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Mitogen-activated protein kinase kinase kinase 3 (MEKK3) is an evolutionarily

conserved Ser/Thr protein kinase of the MEKK family that is essential for the

host immune response to pathogen challenges in mammals. However, the

immune function of MEKK3s in lower vertebrate species, especially in bony fish,

remains largely unknown. In this study, a fish MEKK3 (designated CiMEKK3)

gene was cloned and identified from grass carp (Ctenopharyngodon idella).

The present CiMEKK3 cDNA encoded a 620 amino acid polypeptide containing

a conserved S-TKc domain and a typical PB1 domain. Several potential

immune-related transcription factor-binding sites, including activating

protein 1 (AP-1), nuclear factor kappa B (NF-kB) and signal transducer and

activator of downstream transcription 3 (STAT3), were observed in the 5’

upstream DNA sequence of CiMEKK3. A phylogenetic tree showed that

CiMEKK3 exhibits a close evolutionary relationship with MEKK3s from

Cyprinus carpio and Carassius auratus. Quantitative real-time PCR analysis

revealed that CiMEKK3 transcripts were widely distributed in all selected tissues

of healthy grass carp, with a relatively high levels observed in the gill, head

kidney and intestine. Upon in vitro challenge with bacterial pathogens

(Aeromonas hydrophila and Aeromonas veronii) and pathogen-associated

molecular patterns (PAMPs) (lipopolysaccharide (LPS), peptidoglycan (PGN),

L-Ala-g-D-Glu-mDAP (Tri-DAP) and muramyl dipeptide (MDP)), the expression

levels of CiMEKK3 in the intestinal cells of grass carp were shown to be

significantly upregulated in a time-dependent manner. In vivo injection

experiments revealed that CiMEKK3 transcripts were significantly induced by
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MDP challenge in the intestine; however, these effects could be inhibited by the

nutritional dipeptides carnosine and Ala-Gln. Moreover, subcellular localization

analysis and luciferase reporter assays indicated that CiMEKK3 could act as a

cytoplasmic signal-transducing activator involved in the regulation of NF-kB and

MAPK/AP-1 signaling cascades in HEK293T cells. Taken together, these findings

strongly suggest that CiMEKK3 plays vital roles in the intestinal immune response to

bacterial challenges, which will aid in understanding the pathogenesis of

inflammatory bowel disease in bony fish.
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Introduction

Mitogen-activated protein kinases (MAPKs) are a class of

conserved serine and threonine protein kinases that are widely

present in a variety of organisms and can participate in

mediating multiple biological processes in response to

extracellular stimuli and cellular stress (1, 2). MAPKs are

activated through three-tiered kinase cascades: MAP kinase

kinase kinase (MAP3K or MEKK), MAP kinase kinase

(MAP2K or MEK) and MAPK (3, 4). In the MAPK signal

cascade system, MEKKs are first activated by endogenous and

environmental stimuli, which in turn activate downstream dual-

specific MKKs that can further phosphorylate Thr and Tyr

within the motif Thr-Xaa-Tyr of various MAPKs, including

extracellular signal-regulated kinases (ERKs), c-jun N-terminal

or stress-activated protein kinases (JNKs/SAPKs) and p38

MAPK, and finally induce the activation of various

transcription factors that regulate the expression of effector

genes participating in inflammation, apoptosis and

development (4–7).

As the initial kinases of three-tiered kinase cascades, MEKKs

are essential for signal transduction in the MAPK pathway and

mainly consist of MEKK1, MEKK2, MEKK3, MEKK4,

transforming growth factor-b-activating kinase 1 (TAK1),

apoptosis signal-regulating kinase 1 (ASK1), dual leucine

zipper bearing kinase (DLK), and tumor progression locus-2

(Tpl2) (8, 9). Among MEKK family members, MEKK3 has been

shown to be highly conserved among eukaryotes and involved in

the regulation of cell proliferation, the inflammatory response

and tumor development (10–13). In mammals, MEKK3 has

been reported to contain an activation loop (A-loop) domain, a

Phox and Bem1p (PB1) domain and a serine/threonine kinase

catalytic (S-TKc) domain (14). Previously, the A-loop domain

was shown to contain some specific serine/threonine

phosphorylation sites that are responsible for MEKK3

activation and signal transduction (15–18). The PB1 domain is
02
a secondary structure rich in basic amino acids that could be

