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Cuproptosis is a newly discovered new mechanism of programmed cell death,

and its unique pathway to regulate cell death is thought to have a unique role in

understanding cancer progression and guiding cancer therapy. However, this

regulation has not been studied in SKCM at present. In this study, data on Skin

Cutaneous Melanoma (SKCM) patients were downloaded from the TCGA

database. We screened the genes related to cuproptosis from the published

papers and confirmed the lncRNAs related to them. We applied Univariate/

multivariate and LASSO Cox regression algorithms, and finally identified

5 cuproptosis-related lncRNAs for constructing prognosis prediction models

(VIM-AS1, AC012443.2, MALINC1, AL354696.2, HSD11B1-AS1). The reliability

and validity test of themodel indicated that themodel could well distinguish the

prognosis and survival of SKCM patients. Next, immune microenvironment,

immunotherapy analysis, and functional enrichment analysis were also

performed. In conclusion, this study is the first analysis based on

cuproptosis-related lncRNAs in SKCM and aims to open up new directions

for SKCM therapy.
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Introduction

Skin cutaneous melanoma (SKCM) is the most aggressive skin cancer with high

mortality and rapid metastatic potential (Rodriguez-Hernandez et al., 2020). Global

cancer statistical analysis shows significant increases in morbidity and mortality of SKCM

in recent years (Schadendorf et al., 2018; Sung et al., 2021). However, even though SKCM

only accounts for 5% of all malignant tumors of the skin, it is responsible for 75% of the

deaths associated with cutaneous neoplasms (Siegel et al., 2021). For localized or regional

melanoma, first-line treatment remains surgical resection and 5-years survival rates are
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98% and 64%. Due to chemotherapy resistance and aggressive

clinical behavior of advanced melanoma, the 5-years survival rate

is only 23% (Rebecca et al., 2020). Considering that traditional

treatments have been the main treatment for advanced

melanoma in long term, it only relieves some symptoms and

reduces the tumor burden, which does not help prolong survival.

Therefore, novel effective biomarkers and risk modeling of

SKCM are necessary for improving early diagnosis, predicting

prognosis, and guiding clinical treatment.

Recently, a study published in the journal Science first reveal that

cuproptosis, as a new type of programmed cell death (PCD), differs

from previous PCD such as ferroptosis, apoptosis, and autophagy in

its special mechanism. Cuproptosis is mediated by a copper-sulfur

protein, where copper binds to lipid acylation in the TCA cycle,

resulting in the aggregation of lipid acylated proteins and subsequent

loss of iron-sulfur cluster proteins, resulting in proteotoxic stress and

ultimately cell death (Tsvetkov et al., 2022). Jiang et al. (2022a) have

discovered that cuproptosis induces tumor cell death by activating

apoptosis pathways by creating reactive oxygen species (ROS),

opening a new avenue for anti-cancer research. Besides, copper

was found to be accumulating in serum samples from patients with

cancer, indicating copper may play a significant role in cancer

progression (Ebara et al., 2000; Zabłocka-Słowińska et al., 2018;

Feng et al., 2020). Besides, Chen et al. (2019) confirmed that an anti-

tumor agent of copper-dependent can exert an effective anti-tumor

effect on the hematopoietic system in vivo/vitro experiments. Bian

et al. (2022) constructed a novel cuproptosis-related signature to

predict prognosis and provide new insights into therapeutic

strategies in clear cell renal cell carcinoma.

Long non-coding RNAs (lncRNAs) are non-coding

transcripts with 200 nucleotides in length, which have been

shown to regulate the expression of cancer-related genes

(Alexander et al., 2010). In recent studies, it was determined

that changes in the expression and function of lncRNA might be

closely related to PCDs such as apoptosis, autophagy, and

ferroptosis (Jiang et al., 2021; Qi et al., 2022a). For example,

LncRNA RP11-89 was confirmed to be a novel tumorigenic

modulator that inhibits ferroptosis through PROM2-activated

iron export and might serve as one of the biomarkers to guide

targeted therapy for bladder cancer (Luo et al., 2021). Besides,

Shen et al. identified 10 N6-methyladenosine (m6A)-related

lncRNAs as significantly related to the prognosis of SKCM

and further constructed a risk model by using bioinformatics

analysis (Shen et al., 2022). There is, however, no knowledge of

the role of lncRNAs in cuproptosis of the SKCM, the latest results

of Haozhen Lv et al. showed that the three Cuproptosis-related

genes, LIPT1, PDHA1, and SLC31A1, have a predictive effect on

the prognosis of SKCM patients, which also gave us a hint for

further research to a certain extent (Lv et al., 2022). So, we

decided to use bioinformatics analysis to uncover the relationship

between cuproptosis, lncRNA, and SKCM.

In addition, immunotherapy has recently attracted much

attention as a new tumor treatment strategy. The study of Elena

Gómez-Abenza et al. in zebrafish pointed out that changes in the

SKCM cellular immune microenvironment (TME) can be

regulated by SPINT1 (Gómez-Abenza et al., 2019), while Min

Yan 1 et al. (Yan et al., 2021), based on the results of single-cell

sequencing, specifically pointed out that T cells in SKCM unique

role. Therefore, in this study, we also intend to explore the

immune system changes in SKCM patients.

In this study, based on the TCGA database, an accurate

prognostic model for SKCM was constructed, and multiple

cuproptosis-related lncRNAs were identified as potential

biomarkers. Furthermore, we carry out a comprehensive analysis

of the risk model including functional enrichment, drug resistance,

immunotherapy, immune infiltration, and somatic mutation.

Hopefully, the findings of our study will provide insight into the

role of cuproptosis-related lncRNAs in SKCM.

Materials and methods

Data collection

From the TCGA database (http://portal.gdc.cancer.gov/),

RNA sequencing data, somatic mutations, as well as the

corresponding clinical information of SKCM samples were

obtained. To ensure the authenticity of the analysis results as

much as possible, we removed samples with no survival time and

survival times less than 30 days. Ultimately, 455 patients of the

SKCM were included in the analyses; they were divided

randomly among training (n = 228) and testing sets (n = 227)

using the R package “caret”. The Chi-square tests were applied to

compare the clinical characters between the training and testing

sets. Cuproptosis regulators (Supplementary Table S1) were

obtained from previous literature (Tsvetkov et al., 2022).

Identification of cuproptosis-related
lncRNAs

We obtained 16773 lncRNAs according to the annotation file

of lncRNA obtained from the GENCODE database (https://

www.gencodegenes.org/human/). Pearson correlation test was

further conducted to identify cuproptosis-related lncRNAs

following the filter criteria (|R| ≥ 0.4 and p-value < 0.001).

Construction of cuproptosis-related risk
model

First, we identified 142 prognostic cuproptosis-related

lncRNAs using Univariate Cox regression analysis.

Furthermore, LASSO regression analysis (Lupton-Smith et al.,

2021) was used to prevent overfitting, and 9 cuproptosis-related

lncRNAs were identified to be significantly associated with
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overall survival (OS) in SKCM patients. Finally, to identify the

powerful candidate lncRNAs and establish the risk model, we

conducted a multivariate Cox regression analysis and

5 cuproptosis-related lncRNAs were considered prognostic

factors. Use the formula below to calculate the risk score (It is

worth noting that coef is an abbreviation for the corresponding

coefficient, and Exp is an abbreviation for lncRNA’s expression):

Risk score = ∑Coef lncRNAs × Exp lncRNAs
We calculated the risk score for each SKCM patient using the

formula and further used the median as a cutoff to subgroup the

patients (high-risk group and low-risk group).

