D convolutional
operation can be defined as,

𝑊 [𝑖, 𝑗] =
∞
∑

𝑝=−∞

∞
∑

𝑞=−∞
𝑈 [𝑝, 𝑞]𝑉 [𝑖 − 𝑝, 𝑗 − 𝑞] (1)

where 𝑉 is the input image matrix to be convolved with the ker-
nel matrix 𝑈 to produce a new matrix 𝑊 representing the output
image. The indices 𝑖 and 𝑗 deal with image matrices, while 𝑝
and 𝑞 deal with kernel matrices. The 2-D convolutional output is
also termed the output feature map. Sometimes, padding of zeros
of size (𝑃 ) is also employed with the output feature maps to
maintain the size. For an input chest CT scan image of width 𝑋𝑖𝑛,
height 𝑌𝑖𝑛 with 𝐶𝑖𝑛 number of channels, and the output image
width 𝑋𝑜𝑝 and height 𝑌𝑜𝑝 with filters of size 𝑛 ∗ 𝑛 can be given
as [39],

𝑋𝑜𝑝 =
[

𝑋𝑖𝑛 − 𝑛 + 2𝑃
𝑠

]

+ 1,

𝑌𝑜𝑝 =
[

𝑌𝑖𝑛 − 𝑛 + 2𝑃
𝑠

]

+ 1
(2)

An activation function is a mathematical procedure that maps
an output to a sequence of inputs. They are used to make the
network structure non-linear. The rectifier linear unit (ReLU) is
a well-known deep learning activation function. It is given as,

𝑅(𝑋) = 𝑚𝑎𝑥(0, 𝑋) (3)

In this work, ReLU is used after each Conv2DL.
2. PL: This layer is often referred to as the down-sampling or

sub-sampling layer. To prevent overfitting and minimize compu-
tational complexity, the pooling operation decreases the number
of neurons from the Conv2DL. Two types of pooling functions,
the average Pooling function, and the max-pooling function
are generally used to speed up calculations. The max-pooling
function takes only the maximum value in each feature map,
resulting in fewer output neurons. The average-pooling function
takes the average value in each feature map. In this paper, the
max-pooling procedure is employed [39].
3

3. FCL: Fully-connected means that each neuron in the upper layer
is connected to every neuron in the next layer. FCL is a standard
artificial neural network, with each input connected to each
output by a learning weight. It works similarly to a standard
multi-layer perceptron neural network. It transforms the 2D out-
put feature map into 1D. The number of output classes decides
the total number of fully-connected neurons in the last layer. To
assign the output value from the last FCL to the desired class
probability, a softmax function is utilized. Each value ranges
between 0 and 1.

One may design their own DLM by combining the layers listed above.
The number of Conv2DLs, PLs, and FCLs can be increased or de-
creased until the model achieves the required performance [40]. As
a result of recent advancements in deep learning various pre-trained
DLMs have been employed for different machine learning applications.
Some well-known benchmarked transfer learning models are Dark-
Net19, MobileNetV2, AlexNet, GoogleNet, ResNet, and so on. In this
work, two pre-trained DLMs, namely, DarkNet19 and MobileNetV2,
and one newly proposed less complex DLM are used for COVID-19
screening using chest CT images. A brief detail of these models is given
below:

3.1.1. DarkNet19
It is a new generation pre-trained DLM, that accepts the input image

of size 256 × 256. This model is used as a backbone of YOLOv2
architecture. The model is composed of exactly 19 Conv2D layers and
5 PLs using Maxpool, with only 3 × 3 convolutional kernels used to
reduce the number of trainable parameters. After each pooling stage,
the number of channels is increased to two. To make predictions
in the model, it employs 1 × 1 convolutional kernels to reduce the
global average pooling and feature representation. The DarkNET19
performs admirably in terms of real-time object detection [36,41]. In
comparison to frequently used DLMs, the model treats object detection
as a straightforward regression issue. Initially, the DarkNet19 model
had been trained to classify Image-Net data (contains 1000 classes).
Consequently, the last three layers namely, FCL, SOFTMAX layer, and
classification layer were configured for Image-Net data. The last FCL
has 1000 neurons.