involved in the transmission of specific intracellular signals in

various signaling pathways by the PB1-PB1 interaction with

other signal proteins (19–21). The S-TKc domain at the C-

terminus of the MEKK3 protein has been shown to be conserved

in MEKK family members and was critical for its activation and

phosphorylation (22).

In mammals, MEKK3s have been shown to act as crucial

regulators of innate immunity against pathogen infections via

the involvement of interleukin-1 receptor (IL-1R) and toll-like

receptor (TLR) -mediated NF-kB, JNK and p38 cascades, which

are essential for inducing the expression of proinflammatory

cytokines (12, 23–25). For example, Huang et al. reported that

MEKK3 played a decisive role in IL-1-induced and LPS-induced

interleukin (IL-6) production by regulating the IKK-NF-kB and

JNK-p38 MAPK pathways in mouse embryonic fibroblast

(MEF) cell lines (23). In MEKK3-deficient fibroblast cells,

MEKK3 is essential for IKK activation and functions

downstream of TNF receptor-associated factor 2 (TRAF2) and

receptor-interacting protein (RIP) in the TNF-induced NF-kB
pathway (24). A study of the macrophage line Raw264.7 showed

that the production of LPS-induced IL-6 and granulocyte-

macrophage colony-stimulating factor (GM-CSF) was

significantly decreased in MEKK3 knockdown cells; however,

this decrease was restored by reintroducing human MEKK3

cDNA (12). Recently, Li and colleagues demonstrated that LPS-

stimulated proinflammatory cytokine (IL-1b, TNF-a and IL-6)

production is significantly regulated by the TAK1-MEKK3 axis

in myeloid cells (25). Using knockdown experiments in BV2

cells, it was found that MEKK3 plays a critical role in the

development of neuroinflammation in Parkinson’s disease by

regulating the NF-kB signaling pathway (26). A recent study in

mice found that overexpression of MEKK3 significantly

activated IRF7 to trigger strong induction of type I IFNs, while

knockdown of MEKK3 in vivo substantially impaired type I IFN

induction and increased susceptibility to HSV-1 infection (27).
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Due to its important immunological function in mammals,

MEKK3 in bony fish has also attracted much attention in recent

years. For example, many MEKK3 genes have been cloned and

identified in a variety of fish species such as Danio rerio,

Cyprinus carpio, Carassius auratus, Pimephales promelas and

Triplophysa tibetana. A recent study of a hybrid snakehead

(Channa maculate ♀ × Channa argus ♂) showed that fish

MEKK3 is involved in the innate immune response to

Nocardia seriolae and Aeromonas schubertii challenges (28).

However, compared with mammals, the immune function of

MEKK3 in fish is st i l l largely unclear. Grass carp

(Ctenopharyngodon idella) is one of the most highly produced

and economically important freshwater fish species in China.

Over the past decades, bacterial enteritis has seriously harmed

the healthy breeding of grass carp and caused serious economic

losses to aquaculture (29–31). Investigation into the intestinal

immune function of C. idella MEKK3, an essential signal

transducer of the innate immune response, might facilitate the

development of disease control and prevention measures. To this

end, a fish MEKK3 (CiMEKK3) gene was identified from C.

idella, and its intestinal expression in response to bacterial

pathogens (Aeromonas hydrophila and Aeromonas veronii)

and PAMPs (lipopolysaccharide (LPS), peptidoglycan (PGN),

L-Ala-g-D-Glu-meso-diaminopimelic acid (Tri-DAP) and

muramyl dipeptide (MDP)) challenges was investigated by

using quantitative real-time PCR (qRT-PCR). In addition,

CiMEKK3 was overexpressed in human embryonic kidney

293T (HEK293T) cells to determine its intracellular

localization characteristics and signal transduction function.

