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ABSTRACT Methylotrophs of the family Methylophilaceae were isolated from grass-
land soil. Here, we report the draft genome sequences of two obligate methyl-
otrophs, Methylovorus sp. strain MM2 and Methylobacillus sp. strain MM3. These ge-
nome sequences provide further insights into the genetic and metabolic diversity of
the Methylophilaceae.

The family Methylophilaceae is composed of four genera containing facultative and
obligate methanol-utilizing methylotrophs (1–4). Members of the Methylophilaceae

have been isolated from a range of locations, including terrestrial and marine environ-
ments (5–10). Here, we report the draft genome sequences of two obligate methyl-
otrophs, Methylovorus sp. strain MM2 and Methylobacillus sp. strain MM3. The obligate
nature of these methylotrophs was confirmed through growth experiments. The strains
were isolated from soil collected at a 5-cm depth from grassland in Bawburgh, Norfolk,
United Kingdom (52.6276 N, 1.1784 E).

Genome sequencing was performed by MicrobesNG using the Illumina MiSeq
platform, producing 2 � 250-bp paired-end reads. Trimmed sequences were assembled
using SPAdes version 3.7.1, and genome annotation was performed using the RAST
annotation server (http://rast.nmpdr.org) (11, 12). Coverage of the genomes was cal-
culated using BWA, SAMtools, and BEDTools genomecov (13–15). The Methylovorus sp.
MM2 genome is composed of 27 contigs and includes 2,291 coding sequences (CDSs),
1 16S rRNA gene copy, and 46 tRNAs. The genome size is 2.42 Mb, with 46% G�C
content. The genome of Methylobacillus sp. MM3, with 2.95 Mb and 57% G�C content,
is composed of 64 contigs and includes 2,897 CDSs and 3 copies of 16S rRNA genes.
Both genomes had 30-fold coverage.

Both genomes contain pyrroloquinoline quinone methanol dehydrogenases. Methy-
lobacillus sp. MM3 possesses three separate gene clusters for the alternative methanol
dehydrogenase XoxF (16, 17) and no copies of the canonical methanol dehydrogenase-
encoding genes mxaFI. Methylovorus sp. MM2 possesses three copies of xoxF and one
set of the genes mxaFI. All genes encoding the N-methylglutamate pathway for
methylamine utilization (mgdABC, gmaS, and mgsABC) (18, 19) are present only in the
genome of Methylobacillus sp. MM3, in addition to genes that encode dimethylamine
dehydrogenase and trimethylamine dehydrogenase enzymes (dmd and tmd) (20, 21).
The genes for an assimilatory nitrate reductase (nasAB) and the complete denitrification
pathway (narGHI, nirK, nirS, norB, and nosZ) are present in the genome of Methyloba-
cillus sp. MM3, while Methylovorus sp. MM2 possesses only an assimilatory nitrate
reductase (nasAB) and a dissimilatory nitrite reductase (nirBD).

Data availability. These whole-genome shotgun projects have been deposited at

DDBJ/ENA/GenBank under accession numbers LXTQ00000000 for Methylobacillus sp.
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MM3 and LXUF00000000 for Methylovorus sp. MM2. The versions described in this
paper are the first versions. The strains are available from the authors upon request.
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