3.1.2. MobileNetV2
It is a recently developed DLM specifically designed for mobile

devices, accepts the input image of size 224 × 224, and is developed
by Sandler et al. [35]. A depth separable convolution unit dependent
on the inverted residuals with linear bottleneck is a major component
of MobileNetV2. In comparison to MobileNetV1, the key enhancement
of MobileNetV2 is the integration of linear bottleneck and inverted
residual units in the model. This bottleneck adds a 1 × 1 convolutional
kernel next to the depthwise Conv2D layers, utilizes linear activation
after the pointwise Conv2D layers instead of nonlinear activation,
and accomplishes downsampling by adjusting the parameters in the
depthwise convolutional layer. The MobileNetV2 had been developed
to categorize Image-Net data. Therefore, the last three layers namely,
FCL, SOFTMAX layer, and classification layer of MobileNetV2 model
were fixed as per Image-Net data. The last FCL has 1000 neurons.
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Fig. 2. Layered architecture of the developed DLM.
3.1.3. Proposed DLM
For the analysis and categorization of biomedical signals and im-

ages, there is no standard DLM available. The choice to use a DLM
is based on its performance, classification accuracy, and training time.
Many existing DLMs have a complex architecture and a large number of
layers, that increase the number of learnable parameters. The classifi-
cation accuracy of a DLM may be adjusted by changing the kernel size,
stride, dropout percentage, and other parameters. The proposed DLM
accepts the input image of size 227 × 227. It contains four Conv2D
layers, two PLs, and two FCLs. The number of kernels used is 96, 84,
84, 96 with a kernel size of 9 × 9, 7 × 7, 5 × 5, and 3 × 3 with a stride
of 2. Max pooling is utilized in PL, and 512 and 2 neurons are used in
FCL with 0.5 dropouts. The layered architecture of the developed DLM
is depicted in Fig. 2.

3.2. Transfer learning

A collection of a huge labeled dataset and significant hardware
resources are required to train a benchmark DLM from scratch. Due
to the small number of datasets, and hardware restrictions, training
a benchmark model from scratch is difficult or impractical. Hence,
a transfer learning approach is employed in this study to get better
results. The reuse of a pre-trained DLM on a new task is referred to
as transfer learning. It is an effective representation-based learning
method in which pre-trained DLMs that have been trained on Image-
Net data (contains records of 1000 classes with 1.2 million images), are
re-utilized for a new application [42]. There are three types of transfer
learning strategy namely, DLM as a fixed feature extractor, Fine-tuning
the DLM, and pre-trained models. In this work, two benchmarks pre-
trained DarkNet19 and MobileNetV2 are used. We have removed the
last three layers of these models and used the rest of the model as a
fixed feature extractor for the new COVID-19 CT-scan dataset. Fig. 3
depicts the schematic view of transfer learning.

3.3. Repeated 10-FHCV scheme

Cross-validation is a technique used to build a DLM, that splits the
original input data into a training set, a validation set, and a test set
for training, validation, and analyzing the model performance. In the
10-FHCV scheme, the original input data is randomly divided into 10
segments. In this work, complete chest CT data is divided into 10 equal
parts, a single part is retained as the test data for DLM testing, one part
of the remaining data is a holdout for validation, and the rest parts are
utilized for model training [43]. A repeated 10-FHCV strategy is applied
4

to build the DLMs. In this scheme, the cross-validation procedure is
repeated 10-times by altering the training, validation, and test data.
Fig. 4 depicts the schematic view of the data partition strategy.

3.4. Performance metrics

To evaluate the superiority of the presented system, eight parame-
ters namely, accuracy (𝐴𝐶𝐶 ), sensitivity (𝑆𝐸𝑁 ), specificity (𝑆𝑃𝐸), F-1
score, precision (𝑃𝑅𝐶), negative prediction value (𝑁𝑃𝑉 ), Fowlkes–
Mallows index (𝐹𝑀 ) and area under the curve (𝐴𝑈𝐶) are used as
performance metrics. The mathematical expression of these metrics is
given below:

𝐴𝐶𝐶 (%) =
𝑇𝑃𝑜𝑠 + 𝑇𝑁𝑒𝑔

𝑇𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔 + 𝑇𝑁𝑒𝑔 + 𝐹𝑃𝑜𝑠
× 100 (4)