The data from this study may help to illuminate the function

of MEKK3s in the intestinal immunity of bony fish.
Materials and methods

Experimental animals, bacterial challenge
and tissue collection

Healthy C. idella weighing approximately 30 g were obtained

from Hunan Institute of Aquatic Science in Changsha, China,

and acclimatized in 30 L tanks with circulating freshwater at 24 ±

1°C for two weeks prior to experimentation. Eight tissues

including head kidney, spleen, intestine, liver, gill, blood,

muscle and heart were collected from healthy individuals

using sterilized scissors and tweezers for further tissue

distribution analysis. Tissue samples were ground into powder

in liquid nitrogen and stored at -80°C until RNA extraction.

For the in vitro immune challenge experiments, the cultured

primary intestinal cells were challenged with bacterial pathogens

(A. hydrophila and A. veronii) and PAMPs (LPS, PGN, Tri-DAP

and MDP). The experimental protocol was performed

according to our previous study (32). Before the challenge

experiment, the C. idella intestinal cells were grown in 6-well
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culture plates with 2 mL of Dulbecco’s modified Eagle’s medium

(DMEM, Gibco-BRL, USA) containing 10% fetal bovine serum

(FBS, Gibco BRL, USA) per well at 28°C in a humidified

incubator provided with 5% CO2. The two bacterial pathogen

strains (A. hydrophila and A. veronii) were kindly provided by

the Feed Research Institute, Chinese Academy of Agricultural

Sciences (33), and cultured in LB medium at 37°C overnight for

the challenge experiment. The C. idella intestinal cells were

challenged with A. hydrophila (1×107 cfu/mL), A. veronii

(1×107 cfu/mL), Tri-DAP (50 mg/mL; In vivoGen), MDP (50

mg/mL; In vivoGen), LPS (10 mg/mL; Sigma-Aldrich) or PGN

(10 mg/mL; Sigma-Aldrich) and collected at 0, 3, 6, 12 and 24 h

post-challenge. The cells were treated with phosphate-buffered

saline (PBS, pH 7.4) used as a control. All the collected cell

samples were placed in -80°C immediately and used for gene

expression assays.

For the in vivo immune challenge experiments, healthy grass

carp were injected with the bacterial dipeptide MDP and

nutritional dipeptides (carnosine and Ala-Gln) using a 1 mL

syringe. In the first immune challenge experiment, C. idella were

randomly divided into two groups, the MDP challenge group

and the control group, and each group was placed in separate

tanks. The fish in the immune challenge group were injected

with 100 ml MDP (10 mg/mL, In vivoGen, USA). The control

individuals were injected with an equal volume of PBS. After

treatment, the grass carp were returned to the tanks and

intestines of three individuals in each group were randomly

sampled at 0, 3, 6, 12, 24, 48 and 72 h post-injection. In the

second immune challenge experiment, grass carp were randomly

divided into four groups and were injected intraperitoneally with

100 ml of PBS, MDP (10 mg/mL), MDP (10 mg/mL) + carnosine

(5 mmol/L; Sigma-Aldrich) or MDP (10 mg/mL) + Ala-Gln (5

mmol/L; Sigma-Aldrich). Intestines were collected from three

individuals in each tank at 12 and 24 h post-injection for gene

expression level analysis.