Assessment of the prediction accuracy of
risk model

We conducted Kaplan-Meier (K-M) analysis to assess the

risk model prediction ability using the R package “survival”.

Besides, the Receiver operating characteristics (ROC) curve of 1-,

3-, and 5-years was drawn to further verify the predictive power

of the established risk prognostic model using the package

“timeROC”. Performed principal component (PCA), as well as

t-distributed stochastic neighbor embedding (t-SNE) analyses,

were applied to lessen the dimensions and visualize the

distinction between the two groups.

Independence of the risk model

Weconducted univariate regression, andmultivariate regression

analysis to verify whether our riskmodel can predict the prognosis of

SKCMpatients independently of other clinical factors (Gender, Age,

Pathological stage, and TNM stage).

Establishment of the nomogram

Studies have shown that Nomogram can accurately calculate

the survival rate of tumor patients and has great value in clinical

applications (Awan et al., 2021). We further applied the R

package “rms” to build a nomogram, combining a variety of

key clinical factors and risk models to better predict long-term

survival in SKCM patients. To verify that the actual results and

model predictions are in agreement, a calibration plot was drawn

using the Hosmer-Lemeshow test.

Analysis of immune microenvironment
and molecular variation

We utilized the ESTIMATE algorithm to calculate

the immune, stromal, and estimate scores to assess the

differences in tumor microenvironments (TMEs) between two

groups (Yu et al., 2021). Besides, we assess the levels of immune

cells of entire SKCM patients using the CIBERSORT algorithm

(Guan et al., 2022). Furthermore, we applied ssGSEA and GSVA

analyses to explore the discrepancy between infiltrating fractions

of immune cells and immune-related functions between the two

groups (Zhang et al., 2021a; Xu et al., 2022). We analyzed tumor

mutation burden (TMB) using the package “maftools” and

divided all SKCM patients into high- and low-TMB groups

according to the median TMB score. Besides, we calculated

the correlation between the risk model and TMB using

Pearson correlation analysis.

The therapeutic significance of the risk
model

To better apply the model to clinical treatment, we calculated

the IC50 values of common anti-SKCM drugs by using the R

package “pRRophetic” (Geeleher et al., 2014). Furthermore, to

identify potential drugs that can treat SKCM, we identified many

compounds obtained from the GDSC website (https://www.

cancerrxgene.org/) with significantly different IC50 values

between the two groups. To investigate the potential benefits

of the risk model in immunotherapy, we also compared the

expression levels of critical immune checkpoint genes (ICIs),

including PD-1, PD-L1, HAVCR2, and CTLA-4, between two

groups.

Functional enrichment analysis

Differentially expressed genes (DEGs) between two groups

were identified by using the package “limma” following the

criteria (|Log2FC| > 1.0, p-value < 0.05). We further applied

GO and KEGG functional enrichment analyses to investigate

the related functions and pathways on the bias of the DEGs

using the package “clusterProfiler”. We further conducted a

GSEA analysis to compare the potential pathways between

two groups using GSEA software (http://www.gsea-msigdb.

org/gsea/index.jsp). Sankey diagram was conducted to

visualize the correlation between cuproptosis-related

lncRNAs, mRNAs, and risk factors (protective/risk) using

the R package “ggalluvival”.

Statistical analysis

All statistical analyses were conducted in the R software

(Version 4.1.1). Student’s t-tests were applied to determine the

difference between the two groups. For the analysis of differences

between K-M curves, the log-rank test was performed. If there is

no special description for the above method, statistical

significance is defined as p-value < 0.05.
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Results

Data of patients with skin cutaneous
melanoma

All analysis processes were presented in the flow chart

(Figure 1). In total, 455 patients with SKCM were considered

in the subsequent study. Training set including 228 SKCM

patients was applied to identify cuproptosis-related lncRNAs

related to prognosis and further construct the prognosis risk

model, and testing set including 227 SKCM patients was applied

to verify the superiority of the established risk model. It has been

found that clinical characteristics such as age, gender, and TNM

stage are not statistically different between the two groups

(Supplementary Table S2, p > 0.05).

Acquisition of cuproptosis-related lncRNA
The expression of 10 cuproptosis-associated genes and

16773 lncRNAs was identified from the TCGA database. After

Pearson correlation analysis with filter criteria (|R| ≥ 0.4 and p <
0.001), we obtained 437 cuproptosis-related lncRNAs

(Supplementary Table S3). The co-expression network

between 10 cuproptosis-associated genes and 437 cuproptosis-

related lncRNAs was presented in Figure 2A.

FIGURE 1
The workflow of this study.
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Construction of the cuproptosis-related
lncRNA risk model for skin cutaneous
melanoma

The univariate Cox regression analysis was applied to

identify cuproptosis-related lncRNAs associated with OS, and

142 lncRNAs were identified (Supplementary Table S4). The

correlation heatmap between 142 candidate lncRNAs and

cuproptosis-associated genes was visualized in Figure 2B.

Furthermore, the LASSO regression was applied and we found

that 9 cuproptosis-related lncRNAs were significantly correlated

with the prognosis of SKCM patients (Figures 3A,B). Finally,

5 cuproptosis-related lncRNAs, including VIM-AS1,

AC012443.2, MALINC1, AL354696.2, and HSD11B1-AS1

were identified to construct the risk model using multivariate

Cox regression analysis (Figure 3C; Table 1). The risk score was

calculated based on the corresponding Cox regression model

coefficients and lncRNA expression levels: risk score = VIM-

AS1 × -0.486200693258448 + AC012443.2 × -1.12449989484336

+ MALINC1 × -0.696789508906321 + AL354696.2 ×

-1.17823680822397 + HSD11B1-AS1 × -0.623186481172742.

We applied correlation test to further explore the co-

expression network between 5 cuproptosis-related lncRNAs

and mRNAs (Figure 3D). Besides, the Sankey diagram

FIGURE 2
Identification of cuproptosis-related lncRNAs in TCGA-SKCM patients. (A) Co-expression network in Sankey diagram for cuproptosis-
associated genes and corresponding lncRNAs. (B) The heatmap of 10 cuproptosis-associated genes and 142 cuproptosis-related lncRNAs.
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FIGURE 3
Construction of the cuproptosis-related lncRNA risk model. (A,B) LASSO regression analysis identified 9 cuproptosis-related lncRNAs.
(C) Multivariate Cox regression analysis identified 5 cuproptosis-related lncRNAs. (D) Heatmap of the correlation between hub lncRNAs and
cuproptosis mRNAs (E) The Sankey diagram shows the connection degree between cuproptosis mRNAs, cuproptosis-related lncRNAs, and risk
types. (F) Distribution of risk scores, (G) survival status and survival time patterns, (H) relative expression of 5 hub lncRNAs, and (I) K-M survival
based on the training set.
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revealed that 5 hub cuproptosis-related lncRNAs were protective

factors (Figure 3E).We investigated the distribution of risk scores

in survival time and survival status between high- and low-risk

groups in the training set (Figures 3F,G). Besides, the relative

expression of 5 hub cuproptosis-related lncRNAs was calculated

in the training set (Figure 3H). Compared with patients in the

high-risk group, patients in the low-risk group have higher

expression levels of 5 cuproptosis-related lncRNAs, which was

consistent with the Sankey diagram. Finally, we applied the K-M

curve to verify whether there was a significant difference in OS

between high- and low-risk groups. The results showed that in

the low-risk groups, SKCM patients had better OS compared

with the high-risk groups (Figure 3I, p <0.001).