𝑆𝐸𝑁 (%) =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔
× 100 (5)

𝑆𝑃𝐸 (%) =
𝑇𝑁𝑒𝑔

𝑇𝑁𝑒𝑔 + 𝐹𝑃𝑜𝑠
× 100 (6)

𝐹 − 1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃𝑜𝑠

2 × 𝑇𝑃𝑜𝑠 + 𝐹𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔
(7)

𝑃𝑅𝐶 =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠 + 𝐹𝑃𝑜𝑠
(8)

𝑁𝑃𝑉 =
𝑇𝑁𝑒𝑔

𝑇𝑁𝑒𝑔 + 𝐹𝑁𝑒𝑔
(9)

𝐹𝑀 =

√

√

√

√

𝑇 2
𝑃𝑜𝑠

(𝑇𝑃𝑜𝑠 + 𝐹𝑃𝑜𝑠)(𝑇𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔)
(10)

where, true positive (𝑇𝑃𝑜𝑠), false positive (𝐹𝑃𝑜𝑠), true negative (𝑇𝑁𝑒𝑔),
and false negative (𝐹𝑁𝑒𝑔) are the confusion matrix parameters.

4. Experimental setup and findings

A publicly available SARS-CoV-2 chest CT-scan dataset is utilized
to evaluate the performance of the proposed framework. The CT-scan
images are only annotated with numbers and do not specify whether
they are subject-independent or not. The CT scan image data are
processed on a single CPU having a Core i7 processor, installed with
24-GB RAM, and 512-GB hard disk, in a MATLAB platform. In this
work, the hyperparameters are selected based on previous studies and
various experiments. Adam optimizer combines the best aspects of the
AdaGrad and RMSProp algorithms and uses less memory than other
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Fig. 3. Schematic view of transfer learning.
optimization techniques. Consequently, the Adam optimizer is used to
optimize the cross-entropy loss. 20 epochs with a batch size of 64 and
a validation frequency of 10 with an initial learning rate of 0.0001 are
chosen for proper training of the DLMs. The experiment is conducted
with the same setup for all three models. More details about the CT-scan
dataset are given in the next subsection.

4.1. Dataset

For this work, the publicly accessible SARS-CoV-2 chest CT scan
database [31] is utilized. The dataset was taken from non-COVID and
clinically confirmed COVID-19 patients in Sao Paulo, Brazil, hospitals,
and approved for research purposes by the ethical committee. This
dataset contains the chest CT images of 1252 COVID-19 patients and
1230 non-COVID subjects. The identity of each subject is hidden by
the hospital due to privacy issues. These CT scan images are in the
.png file extension and have dimensions that vary from 182 × 129 to
488 × 408 with 32-bit depth. To match the input image size of the
employed models, all images are resized to 256 × 256 for DarkNet19,
224 × 224 for MobileNetV2, and 227 × 227 for newly developed DLM.
Fig. 5 represents six randomly selected CT-scans of (a) COVID-19 (b)
non-COVID classes.

4.2. Results

A total of 620 iterations are required to classify COVID and non-
COVID subjects. To complete training at each fold, DarkNet19 requires
238 min, MobileNetV2 requires 177 min, and proposed DLM requires
only 94 min. Table 1 gives the fold-wise classification accuracy of
developed DLM, MobileNetV2, and DarkNet19. The highest average
5

classification accuracy of 98.91% is obtained for DarkNet19. Fig. 6
depicts the training and validation accuracy graphs obtained for CT
scan images using: (A) DLM (B) MobileNetV2 (C) DarkNet19. It can
be understood from the figure that the developed DLM required ap-
prox 200 iterations, MobileNetV2 needed around 200 iterations, and
DarkNet19 required approx 180 iterations to achieve its maximum
accuracy. The loss percentage and training time for the proposed model
is minimum compared to pre-trained DarkNet19 and MobileNetV2.
Tables 2, Table 3, and Table 4 represents the overall confusion ma-
trix (CM) obtained for proposed DLM, MobileNetV2, and DarkNet19.
Eight performance parameters are computed to better understand the
proposed method for screening COVID-19. Table 5 gives the overall
performance metrics obtained for proposed DLM, MobileNetV2, and
DarkNet19. It is evident from Table 5 highest performance metrics
are obtained by DarkNet19. The DarkNet19 outperforms the other
employed DLMs because it uses several global kernels and doubles
the number of channels after each pooling layer making the model
efficient for object detection. Fig. 7 shows the overall receiver operating
characteristic curve plots achieved for explored DLMs. The highest area
is covered by DarkNet19.