All experiments were performed according to the

recommendations of the Guidance of the Care and Use of

Laboratory Animals in China. The research presented in this

manuscript was approved by the Animal Ethics Committee of

Changsha University.
Total RNA isolation and
cDNA synthesis

Total RNA was extracted from the harvested intestinal cells

and adult tissues of grass carp using RNAiso Plus (Takara,

Japan) reagent following the manufacture’s protocol. RNA

concentration was measured using the ratio of UV absorbance

at 260/280 nm in a NanoDrop 2000 spectrophotometer (Thermo

Fisher, USA) and the quality was assessed using 1.5% agarose

electrophoresis. The RNA samples were treated with gDNA

Eraser (TaKaRa, Japan) to eliminate genomic DNA
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contamination. Total RNA from each sample was reverse

transcribed using the PrimeScript™ 1st Strand cDNA

Synthesis Kit (Takara, Japan) and PrimeScript™ RT Reagent

Kit with gDNA Eraser (TaKaRa, Japan) to synthesize the cDNA

template for gene cloning and expression analysis, respectively.

Finally, the cDNA mix was diluted 10-fold and stored at -80°C

for subsequent processing.
Cloning the cDNA sequence
of CiMEKK3

Based on the reported C. carpio MEKK3 sequence from the

GenBank database, gene-specific primers were designed to

amplify the cDNA sequence of CiMEKK3 by reverse

transcription PCR (RT-PCR). PCR amplification was

performed in a total reaction volume of 50 ml containing 1 ml
of cDNA template, 37.75 ml of dH2O, 4 ml of dNTP mixture (2.5

mM each), 5 ml 10×Ex Taq Buffer (Mg2+ plus), 1 ml of each
primer (10 mM) and 0.25 ml of Ex Taq DNA Polymerase

(TaKaRa, Japan). The PCR conditions were as follows: 94°C

for 3 min, 35 cycles of 94°C for 30 s, 57°C for 30 s, 72°C for

2 min, and 72°C for 10 min. The PCR products were separated

using 1.2% agarose gel/TAE electrophoresis and then purified

with a TaKaRa Agarose Gel DNA Purification Kit Ver.2.0

(TaKaRa, Japan). After purification, all of the specific PCR

products were cloned into the pMD19-T vector (TaKaRa,

Japan). The ligation product was transformed into Escherichia

coli DH5a, and three positive colonies were screened and

sequenced on a 3730 Applied Biosystems (ABI) DNA sequencer.
Bioinformatics analysis

The nucleotide and deduced amino acid sequences of the

cloned CiMEKK3 gene were analyzed using the BLAST tool

available from the National Center for Biotechnology

Information (NCBI) (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

The molecular weight and theoretical isoelectric point were

calculated using the pI/Mw tool (https://web.expasy.org/

protparam/). The functional domains were deduced with the

Simple Modular Architecture Research Tool (SMART) website

(http://smart.embl-heidelberg.de/). Potential transcription

factor binding sites (TFBSs) in the promoter region of

CiMEKK3 were predicted using JASPAR (http://jaspardev.

genereg.net/) and AliBaba2 (http://gene-regulation.com/pub/

programs/alibaba2/index.html). The exon-intron arrangement

of CiMEKK3 based on the DNA sequence from grass carp

genome (http://www.ncgr.ac.cn/grasscarp/ ) was determined

using the Spidey tool (http://www.ncbi.nlm.nih.gov/spidey/).

The identity and similarity of amino acid sequences were

calculated with MatGAT2.02 software. The alignment of
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multiple sequences of MEKK3s from different species was

conducted using the MegAlign program with the Clustal W

method, and GeneDoc software was employed to visualize the

results. A neighbor-joining (NJ) phylogenetic tree of MEKK3

was constructed based on the amino acid sequences of MEKK3s

using MEGA 5.0 software, with the bootstrap value set at 1000

replicates. The GenBank accession numbers for the various

MEKK3s are as follows: [Homo sapiens] AAB41729.1, [Papio

anubis] XP_017806347.1, [Aotus nancymaae] XP_021529429.1,

[Cebus imitator] XP_017404666.1, [Mus musculus]

NP_036077.1, [Balaenoptera musculus] XP_036692416.1,

[Danio rerio] XP_688694.2, [Triplophysa tibetana]