Validation of the cuproptosis-related
lncRNA risk model

Our next step was to apply the testing set as well as the entire

set to test the reliability of the established risk model. Using the

methodmentioned before, the risk curve as well as scatters plot to

visualize the survival status and survival time suggested that

SKCM patients in the low-risk group had longer survival time

and a lower risk score than in the high-risk group, based on the

results of the testing set (Figures 4A,B) and the entire set (Figures

4C,D). Furthermore, the heatmap of expression levels based on

the testing set (Figure 4E) and the entire set (Figure 4F)

confirmed that 5 hub cuproptosis-related lncRNAs were

protective factors. K-M analyses also presented that low-risk

SKCM patients had better overall survival than high-risk patients

based on the testing set (Figure 4G, p <0.001) and the entire set

(Figure 4H, p <0.001). The above bioinformatics studies fully

identify that our established risk model has reliable

discrimination for SKCM patients.

PCA and t-SNE

Firstly, we applied PCA and t-SNE analyses to evaluate the

accuracy of the risk model based on the 5 cuproptosis-related

lncRNAs in the training set (Figure 5A), testing set (Figure 5B),

and entire set (Figure 5C). All results presented fairly significant

discrimination between the two subgroups. Furthermore, we

applied PCA based on the entire gene sequencing data of the

TCGA-SKCM cohort, 10 cuproptosis-associated genes,

437 cuproptosis-related lncRNAs, and the risk prognostic

model (Figures 5D–G). The distribution of the two groups

based on the risk model was significantly different and stable,

which fully indicated that the risk model can accurately

distinguish SKCM patients and reflected the significant

differences in the cuproptosis sensitivity between the two

subgroups.

Independent factor test and creation of
nomogram

Using univariate and multivariate Cox regression analyses to

determine whether the cuproptosis-related lncRNA was an

independent prognostic factor for OS in SKCM patients, we

examined the potential independent effect of cuproptosis-related

lncRNAs on our outcomes. The results of univariate Cox

regression analysis suggested that age (HR = 1.020, p < 0.001),

stage (HR = 1.520, p < 0.001), T stage (HR = 1.491, p < 0.001), N

stage (HR = 1.452, p < 0.001), and risk score (HR = 1.664, p <
0.001) were significantly associated with OS (Figure 6A). After

adjusting for other confounding factors, the multivariate Cox

regression analysis showed that the risk score (HR = 1.476, p <
0.001) still had a significant effect on survival and prognosis

(Figure 6B). Based on the above results, it is concluded that the

risk prognostic model according to five cuproptosis-related

lncRNAs serves as independent prognostic factors for SKCM

patients. Besides, compared with other clinical indicators, the risk

model showed the highest C-index (Figure 6C), and its AUC for

1-, 3-, and 5-years OS were all greater than 0.5, indicating the

reliability of the model (Figure 6D). Considering the widespread

use of nomogram and risk scores has an excellent ability to

predict the prognosis of SKCM patients. We further constructed

a nomogram by integrating multiple clinical factors and our

constructed risk score to better predict 1-, 3-, and 5-years survival

in SKCM patients (Figure 6E). The accuracy of the nomogram

was verified in subsequent calibration curves, and we found a

high degree of accuracy between the actual observed and

predicted values (Figure 6F). Furthermore, the DCA curves

TABLE 1 The 5 cuproptosis-related prognostic lncRNAs.

Id coef HR HR.95L HR.95H p-value

VIM-AS1 −0.486200693 0.374195336 0.232070722 0.60335982 0.0000551

AC012443.2 −1.124499895 0.145536422 0.035367734 0.598874959 0.00757806

MALINC1 −0.696789509 0.243172712 0.094413127 0.626321461 0.003397614

AL354696.2 −1.178236808 0.089929911 0.018226757 0.443709709 0.00309874

HSD11B1-AS1 −0.623186481 0.381308182 0.185156678 0.785258902 0.008900943
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based on the entire set also confirmed the superior predictive

power of the nomogram (Figure 6G), and the nomogram even

shows a higher C-index than the risk model (Figure 6H). Besides,

the area under the ROC curve (AUCs) at 1, 3, 5-years were 0.812,

0.725, and 0.684, suggesting that the nomogram was reliable in

predicting the OS of SKCM patients (Figure 6I).

FIGURE 4
Validation of the riskmodel. Distribution of risk scores based on the testing set (A), and entire set (B). Survival status and survival time patterns are
based on the testing set (C), and the entire set (D). Relative expression of 5 hub lncRNA based on the testing set (E), and entire set (F). K-M analyses are
based on the testing set (G), and the entire set (H).
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Next, we applied K-M analysis to verify whether our

constructed risk model still maintains superior predictive

power in different clinical traits. We found that high-risk

patients of SKCM still had a lower prognosis in different

groups of clinical features such as age, gender, pathological

stage, such as TNM stage (Figure 7).

Analysis of immune infiltration landscape

Given the importance of TME in tumor progression and

treatment, we applied multiple immune assessment algorithms to

study it. First, we applied the ESTIMATE algorithm to analyze

the immune, stromal, and estimate scores of SKCM patients. It

FIGURE 5
PCA and t-SNE. PCA and t-SNE analyses between the high-risk and low-risk groups based on the training set (A), testing set (B), and entire set
(C). PCA analysis between the high-risk and low-risk groups based on all entire gene expression profiles (D), cuproptosis genes (E), 437 cuproptosis-
related lncRNAs (F), and risk model (G).
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FIGURE 6
Independent Prognostic Factors and Construction of Nomogram. Forrest plot of the univariate Cox regression analysis (A), andmultivariate Cox
regression analysis (B), based on the entire set. (C) The concordance index of risk score with clinical characteristics. (D) ROC curves for 1-, 3-, and 5-
years OS in the risk model. (E) The nomogram. (F) The calibration curves of the nomogram predict the probability of the OS (The x-axis shows
nomogram-predicted survival, and the y-axis shows actual survival. The grey line shows the ideal calibration line, and the color line represents
the model-predicted calibration line. (G) The DCA curves of the nomogram. (H) The concordance index of nomogram, risk score and clinical
characteristics. (I) ROC curves for 1-, 3-, and 5-years OS in the nomogram.
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was found that SKCM patients in the low-risk group had a

significantly higher immune score, stromal score, and estimate

score than in the high-risk group (Figures 8A–C, p <0.05).
Besides, the GSVA enrichment analysis revealed that SKCM

patients in the low-risk group were significantly related to

immune pathways and functions such as

Type_II_IFN_Reponse, HLA, APC_co_inhibition,

Check−point, Cytolytic_activity, and CCR (Figure 8D). We

further performed the CIBERSORT algorithm to analyze the

category and proportion of 22 immune cells. The relative fraction

of 22 immune cells within low- and high-risk groups were

presented by a box plot (Figure 8E), and the heatmap

(Figure 8F) revealed significant disparities in the distribution

of immune cells based on the risk model. Besides, compared to

the high-risk group, we summarized that Macrophages M0, M2,

and Mast cells resting account for a small proportion in the low-

risk group (p < 0.05), while T cells CD4memory activated, T cells

follicular helper, and Macrophages M1 cover a larger proportion

(p < 0.05) (Figure 8G). Finally, we further applied the ssGSEA

algorithm to investigate the infiltration of immune cells and

immune functions in the high-risk and low-risk groups. The

results presented that the immune cells subpopulations of B cells,

CD8+ T cells, Neutrophils, NK cells, (plasmacytoid DCs) pDCs, T

helper cells, Tfh, Th1 cells, Th2 cells, TIL, and (regulatory T cells)

Tregs were significantly higher in the low-risk group (Figure 8H,

p <0.001). The APC co-inhibition/stimulation, chemokine

receptors (CCR), Check-point, Cytolytic activity, human

leukocyte antigen (HLA), Inflammation−promoting, MHC

class I, Parainflammation, T-cells co-inhibition/stimulation,

and type I IFN response was significantly upregulated in the

low-risk group (Figure 8I, p <0.001). Finally, to assess the

correlation between the risk score and immune cell subtype

infiltration, we conducted a comprehensive analysis using

multiple algorithms including TIMER, CIBERSORT, xCELL,

quanTIseq, MCPcounter, EPIC, and CIBERSORT-ABS

(Supplementary Figure S1). The results indicated that there

was a negative relationship between immune cell infiltration

and risk score. As shown above, the low-risk group had a

higher level of immune infiltration, which may be associated

with a better prognosis.