5. Discussion

Rapid and correct screening of COVID-19 patients is the need of the
hour. Two pre-trained DLMs along with a newly developed less complex
DLM are explored in this article to classify CT-scan images for screening
of COVID-19 patients. The presented technique is compared with other
state-of-the-art methods. The comparison of the presented technique
with previous methods for automated screening of COVID-19 using
CT-scan data is depicted in Table 6. Kaur et al. [3] explored various
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Fig. 4. Schematic view of the data partition.

Fig. 5. Six random CT-images of (a) COVID-19 (b) Healthy classes.
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Fig. 6. Training progress graphs obtained for: (A) DLM (B) MobileNetV2 (C) DarkNet19.
DLMs and reported an 𝐴𝐶𝐶 of 98.35%, and 𝑃𝑅𝐶 of 98.02%, using
classifier fusion with pre-trained ResNet50 model. Mishra et al. [24]
also investigated different DLMs and combined the predictions of in-
dividual models by using the decision fusion technique. Their system
yielded the highest classification 𝐴𝐶𝐶 of 88.34% and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 of
0.86 using DenseNet121. Li et al. [25] developed a new convolutional
model (COVNet) using CT scan images, and reported the highest 𝑆𝐸𝑁
of 90% and 𝑆𝑃𝐸 of 96%. Jaiswal et al. [26] proposed DesNet201 based
DLM and employed transfer learning technique for model training.
7

Their model yielded the highest testing 𝐴𝐶𝐶 of 96.25% and 𝑃𝑅𝐶
of 96.29%. Wang et al. [27] modified the architecture of inception-
Net using the transfer learning technique and reported an 𝐴𝐶𝐶 of
89.5% and 𝑆𝐸𝑁 of 87.0%. Gaur et al. [30] utilized EWT and build
DenseNet121 model using transfer learning technique. Their proposed
system obtained the highest classification 𝐴𝐶𝐶 of 85.5% and 𝐹1−𝑠𝑐𝑜𝑟𝑒
of 0.85. Soares et al. [31] build a DLM and reported the highest
𝐴𝐶𝐶 of 88.6% and 𝑃𝑅𝐶 of 89.7%. Optimized GAN proposed by Goel
et al. [32] for automated screening of COVID19, obtained the highest
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Table 1
Fold-wise classification accuracy of developed DLM, MobileNetV2, and
DarkNet19.

Fold No. DLM MobileNetV2 DarkNet19

1 95.58 96.79 98.80
2 96.37 97.58 98.39
3 95.56 97.18 98.39
4 95.56 97.58 99.19
5 98.39 98.79 99.19
6 96.37 98.39 99.60
7 95.97 97.58 99.60
8 94.76 97.58 99.60
9 94.76 97.58 98.39
10 95.97 97.18 97.98

Average 95.93 97.62 98.91

Table 2
Overall CM obtained for proposed DLM.

COVID NON-COVID

Output Class COVID 1190 39 1229
NON-COVID 62 1190 1252

1252 1229 2481
Target Class

Table 3
Overall CM obtained for MobileNetV2.

COVID NON-COVID

Output Class COVID 1224 31 1255
NON-COVID 28 1198 1226

1252 1229 2481
Target Class

Table 4
Overall CM obtained for DarkNet19.

COVID NON-COVID

Output Class COVID 1239 14 1253
NON-COVID 13 1215 1228

1252 1229 2481
Target Class

Table 5
Overall performance metrics obtained for proposed DLM, MobileNetV2,
and DarkNet19.