KAA0705702.1, [Pimephales promelas] XP_039542275.1,

[Cyprinus carpio] XP_018936269.1, [Carassius auratus]

XP_026062650.1, [Ctenopharyngodon idella] ON082069.
Quantitative real-time PCR
(qRT-PCR) analysis

Quantitative real-time PCR (qRT-PCR) was used to detect

the relative mRNA expression levels of CiMEKK3 with b-actin
as an internal reference gene. Gene specific primers were

designed based on the cDNA sequences of grass carp MEKK3

and b-actin using Primer Premier 5.0 software and are listed in

Table 1. qRT-PCR was performed on a Quant-Studio™ 3 Real-

Time PCR System (Thermo Fisher, USA) in a total volume of 16

ml containing 8 ml of 2 × SYBR Premix Ex Taq II (Tli RNaseH

Plus) (Takara, Japan),1 ml of cDNA template, 0.32 ml of ROX,
0.64 ml of each primer, and 5.4 ml of nuclease-free water. The

qRT-PCR procedure was as follows: 95°C for 5 min, followed by

45 amplification cycles of 10 s at 95°C, 30 s at 58°C, and 72°C for

10 s, and three biological replicates for each group were

conducted. The specificity of each qRT-PCR product was

confirmed by melting curve and agarose gel analysis. The

relative expression levels of CiMEKK3 were normalized to b-
actin expression, and the relative expression values were

calculated using the 2-DDCT method (34).
Plasmid construction

The eukaryotic expression vectors pCMV-N-Flag-CiMEKK3

(CiMEKK3-Flag) and pEGFP-N1-CiMEKK3 (CiMEKK3-GFP)

were constructed for mammalian cell transfections using the

ClonExpress® II One Step Cloning kit (Vazyme, China)

according to the manufacturer’s protocol. The expression

plasmids CiMKK4-Flag, CiMKK6-Flag and CiMKK7-Flag were

constructed for our previous studies (35, 36). The primer pairs

(Table 1) were designed for amplification of the complete open

reading frame (ORF) encoding the polypeptide of CiMEKK3. The

ORF of CiMEKK3 was cloned into the BamH I/Hind III site of
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pCMV-N-Flag and Xho I/BamH I site of pEGFP-N1 to generate the

plasmids CiMEKK3-Flag and CiMEKK3-GFP, respectively, and

then transformed into E. coli, DH5a (TaKaRa, Japan). The

colonies were screened on LB plates containing kanamycin at 37°

C and sequenced for further verification. All transfection plasmids

were prepared from overnight bacterial cultures using the HiPure

Plasmid EF Mini Kit (Magen, China) according to the

manufacturer’s instructions.
Cell culture and transfection

Human embryonic kidney 293T (HEK293T) cells were

cultured with DMEM (Gibco-BRL, USA) containing 10% FBS

(Gibco BRL, USA) and antibiotics (100 mg/L streptomycin and

105 U/L penicillin, Gibco) at 37°C in a 5% CO2 atmosphere. For

plasmid-liposome transfection, cells were seeded overnight and

grown to 80–90% confluence at the time of transfection. Then,

plasmids were transfected into the cells using Lipofectamine 2000

(Invitrogen, USA) according to the manufacturer′s instructions.
Subcellular localization

To investigate the subcellular localization of CiMEKK3, 1

mg/well of the recombinant plasmid CiMEKK3-GFP or empty

plasmid pEGFP-N1 (control) was transfected into HEK293T

cells. Prior to transfection, the cells were seeded on sterile

coverslips at 1 × 105 cells/well in 6-well plates for overnight

growth. Then the cells were transfected using Lipofectamine

2000 with a 2:1 ratio of transfection reagent to endo-free

plasmids in serum-free culture medium. At 48 h post-
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paraformaldehyde, washed with PBS and stained with DAPI to

distinguish localization between the cytoplasm and nuclei. The

subcellular localization results were observed under a

fluorescence microscope.
Dual-luciferase reporter gene assay

For the dual-luciferase reporter assays, cells were transiently

cotransfected with luciferase reporter vectors NF-kB-Luc
(Promega, USA)/AP-1-Luc (Promega, USA), pRL-TK