Somatic mutation analysis

We further compared the differences in the somatic

mutations between the two groups. The low-risk group had

FIGURE 7
K-M analysis of OS stratified by age (≤65 or >65), gender (female or male), SKCM stage (I–II or III-IV), and TNM stage (T1–2 or T3–4) between
high-risk and low-risk groups in TCGA entire set.
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FIGURE 8
Analyses of tumor immune microenvironments between two groups. The differences of the immune score (A), stromal score (B), and estimate
score (C). (D) The GSVA of immune-related pathways between two groups. Expression features of 22 immune cells in the box plot (E), heatmap (F),
and violin plot (G) using the CIBERSORT algorithm. The differences of the immune cells (H), and immune functions (I) using the ssGSEA algorithm.
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a higher mutation rate (Altered in 217 (94.35%) of

230 samples) than the low-risk group (Altered in 199

(89.64%) of 222 samples), and the top 20 driver mutation

genes were displayed in Figures 9A,B. Numerous studies

already exist confirming that TMB can be a valuable

predictor of tumor immune response and that patients with

higher TMB might more benefit from immunotherapy (Hodi

et al., 2021). The TMB quantitative analysis revealed that the

low-risk group patients had a significantly higher TMB score

compared to the high-risk group patients, suggesting that

patients in the low-risk groups might be better candidates

for immunotherapy (Figure 9C, p <0.05). We also conducted a

Pearson correlation analysis to determine whether the risk

model correlates with the TMB. The result suggested that

FIGURE 9
Landscape of mutation between two groups. The mutation distributions of patients in the high-risk group (A), and low-risk group (B). (C) The
difference in TMB score between the two groups. (D) Correlations between risk score and TMB. (E) K-M analysis of the OS between high- and low-
TMB groups. (F) K-M analysis of the OS between four groups stratified by both TMB and risk score.
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there was a negative correlation among them (Figure 9D, R =

-0.1, p <0.05). Then we divided all SKCM patients into high-

TMB and low-TMB groups according to the cut-off values

(media TMB score). Subsequently, K-M analysis suggested

that patients in the high-TMB group had a significantly better

OS than in the low-TMB group (Figure 9E, p <0.05). Using the

TMB score to predict the survival of SKCM patients or using

the risk model to predict the prognosis of patients, which one

had the better predictive ability? Interestingly, when we

combined the TMB and risk scores for K-M analysis of

SKCM patients, we found that better OS with high-TMB

was eliminated by the risk score. On the contrary, the

patients in the group (low-risk score and high TMB score)

had a significantly OS than in the other groups, and it could be

concluded that the risk model was superior to the TMB in

predicting an individual’s prognosis (Figure 9F, p <0.05).

FIGURE 10
Functional enrichment analyses. (A-B) GO analysis based on DEGs between high- and low-risk groups. (C-D) KEGG analysis based on DEGs
between high- and low-risk groups. (E-F) GSEA enrichment analysis.
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Functional enrichment analysis

For a deeper exploration of the mechanisms that contribute

to significant differences between two groups in the

multidimensional analysis. We further performed the GO and

KEGG analyses (Supplementary Table S5) based on the

749 DEGs (Supplementary Table S6) between two groups (|

Log2FC| > 1.0, p-value < 0.05). As displayed in Figures 10A,B,

According to GO analysis, DEGs were significantly enriched in

immune-related biological processes (BP), including

lymphocyte-mediated immunity, immune response-activating

cell surface receptor signaling pathways, immune response-

activating signal transduction pathways, and humoral immune

responses. In regards to cellular component (CC), these DEGs

were significantly enriched in immunoglobulin complex and the

external side of the plasma membrane. In regards to molecular

function (MF), these DEGs were significantly enriched in antigen

binding and immunoglobulin receptor binding. Besides, the

KEGG analysis also indicated that these DEGs were mainly

enriched in immune-related pathways such as

Cytokine−cytokine receptor interaction, Primary

immunodeficiency, Chemokine signaling pathway, and

PD−L1 expression and PD−1 checkpoint pathway in cancer

(Figures 10C,D). Additionally, the GSEA analysis of KEGG

indicated that pathways such as glutathione metabolism,

galactose metabolism, and oxidative phosphorylation were

enriched in the high-risk group (Figure 10E; Supplementary

Table S7), while such as the jak stat signaling pathway,

chemokine signaling pathway, and other immune-related

pathways were enriched in the low-risk group (Figure 10F;

Supplementary Table S7). The results indicated that

cuproptosis may be closely related to metabolism and immunity.

Analysis of drug and immunotherapy
response

Given the significantly different prognosis of SKCM patients

in two groups, we decided to further screen potential drugs to

better achieve targeted therapy. We applied the R package

“pRRophetic” to investigate the treatment response according

to the IC50 values of samples in the GDSC database. According

to the potential drugs analysis, we found that the IC50 values of

5 potential drugs (ABT.263, ABT.888, AG.014699, AICAR,

ATRA) were significantly higher in the high-risk group,

indicating that patients in the low-risk group may be more

suitable for these drugs (Figures 11A–E, p <0.05). By contrast,

the IC50 values of 3 potential drugs (A.770041, AZ628, AUY922)

were significantly upregulated in the low-risk group, suggesting

that patients of SKCM in the high-risk group may be more

suitable for these drugs (Figures 11F–H, p <0.05). Furthermore,

we calculated the IC50 values of common anti-tumor drugs

among two groups and we were surprised to find that the

IC50 values of these chemotherapy drugs such as cisplatin,

paclitaxel, vinorelbine, and gemcitabine were significantly

higher in the high-risk groups, suggesting that the risk model

can well guide individualized clinical treatment and assess the

patient’s immune response (Figures 11I–11L, p <0.05). As more

and more ICIs have been proven to be effective in cancer

treatment in recent years, we further evaluated the expression

of PD-1, PD-L1, CTLA4, and HAVCR2. We found that patients

of SKCM in the low-risk group had significantly higher

expression of PD-1, CTLA4, HAVCR2, and PD-L1 (Figures

11M–11P, p <0.05), which indicates that the risk models can

serve as promising predictors for the use of immune checkpoint

inhibitors.

Discussion

Although much progress has been made in the screening,

diagnosis, and treatment of SKCM, the prognosis of advanced

malignant melanoma is still low (Hayward et al., 2017).