Parameters DLM MobileNetV2 DarkNet19

𝐴𝐶𝐶 (%) 95.93 97.62 98.91
𝑆𝐸𝑁 (%) 95.05 97.76 98.96
𝑆𝑃𝐸 (%) 96.82 97.47 98.86
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 0.96 0.98 0.99
𝑃𝑅𝐶(%) 96.82 97.52 98.88
𝑁𝑃𝑉 (%) 95.04 97.71 98.94
𝐹𝑀 0.96 0.98 0.99
𝐴𝑈𝐶(%) 98.94 99.67 99.89

𝑆𝑃𝐸 of 97.78% and 𝐹1−𝑠𝑐𝑜𝑟𝑒 of 0.98. Lu et al. [33] proposed a graph
theory based CGENet and reported an 𝐴𝐶𝐶 of 97.78%. Basu et al. [34]
applied feature selection technique and reported the highest 𝐴𝐶𝐶 of
97.78% and 𝑃𝑅𝐶 of 92.88%. In the proposed method transfer learning
technique is employed for the training of pre-trained DLM Darknet19
and MobileNetV2. A less complex DLM is also proposed in this paper.
A repeated 10-FHCV scheme is used to build the models. The highest
classification 𝐴𝐶𝐶 of 98.91%, 𝑃𝑅𝐶 of 98.88%, and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 of 0.99
are yielded by DarkNet19. It can be noted from Table 6, that the ACC
reported by Kaur et al. [3] is very close to our proposed DarkNet19-
based method. The primary advantage of the proposed model is that
the proposed framework is robust and accurate as it is designed using
the 10-FHCV technique, also the better error reduction is achieved by
the proposed method. The limitation of the presented study is that the
8

Fig. 7. Receiver operating characteristic curve plots achieved for explored DLMs.

Table 6
Performance comparison obtained for COVID-19 screening with previous methods for
automated screening of COVID-19 using CT scan data.

S. No. Authors Classification method Results

1. Kaur et al. [3] Classifier Fusion
with ResNet50

𝐴𝐶𝐶 = 98.35%
𝑃𝑅𝐶 = 98.02

2. Mishra et al. [24] Decision Fusion
with DenseNet121

𝐴𝐶𝐶 = 88.34%
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 0.86

3. Li et al. [25] COVNet 𝑆𝐸𝑁 = 90.0%
𝑆𝑃𝐸 = 96.0%

4. Jaiswal et al. [26] DesNet201
based DLM

𝐴𝐶𝐶 = 96.25%
𝑃𝑅𝐶 = 96.29%

5. Wang et al. [27] Modified
inceptionNet

𝐴𝐶𝐶 = 89.5%
𝑆𝐸𝑁 = 87.0%

6. Gaur et al. [30] EWT with
DenseNet121

𝐴𝐶𝐶 = 85.5%
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 0.85

7. Soares et al. [31] DLM 𝐴𝐶𝐶 = 88.6%
𝑃𝑅𝐶 = 89.7%

8. Goel et al. [32] Optimized GAN 𝑆𝑃𝐸 = 97.78%
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 0.98

9. Lu et al. [33] CGENet 𝐴𝐶𝐶 = 97.78%

10. Basu et al. [34] Feature selection
technique

𝐴𝐶𝐶 = 97.78%
𝑃𝑅𝐶 = 92.88%.

11. Proposed Method
DarkNet19
with repeated
holdout 10FCV

𝑨𝑪𝑪 = 98.91
𝑺𝑬𝑵 = 98.96
𝑺𝑷𝑬 = 98.86
𝑷𝑹𝑪 = 98.88
𝑭 − 𝟏𝒔𝒄𝒐𝒓𝒆 = 0.99

performance of the DLMs is tested on a single CT-scans dataset. Study-
ing the impact of different medical images on classification accuracy is
needed.

6. Conclusion

CT-scan images can represent the infection caused by the COVID-
19 virus in the lungs. The DLM is a powerful and useful technique to
diagnose COVID-19 using CT-scan images. In this paper, an end-to-end
framework is presented for the screening of COVID-19 using CT-scan
images and DLMs. Two pre-trained DLMs namely, DarkNet19 and
MobileNetV2 along with a newly developed less complex DLM are used
in this work. The transfer learning technique is employed for bench-
marked model training. A repeated 10-FHCV method is utilized to build
the DLMs. Eight performance parameters are computed to measure the
superiority of the proposed system. The classification results indicated
that the DarkNet19 had obtained the highest classification accuracy
in the classification of CT scan images into non-COVID and COVID-19
classes. The developed system may be utilized in the screening of other
diseases.
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