(Promega, USA) (20 ng/well), and expression plasmids

CiMEKK3-Flag/CiMKK4-Flag/CiMKK6-Flag/CiMKK7-Flag

using Lipofectamine 2000 (Invitrogen, USA). The pRL-TK

plasmid was used as the internal control and the plasmid

pCMV-N-Flag was used as the negative control. Each

experiment was performed in triplicate under similar

conditions to obtain biological replicates. After the cells were

transfected for 48 h, the firefly and Renilla luciferase activities

were measured using a dual-Luciferase reporter assay system

(Promega, USA) following the manufacturer’s instructions. The

relative luciferase activity is presented as the ratio of firefly

luciferase to renilla luciferase.
Statistical analysis

All the data derived from luciferase assays and qRT-PCR

were subjected to one-way analysis of variance (ANOVA)

followed by LSD or Duncan’s post-hoc test to determine

significant differences among the treatments. The results are
TABLE 1 Sequences of designed primers used in this study.

Primer Sequence (5’ to 3’) Comment

CiMEKK3-F1 ACTTCAATCAATAGCACTCAC CDS Cloning

CiMEKK3-R1 TCCAGGCAACAGCTGATTGGGT

CiMEKK3-F2 CTGCGTGAACAGGGCGACTTG Real-Time PCR

CiMEKK3-R2 GGAGGGGAGGCATTGCTTTGT

Cib-actin-F CTTGACTTCGAGCAGGAG Real-Time PCR

Cib-actin-R GGCATACAGGTCTTTACGG

CiMEKK3-F3 GATAAGAGCCCGGGCGGATCCATGAATGAGAGACAG CiMEKK3-Flag

CiMEKK3-R3 ATCGAATTCCTGCAGAAGCTTTCAGCACAAGATCTG

CiMKK4-F GATAAGAGCCCGGGCGGATCCATGGCGACGTCCAGC CiMKK4-Flag

CiMKK4-R ATCGAATTCCTGCAGAAGCTTTCAGTCCACGTACAT

CiMKK6-F GATAAGAGCCCGGGCGGATCCATGGAAGGAGGGAG CiMKK6-Flag

CiMKK6-R ATCGAATTCCTGCAGAAGCTTTCAGTCCCCAAGGAT

CiMKK7-F GATAAGAGCCCGGGCGGATCCATGTCGTCGCTGGAG CiMKK7-Flag

CiMKK7-R ATCGAATTCCTGCAGAAGCTTCTACCTGCTGAAGAG

CiMEKK3-F4 CTACCGGACTCAGATCTCGAGATGAATGAGAGACAG CiMEKK3-GFP

CiMEKK3-R4 ATGGTGGCGACCGGTGGATCCCGGCACAAGATCTGAG
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shown as the means ± standard error of measurement (SEM).

Differences were considered statistically significant at P < 0.05

and extremely significant at P < 0.01.
Results

cDNA cloning and sequence analysis
of CiMEKK3

The cDNA sequence of CiMEKK3 was obtained with RT-

PCR and submitted to the GenBank database (No. ON082069).