Considering that the main reasons for this poor prognosis

and high mortality are the lack of early and effective

diagnostic tools and the early metastasis properties, we decide

to use bioinformatics analysis to find effective biomarkers for

early detection. In recent years, PCD has been regarded as one of

the most promising anti-tumor mechanisms and was found to

play a crucial role in regulating the progression of various cancers

(Koren and Fuchs, 2021; Qi et al., 2022b). Additionally, recent

studies point to a completely new PCD: copper-dependent

programmed cell death named cuproptosis (Tsvetkov et al.,

2022). Copper is an essential component of many biochemical

reactions and is widely involved in a variety of cellular functions,

such as cell metabolism, growth, and proliferation, protein

activity regulation, as well as apoptosis, autophagy, and other

cellular processes (Polishchuk et al., 2019; Yang et al., 2021).

Several studies over the past few years have shown that abnormal

copper levels in cells or circulating blood are associated with

tumor progression and prognosis in tumor patients. Fang et al.

(2019) found that higher serum copper levels are associated with

poorer prognosis in patients with liver cancer. Besides, Lopez

et al. (2019) confirmed that antagonizing copper uptake by tumor

cells, or chelating or inactivating copper in cells can effectively

inhibit tumor progression which is a very promising treatment

strategy for cancer. Meanwhile, A growing body of research has

revealed that lncRNAs play a crucial role in the biological process

of SKCM as emerging genetic and molecular biomarkers (Wang

et al., 2020; Guo et al., 2021). For example, Sun et al. (2021)

established a novel ferroptosis-related lncRNA signature that can

be used to predict the prognosis and provide immunotherapy

treatment targets for SKCM. However, no studies have been

conducted regarding the relationship between cuproptosis-

related lncRNAs and SKCM. Based on the above research

backgrounds, we have chosen to investigate how lncRNAs
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that can regulate the process of cuproptosis can impact tumor

progression as well as patient outcomes in SKCM.

In our study, based on univariate Cox, LASSO, and

multivariate Cox regression analyses, a total of five protective

cuproptosis-related lncRNAs were identified to construct the risk

prognostic model. It is worth mentioning that this step-by-step

dimensionality reduction method to finally screen out genes that

are key to prognosis and use it to build a risk model has been

reported by many excellent articles and is reliable (Jiang et al.,

2022b; Guo et al., 2022). The superior prognostic ability of the

risk model was confirmed in subsequent research analyses. In

addition, we created an accurate nomogram to better predict 1-,

3-, and 5-years survival rates in SKCM patients. We were

surprised to discover that of the five cuproptosis-related

lncRNAs (VIM-AS1, AC012443.2, MALINC1, AL354696.2,

HSD11B1-AS1), except for AC012443.2 and AL354696.2,

which have no related studies previously published, the other

three were shown to be closely associated with cancer

FIGURE 11
Exploration of therapeutic sensitivity. (A–H) Analysis of potential drug sensitivity in two groups. (I–L) Analysis of common chemotherapeutic
sensitivity. (M–P) Expression levels of critical ICIs in the two groups. (p < 0.05 *; p < 0.01 **; p < 0.001 ***).

Frontiers in Genetics frontiersin.org16

Yang et al. 10.3389/fgene.2022.972899

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.972899


progression, especially SKCM. The lncRNA VIM-AS1 has been

shown in numerous studies to regulate the growth andmetastasis

of various tumor cells. In addition, Xiong et al. (2021) reported

that the lncRNA VIM-AS1 is found to have significantly high

expression levels in metastatic bladder cancer tissues and that the

VIM-AS1/miR-655/ZEB1 axis regulates the epithelial-

mesenchymal transition in bladder cancer. Zhang et al.

developed a risk model using immune-related lncRNA,

including VIM-AS1, which provides insight into patients with

lung adenocarcinoma prognosis (Zhang et al., 2021b).

Additionally, Li et al. reported that lncRNA MALINC1 is also

related to the immune response as well as prognosis of SKCM,

and is applied to construct the risk prognostic model of SKCM

(Li and Luo, 2021). This is consistent with our study, indicating

that MALINC1 plays an important role in the progression of

SKCM. It is worth noting that lncRNA HSD11B1-AS1 also

proved to play a crucial role in the progress of SKCM (Liu

et al., 2022) and breast cancer (Xu et al., 2021). Liu et al.

confirmed that lncRNA HSD11B1-AS1served as a protective

factor inhibits the proliferation, migration, and invasion of

SKCM by multiple functional experiments (Liu et al., 2022).

Our study found that lncRNAs AL354696.2 and AC012443.2 also

act as protective factors to reduce the risk of SKCM and improve

prognosis, but no relevant studies have reported them, so the

subsequent mechanisms need to be further explored.

In the further analyses of immune infiltration, we found that

both immune cells and immune functions presented higher

infiltration status in low-risk group patients of SKCM,

suggesting that the better prognosis of patients in the low-risk

groupmay be associated with a higher immune infiltration status.

Interestingly, we also noticed that the immune, stromal, and

estimate scores were significantly upregulated in the low-risk

group. These results suggest that the risk model we have

developed is largely related to the immune landscape of the

SKCMmicroenvironment. It also indicated that cuproptosis may

mediate the expression of immune cells and immune function

and thus affect tumor progression. Further investigation is

necessary to identify the molecular mechanisms by which

cuproptosis and SKCM immunity are linked. Numerous

studies have shown that TMB can be used as a biomarker to

predict the effectiveness of immunotherapy (Ricciuti et al., 2019;

Wong et al., 2021). From previous studies, TMB has been shown

to be highly correlated with clinical outcomes after

immunotherapy in advanced melanoma, further suggesting a

combined approach to assess TMB and inflammatory signatures

that can well differentiate the response of patients with advanced

melanoma to immunotherapy (Hodi et al., 2021). Interesting to

note, that in our study, scores on the TMB test and gene

mutations were significantly higher in the low-risk group than

in the high-risk group. Higher TMB scores, better prognosis, and

higher immune infiltration status in the low-risk group fully

demonstrate that the risk model based on cuproptosis has better

predictive value.

Due to the development of immunotherapies targeting

CTLA4, PD-1, and PD-L1, treatment outcomes for SKCM

patients have improved over the past decade. Although large-

scale clinical studies using immune checkpoint-related drugs in

SKCM are currently lacking, more and more studies have

demonstrated the undeniable role of immune checkpoint-

related genes in the progression of SKCM (Selitsky et al.,

2019) (Zhong et al., 2022). To better estimate the efficacy of

checkpoint blockade therapy on our risk model, we investigated

the expression of critical ICPs and found that low-risk patients

had higher expression levels. Here, we also evaluated the

sensitivity of high-risk and low-risk patients to commonly

used chemotherapeutic drugs to better guide clinical

medication. Some potential compounds were also screened

and may provide some new directions for the treatment of

SKCM. We found that the risk model is a promising predictor

for antitumor drug selection and provides reliable immune

markers for tumor immunotherapy.

To better investigate the potential regulatory mechanisms of

CM, we further explored the possible different signaling

pathways between the two groups. GO and KEGG analyses

indicated that the DEGs were largely associated with immune-

related pathways. Among them, we found that in the functional

enrichment, there are many T helper cell-related pathways (such

as Th17, 1 and 2 cell differentiation, etc.). In addition, in the

analysis of immune cell infiltration, we also found that the

infiltration fraction of T helper cells was significantly different

between the two different risk groups. The study of TomHartwig

et al.(2018) pointed out the important role of Th cells in

inhibiting skin inflammation and pointed out that the

inhibitory effect of skin inflammation played by Th cells

(mainly IL-17/17A secreted by them) is involved in psoriasis,

melanin It plays an important regulatory role in cancer and other

diseases. In addition, other studies have observed a decrease in

the percentage of peripheral and tumor-infiltrating Th17 cells in

SKCM patients (He et al., 2021), and a clinical study by Kyoko

Yamaguchi et al. (Yamaguchi et al., 2018). These results are

consistent with the finding that the low-risk group had a higher

Th cell infiltration score in the immune infiltration analysis.