The CiMEKK3 cDNA was 2055 bp in length, which included a

5′-untranslated region (UTR) of 36 bp, a 3′-UTR of 156 bp, and

an ORF of 1863 bp encoding a 620 amino acid residue

(Figure 1A). The predicted molecular weight of CiMEKK3 was

70.17 kDa, and the theoretical pI was 9.15. Similar to other

orthologs, several phosphorylation sites such as Thr294, Thr516,

Ser520 and Ser526 were observed in the amino acid residue of

CiMEKK3 (Figure 1A). Structural analysis based on the SMART

program revealed that MEKK3 contained two conserved

domains, including a PB1 domain (positions 47–126 aa) and a

typical S_TKc domain (positions 356–616 aa), with the typical

features of MEKK3 family proteins (Figure 1B). The genomic

organization of CiMEKK3 was analyzed by comparing the

genomic DNA and cDNA sequences. As shown in Figure 2A,

the DNA sequence of CiMEKK3 possesses a multiexonic gene

structure containing sixteen exons separated by fifteen introns,

and its mature mRNA sequence was generated by appropriate

splicing. Using the JASPAR and AliBaba2 programs, several

transcription factor-binding sites, including three nuclear factor

kappa B (NF-kB) sites, three activating protein 1 (AP-1) sites,

one octamer-binding transcription factor 1 (Oct-1) site, one

cAMP response element-binding protein (CREB) site, two signal

transducer and activator of downstream transcription 3

(STAT3) sites, one specificity protein 1 (SP1) site and a

GATA-binding factor 1 (GATA-1) site were found in the 5’-

upstream DNA sequence of CiMEKK3 (Figure 2B).
Multiple sequence alignment and
phylogenetic analysis

Multiple sequence alignment illustrated that the amino acid

sequence and functional domains were conserved in vertebrate

MEKK3 counterparts and that all contained a typical S-TKc

domain and a PB1 domain (Figure 3A). A MatGAT2.01

analysis was conducted to generate a measure of similarity and

identity for the CiMEKK3 protein with other homologs. The

deduced amino acid sequence of CiMEKK3 shared 76.5–98.1%

identity (I) and 86.9–99.0% similarity (S) with MEKK3 sequences
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from other vertebrate species. Among all the selected MEKK3

sequences, CiMEKK3 was closest to that of Cyprinus carpio

(98.1% I, 99.0% S), followed by that of Pimephales promelas

(97.7% I, 98.7% S) (Figure 3B). To investigate the evolutionary

relationships of MEKK3s, a phylogenetic tree was constructed

using the MEKK3 sequences of twelve representative vertebrate

species. Overall, the relationships displayed in the cladogram

generally agree with those of traditional taxonomy. The

MEKK3s from mammals and fish were clustered separately into

two branches, and CiMEKK3 was embedded within the fish

cluster. In addition, CiMEKK3 exhibited a close evolutionary

relationship with MEKK3s from Cyprinus carpio and Carassius

auratus (Figure 4).
Tissue expression pattern and subcellular
localization of CiMEKK3

The qRT-PCR analysis was employed to determine the tissue

expression profiles of CiMEKK3 in healthy grass carp.

CiMEKK3 was ubiquitously expressed in all eight examined

organs (intestine, liver, blood, muscle, heart, gill, head kidney

and spleen), with the highest expression levels in the gill,

followed by the head kidney and intestine, and relatively low

expression levels in the liver (Figure 5). To obtain the subcellular

localization characteristics of CiMEKK3, HEK293T cells were

transfected with plasmid pEGFP-N1 or CiMEKK3-GFP using

Lipofectamine 2000. Based on the results obtained from

fluorescence microscope, CiMEKK3 was distributed mainly in

the cytoplasm while the control protein was dispersed

throughout the cytoplasm and the nuclear areas, suggesting

that the CiMEKK3 protein may be a cytoplasm-localized

protein in HEK293T cells (Figure 6).
Time-dependent expression of CiMEKK3
in intestinal cells in response to
pathogen challenge

The transcriptional responses of CiMEKK3 were monitored

in intestinal cells after stimulation with A. hydrophila and A.

veronii. The qRT-PCR results showed that CiMEKK3 exhibited a

strong and elevated response to A. hydrophila and A. veronii

infection, and its expression levels in intestinal cells were

significantly regulated by these two bacterial pathogen

challenges (Figure 7). When challenged with A. hydrophila, the

mRNA levels of intestinal CiMEKK3 were upregulated at 3 h post-

stimulation (P < 0.01), reaching a peak value at 6 h post-

stimulation (P < 0.01), and then returning to control levels at

24 h post-stimulation (Figure 7A). Upon infection with A. veronii,

CiMEKK3 transcripts in intestinal cells did not significantly
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B