However, we also noticed that the mechanism of action of

Th17 cells in SKCM has not been thoroughly studied. The

article by Chen and Gao. (2019) pointed out that Th17 cells

performed like macrophages in tumors, which also have

contradictory effects of promoting tumor and inhibiting

tumor. Their summary indicates that the relationship between

SKCM and Th cell infiltration requires more and more rigorous

experiments to verify.

Here, we must also admit that there are some limitations in

this study. First, this study is based on the analysis of SKCM

samples from the TCGA database, and there may be sample bias

in the analysis of a single database, resulting in one-sided analysis

results; Literature studies, given that cuproptosis is a recently

proposed concept, there may be genes that have not been
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discovered that have not been included in this study; finally, we

need more experiments in vivo or in vitro to examine the

lncRNAs for prognostic models building.

In conclusion, this study is the first to investigate the

regulation of lncRNAs on the cuproptosis process of tumor

cells in SKCM. Using the relevant data of SKCM patients in

TCGA, we constructed a lncRNA prognosis prediction model

based on the regulation of the cuproptosis process, which can

shed the hoping light on the diagnosis and treatment

of SKCM.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding authors.

Author contributions

XY, XW, and XS contributed equally to this study. XY and

MX contributed to the conceptualization; XY and XS contributed

to the methodology, analysis, visualization, and original draft

preparation; XY, XS, MX, LF, YS, LX, SL, and SH reviewed and

edited the manuscript; HW contributed to the project

administration and funding acquisition. All authors have read

and agreed to the published version of the manuscript.

Funding

This study was funded by Tianjin Key Medical Discipline

(Specialty) Construction Project (No: TJYXZDXK-057B).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.972899/full#supplementary-material

References

Alexander, R. P., Fang, G., Rozowsky, J., Snyder, M., and Gerstein, M. B. (2010).
Annotating non-coding regions of the genome. Nat. Rev. Genet. 11 (8), 559–571.
doi:10.1038/nrg2814

Awan, M. J., Gittleman, H., Barnholtz-Sloan, J., Machtay, M., Nguyen-Tan, P. F.,
Rosenthal, D. I., et al. (2021). Risk groups of laryngeal cancer treated with
chemoradiation according to nomogram scores - a pooled analysis of RTOG
0129 and 0522. Oral Oncol. 116, 105241. doi:10.1016/j.oraloncology.2021.105241

Bian, Z., Fan, R., and Xie, L. (2022). A novel cuproptosis-related prognostic gene
signature and validation of differential expression in clear cell renal cell carcinoma.
Genes. (Basel) 13 (5), 851. doi:10.3390/genes13050851

Chen, C., and Gao, F. H. (2019). Th17 cells paradoxical roles in melanoma and
potential application in immunotherapy. Front. Immunol. 10, 187. doi:10.3389/
fimmu.2019.00187

Chen, G., Niu, C., Yi, J., Sun, L., Cao, H., Fang, Y., et al. (2019). Novel triapine
derivative induces copper-dependent cell death in hematopoietic cancers. J. Med.
Chem. 62 (6), 3107–3121. doi:10.1021/acs.jmedchem.8b01996

Ebara, M., Fukuda, H., Hatano, R., SaisHo, H., Nagato, Y., SuzuKi, K., et al.
(2000). Relationship between copper, zinc and metallothionein in hepatocellular
carcinoma and its surrounding liver parenchyma. J. Hepatol. 33 (3), 415–422.
doi:10.1016/s0168-8278(00)80277-9

Fang, A. P., Chen, P. Y., Wang, X. Y., Liu, Z. Y., Zhang, D. M., Luo, Y., et al.
(2019). Serum copper and zinc levels at diagnosis and hepatocellular carcinoma
survival in the Guangdong Liver Cancer Cohort. Int. J. Cancer 144 (11), 2823–2832.
doi:10.1002/ijc.31991

Feng, Y., Zeng, J. W., Ma, Q., Zhang, S., Tang, J., and Feng, J. F. (2020). Serum
copper and zinc levels in breast cancer: Ameta-analysis. J. Trace Elem. Med. Biol. 62,
126629. doi:10.1016/j.jtemb.2020.126629

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package for
prediction of clinical chemotherapeutic response from tumor gene expression
levels. PLoS One 9 (9), e107468. doi:10.1371/journal.pone.0107468

Gómez-Abenza, E., Ibanez-Molero, S., Garcia-Moreno, D., Fuentes, I., Zon, L. I.,
Mione, M. C., et al. (2019). Zebrafish modeling reveals that SPINT1 regulates the
aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune
microenvironment. J. Exp. Clin. Cancer Res. 38 (1), 405. doi:10.1186/s13046-019-
1389-3

Guan, M., Jiao, Y., and Zhou, L. (2022). Immune infiltration analysis with the
CIBERSORT method in lung cancer. Dis. Markers 2022, 3186427. doi:10.1155/
2022/3186427

Guo, C. R., Mao, Y., Jiang, F., Juan, C. X., Zhou, G. P., and Li, N. (2022).
Computational detection of a genome instability-derived lncRNA signature for
predicting the clinical outcome of lung adenocarcinoma. Cancer Med. 11 (3),
864–879. doi:10.1002/cam4.4471

Guo, J. H., Yin, S. S., Liu, H., Liu, F., and Gao, F. H. (2021). Tumor
microenvironment immune-related lncRNA signature for patients with
melanoma. Ann. Transl. Med. 9 (10), 857. doi:10.21037/atm-21-1794

Hartwig, T., Zwicky, P., Schreiner, B., Yawalkar, N., Cheng, P., Navarini, A., et al.
(2018). Regulatory T cells restrain pathogenic T helper cells during skin
inflammation. Cell. Rep. 25 (13), 3564–3572. e4. doi:10.1016/j.celrep.2018.12.012

Hayward, N. K., Wilmott, J. S., Waddell, N., Johansson, P. A., Field, M. A., Nones,
K., et al. (2017). Whole-genome landscapes of major melanoma subtypes. Nature
545 (7653), 175–180. doi:10.1038/nature22071

He, H., Qiao, B., Guo, S., Cui, H., Li, N., Liu, H., et al. (2021). Induction of T helper
17 cell response by interleukin-7 in patients with primary cutaneous melanoma.
Melanoma Res. 31 (4), 328–337. doi:10.1097/CMR.0000000000000751

Frontiers in Genetics frontiersin.org18

Yang et al. 10.3389/fgene.2022.972899

https://www.frontiersin.org/articles/10.3389/fgene.2022.972899/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.972899/full#supplementary-material
https://doi.org/10.1038/nrg2814
https://doi.org/10.1016/j.oraloncology.2021.105241
https://doi.org/10.3390/genes13050851
https://doi.org/10.3389/fimmu.2019.00187
https://doi.org/10.3389/fimmu.2019.00187
https://doi.org/10.1021/acs.jmedchem.8b01996
https://doi.org/10.1016/s0168-8278(00)80277-9
https://doi.org/10.1002/ijc.31991
https://doi.org/10.1016/j.jtemb.2020.126629
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1186/s13046-019-1389-3
https://doi.org/10.1186/s13046-019-1389-3
https://doi.org/10.1155/2022/3186427
https://doi.org/10.1155/2022/3186427
https://doi.org/10.1002/cam4.4471
https://doi.org/10.21037/atm-21-1794
https://doi.org/10.1016/j.celrep.2018.12.012
https://doi.org/10.1038/nature22071
https://doi.org/10.1097/CMR.0000000000000751
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.972899


Hodi, F. S., Wolchok, J. D., Schadendorf, D., Larkin, J., Long, G. V., Qian, X., et al.
(2021). TMB and inflammatory gene expression associated with clinical outcomes
following immunotherapy in advanced melanoma. Cancer Immunol. Res. 9 (10),
1202–1213. doi:10.1158/2326-6066.CIR-20-0983

Jiang, F., Wu, C., Wang, M., Wei, K., and Wang, J. (2022). An autophagy-related
long non-coding RNA signature for breast cancer. Comb. Chem. High. Throughput
Screen. 25 (8), 1327–1335. doi:10.2174/1386207324666210603122718

Jiang, N., Zhang, X., Gu, X., Li, X., and Shang, L. (2021). Progress in
understanding the role of lncRNA in programmed cell death. Cell. Death
Discov. 7 (1), 30. doi:10.1038/s41420-021-00407-1

Jiang, Y., Huo, Z., Qi, X., Zuo, T., and Wu, Z. (2022). Copper-induced tumor cell
death mechanisms and antitumor theragnostic applications of copper complexes.
Nanomedicine (Lond) 17 (5), 303–324. doi:10.2217/nnm-2021-0374

Koren, E., and Fuchs, Y. (2021). Modes of regulated cell death in cancer. Cancer
Discov. 11 (2), 245–265. doi:10.1158/2159-8290.CD-20-0789

Li, F. W., and Luo, S. K. (2021). Identification and construction of a predictive
immune-related lncRNA signature model for melanoma. Int. J. Gen. Med. 14,
9227–9235. doi:10.2147/IJGM.S340025

Liu, K., Zhang, L., Li, X., and Zhao, J. (2022). High expression of lncRNA
HSD11B1-AS1 indicates favorable prognosis and is associated with immune
infiltration in cutaneous melanoma. Oncol. Lett. 23 (2), 54. doi:10.3892/ol.2021.
13172

Lopez, J., Ramchandani, D., and Vahdat, L. (2019). Copper depletion as a
therapeutic strategy in cancer. Mater. Ions Life Sci. 19. doi:10.1515/
9783110527872-018

Luo, W., Wang, J., Xu, W., Ma, C., Wan, F., Huang, Y., et al. (2021). LncRNA
RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-
activated iron export by sponging miR-129-5p in bladder cancer. Cell. Death
Dis. 12 (11), 1043. doi:10.1038/s41419-021-04296-1

Lupton-Smith, C., Stuart, E. A., McGinty, E. E., Dalcin, A. T., Jerome, G. J., Wang,
N. Y., et al. (2021). Determining predictors of weight loss in a behavioral
intervention: A case study in the use of lasso regression. Front. Psychiatry 12,
707707. doi:10.3389/fpsyt.2021.707707

Lv, H., Liu, X., Zeng, X., Liu, Y., Zhang, C., Zhang, Q., et al. (2022).
Comprehensive analysis of cuproptosis-related genes in immune infiltration and
prognosis in melanoma. Front. Pharmacol. 13, 930041. doi:10.3389/fphar.2022.
930041

Polishchuk, E. V., Merolla, A., Lichtmannegger, J., Romano, A., Indrieri, A.,
Ilyechova, E. Y., et al. (2019). Activation of autophagy, observed in liver tissues from
patients with wilson disease and from ATP7B-deficient animals, protects
hepatocytes from copper-induced apoptosis. Gastroenterology 156 (4),
1173–1189. doi:10.1053/j.gastro.2018.11.032

Qi, R., Bai, Y., Wei, Y., Liu, N., and Shi, B. (2022). The role of non-coding RNAs in
ferroptosis regulation. J. Trace Elem. Med. Biol. 70, 126911. doi:10.1016/j.jtemb.
2021.126911

Qi, X., Li, Q., Che, X., Wang, Q., andWu, G. (2022). Application of regulatory cell
death in cancer: Based on targeted therapy and immunotherapy. Front. Immunol.
13, 837293. doi:10.3389/fimmu.2022.837293

Rebecca, V. W., Somasundaram, R., and Herlyn, M. (2020). Pre-clinical modeling
of cutaneous melanoma. Nat. Commun. 11 (1), 2858. doi:10.1038/s41467-020-
15546-9

Ricciuti, B., Kravets, S., Dahlberg, S. E., Umeton, R., Albayrak, A., Subegdjo, S. J.,
et al. (2019). Use of targeted next generation sequencing to characterize tumor
mutational burden and efficacy of immune checkpoint inhibition in small cell lung
cancer. J. Immunother. Cancer 7 (1), 87. doi:10.1186/s40425-019-0572-6

Rodriguez-Hernandez, I., Maiques, O., Kohlhammer, L., Cantelli, G., Perdrix-
Rosell, A., Monger, J., et al. (2020). WNT11-FZD7-DAAM1 signalling supports
tumour initiating abilities and melanoma amoeboid invasion.Nat. Commun. 11 (1),
5315. doi:10.1038/s41467-020-18951-2

Schadendorf, D., van Akkooi, A. C. J., Berking, C., Griewank, K. G., Gutzmer, R.,
Hauschild, A., et al. (2018). Lancet 392 (10151), 971–984. doi:10.1016/S0140-
6736(18)31559-9

Selitsky, S. R., Mose, L. E., Smith, C. C., Chai, S., Hoadley, K. A., Dittmer, D. P.,
et al. (2019). Prognostic value of B cells in cutaneous melanoma. Genome Med. 11
(1), 36. doi:10.1186/s13073-019-0647-5

Shen, K., Wang, H., Xue, S., Wang, L., Ren, M., Gao, Z., et al. (2022). Genome-
wide screening and immune landscape suggest a potential-m6A-related lncRNA

risk signature for predicting prognosis of melanoma. Ann. Transl. Med. 10 (5), 241.
doi:10.21037/atm-21-4402

Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2021). Cancer statistics,
2021. Ca. Cancer J. Clin. 71 (1), 7–33. doi:10.3322/caac.21654

Sun, S., Zhang, G., and Zhang, L. (2021). A novel ferroptosis-related lncRNA
prognostic model and immune infiltration features in skin cutaneous melanoma.
Front. Cell. Dev. Biol. 9, 790047. doi:10.3389/fcell.2021.790047

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M.,
et al. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins.
Science 375 (6586), 1254–1261. doi:10.1126/science.abf0529

Wang, Y., Li, D., Lu, J., Chen, L., Zhang, S., Qi, W., et al. (2020). Long noncoding
RNA TTN-AS1 facilitates tumorigenesis and metastasis by maintaining TTN
expression in skin cutaneous melanoma. Cell. Death Dis. 11 (8), 664. doi:10.
1038/s41419-020-02895-y

Wong, C. N., Fessas, P., Dominy, K., Mauri, F. A., Kaneko, T., Parcq, P. D., et al.
(2021). Qualification of tumour mutational burden by targeted next-generation
sequencing as a biomarker in hepatocellular carcinoma. Liver Int. 41 (1), 192–203.
doi:10.1111/liv.14706

Xiong, Y., Zu, X., Wang, L., Li, Y., Chen, M., He, W., et al. (2021). The VIM-AS1/
miR-655/ZEB1 axis modulates bladder cancer cell metastasis by regulating
epithelial-mesenchymal transition. Cancer Cell. Int. 21 (1), 233. doi:10.1186/
s12935-021-01841-y

Xu, X., Lu, F., Fang, C., and Liu, S. (2022). Construction of an immune-autophagy
prognostic model based on ssGSEA immune scoring algorithm analysis and
prognostic value exploration of the immune-autophagy gene in endometrial
carcinoma (EC) based on bioinformatics. J. Healthc. Eng. 2022, 7832618. doi:10.
1155/2022/7832618

Xu, Z., Jiang, S., Ma, J., Tang, D., Yan, C., and Fang, K. (2021). Comprehensive
analysis of ferroptosis-related LncRNAs in breast cancer patients reveals prognostic
value and relationship with tumor immune microenvironment. Front. Surg. 8,
742360. doi:10.3389/fsurg.2021.742360

Yamaguchi, K., Mishima, K., Ohmura, H., Hanamura, F., Ito, M., Nakano, M.,
et al. (2018). Activation of central/effector memory T cells and T-helper
1 polarization in malignant melanoma patients treated with anti-programmed
death-1 antibody. Cancer Sci. 109 (10), 3032–3042. doi:10.1111/cas.13758

Yan, M., Hu, J., Ping, Y., Xu, L., Liao, G., Jiang, Z., et al. (2021). Single-cell
transcriptomic analysis reveals a tumor-reactive T cell signature associated with
clinical outcome and immunotherapy response in melanoma. Front. Immunol. 12,
758288. doi:10.3389/fimmu.2021.758288

Yang, F., Liao, J., Yu, W., Qiao, N., Guo, J., Han, Q., et al. (2021). Exposure to
copper induces mitochondria-mediated apoptosis by inhibiting mitophagy and the
PINK1/parkin pathway in chicken (Gallus gallus) livers. J. Hazard. Mat. 408,
124888. doi:10.1016/j.jhazmat.2020.124888

Yu, S., Wang, Y., Peng, K., Lyu, M., Liu, F., and Liu, T. (2021). Establishment of a
prognostic signature of stromal/immune-related genes for gastric adenocarcinoma
based on ESTIMATE algorithm. Front. Cell. Dev. Biol. 9, 752023. doi:10.3389/fcell.
2021.752023

Zabłocka-Słowińska, K., Placzkowska, S., Prescha, A., Pawelczyk, K., Porebska, I.,
Kosacka, M., et al. (2018). Serum and whole blood Zn, Cu andMn profiles and their
relation to redox status in lung cancer patients. J. Trace Elem. Med. Biol. 45, 78–84.
doi:10.1016/j.jtemb.2017.09.024

Zhang, B., Wang, R., Li, K., Peng, Z., Liu, D., Zhang, Y., et al. (2021). An immune-
related lncRNA expression profile to improve prognosis prediction for lung
adenocarcinoma: From bioinformatics to clinical word. Front. Oncol. 11,
671341. doi:10.3389/fonc.2021.671341

Zhang, D., Wang, M., Peng, L., Yang, X., Li, K., Yin, H., et al. (2021).
Identification and validation of three PDAC subtypes and individualized
GSVA immune pathway-related prognostic risk score formula in pancreatic
ductal adenocarcinoma patients. J. Oncol. 2021, 4986227. doi:10.1155/2021/
4986227

Zhong, J., Wang, Z., Hounye, A. H., Liu, J., Zhang, J., Qi, M., et al. (2022). A novel
pyroptosis-related LncRNA signature predicts prognosis and indicates tumor
immune microenvironment in skin cutaneous melanoma. Life Sci., 120832.
doi:10.1016/j.lfs.2022.120832

Frontiers in Genetics frontiersin.org19

Yang et al. 10.3389/fgene.2022.972899

https://doi.org/10.1158/2326-6066.CIR-20-0983
https://doi.org/10.2174/1386207324666210603122718
https://doi.org/10.1038/s41420-021-00407-1
https://doi.org/10.2217/nnm-2021-0374
https://doi.org/10.1158/2159-8290.CD-20-0789
https://doi.org/10.2147/IJGM.S340025
https://doi.org/10.3892/ol.2021.13172
https://doi.org/10.3892/ol.2021.13172
https://doi.org/10.1515/9783110527872-018
https://doi.org/10.1515/9783110527872-018
https://doi.org/10.1038/s41419-021-04296-1
https://doi.org/10.3389/fpsyt.2021.707707
https://doi.org/10.3389/fphar.2022.930041
https://doi.org/10.3389/fphar.2022.930041
https://doi.org/10.1053/j.gastro.2018.11.032
https://doi.org/10.1016/j.jtemb.2021.126911
https://doi.org/10.1016/j.jtemb.2021.126911
https://doi.org/10.3389/fimmu.2022.837293
https://doi.org/10.1038/s41467-020-15546-9
https://doi.org/10.1038/s41467-020-15546-9
https://doi.org/10.1186/s40425-019-0572-6
https://doi.org/10.1038/s41467-020-18951-2
https://doi.org/10.1016/S0140-6736(18)31559-9
https://doi.org/10.1016/S0140-6736(18)31559-9
https://doi.org/10.1186/s13073-019-0647-5
https://doi.org/10.21037/atm-21-4402
https://doi.org/10.3322/caac.21654
https://doi.org/10.3389/fcell.2021.790047
https://doi.org/10.3322/caac.21660
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1038/s41419-020-02895-y
https://doi.org/10.1038/s41419-020-02895-y
https://doi.org/10.1111/liv.14706
https://doi.org/10.1186/s12935-021-01841-y
https://doi.org/10.1186/s12935-021-01841-y
https://doi.org/10.1155/2022/7832618
https://doi.org/10.1155/2022/7832618
https://doi.org/10.3389/fsurg.2021.742360
https://doi.org/10.1111/cas.13758
https://doi.org/10.3389/fimmu.2021.758288
https://doi.org/10.1016/j.jhazmat.2020.124888
https://doi.org/10.3389/fcell.2021.752023
https://doi.org/10.3389/fcell.2021.752023
https://doi.org/10.1016/j.jtemb.2017.09.024
https://doi.org/10.3389/fonc.2021.671341
https://doi.org/10.1155/2021/4986227
https://doi.org/10.1155/2021/4986227
https://doi.org/10.1016/j.lfs.2022.120832
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.972899

	Construction of five cuproptosis-related lncRNA signature for predicting prognosis and immune activity in skin cutaneous me ...
	Introduction
	Materials and methods
	Data collection
	Identification of cuproptosis-related lncRNAs
	Construction of cuproptosis-related risk model
	Assessment of the prediction accuracy of risk model
	Independence of the risk model
	Establishment of the nomogram
	Analysis of immune microenvironment and molecular variation
	The therapeutic significance of the risk model
	Functional enrichment analysis
	Statistical analysis

	Results
	Data of patients with skin cutaneous melanoma
	Acquisition of cuproptosis-related lncRNA

	Construction of the cuproptosis-related lncRNA risk model for skin cutaneous melanoma
	Validation of the cuproptosis-related lncRNA risk model
	PCA and t-SNE
	Independent factor test and creation of nomogram
	Analysis of immune infiltration landscape
	Somatic mutation analysis
	Functional enrichment analysis
	Analysis of drug and immunotherapy response

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