A

FIGURE 1

The cDNA sequence and deduced amino acid sequences of CiMEKK3. (A) Nucleotides and amino acids are numbered on the left of the
sequences. The start codon (ATG) and stop codon (TGA) are shown in red font. The ORF sequence of CiMEKK3 is indicated in uppercase letters,
while the 5′- and 3′-UTR sequences are shown in lowercase. The PB1 domain and S_TKc domain are marked by gray shading and blue
underline, respectively. The predicted phosphorylation sites are shown by yellow shading. (B) Functional domains of CiMEKK3 were predicted
using the SMART tool.
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increase until 6 h post-stimulation (P < 0.01), reached the highest

level at 12 h post-stimulation (P < 0.01), and then sharply

decreased to the original level at 24 h post-stimulation (Figure 7B).
Time-dependent expression of
CiMEKK3 in intestinal cells in response to
PAMP challenge

To further investigate the immune function of CiMEKK3 in

intestinal cells in vitro, the expression levels of CiMEKK3 were

detected after stimulation with typical bacterial PAMPs (MDP,

Tri-DAP, PGN and LPS) via qRT-PCR (Figure 8). In the first 3 h

of the immune challenge, CiMEKK3 expression only

significantly increased in the LPS group compared with that of

the PBS control (P < 0.05) (Figure 8A). After 6 h of stimulation,

the transcript levels of CiMEKK3 were shown to be significantly

induced by MDP, Tri-DAP and LPS (P < 0.05) (Figure 8B).

Interestingly, all selected bacterial PAMPs (MDP, Tri-DAP,

PGN and LPS) significantly upregulated the expression levels

of CiMEKK3 at 12 h post-stimulation (P < 0.05) (Figure 8C).

Upon 24 h of PAMP challenge, CiMEKK3 expression was

maintained at a relatively high level in the LPS and PGN

groups (P < 0.05) but returned to control levels in the MDP

and Tri-DAP groups (P > 0.05) (Figure 8D).
Time-dependent expression of
CiMEKK3 in intestines in response
to MDP challenge

The time-course expression levels of the CiMEKK3

transcripts were detected in the MDP-injected intestines of

grass carp in vivo. As shown in Figure 9A, the relative
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expression of CiMEKK3 mRNA was significantly increased at

3 h, 6 h, 12 h, 24 h and 48 h post-injection (P < 0.05) and sharply

decreased at 72 h post-injection (P > 0.05) in comparison with

the control group. Additionally, a nutritional dipeptide

(carnosine or Ala-Gln) and MDP were coinjected into grass

carp to study the regulatory mechanism underlying the bacterial

MDP-induced expression of CiMEKK3 in intestine. The results

from Figure 9B show that the inductive effect of MDP on

CiMEKK3 expression was significantly inhibited by carnosine

or Ala-Gln treatment in the intestine of grass carp. These data

may imply that the nutritional dipeptides carnosine and Ala-Gln

may act as effective regulators to alleviate the bacterial MDP-

mediated intestinal inflammatory response.
Effects of CiMEKK3 overexpression on
the NF-kB and AP-1 signaling pathways

Dual-luciferase reporter assays were performed to determine

the possible role of CiMEKK3 in the NF-kB and AP-1 signaling

pathways. The NF-kB and AP-1 luciferase reporter were

significantly activated by overexpression of CiMEKK3 in a dose-

dependent manner in HEK293T cells (Figure 10A, B). In particular,

it was found that the activating effects of CiMEKK3 overexpression

on the AP-1 pathway were stronger than those on NF-kB signaling.

Additionally, the luciferase reporter results showed that the

activation effects on the AP-1 luciferase reporter of cells

cotransfected CiMEKK3-Flag with CiMKK4-Flag, CiMKK6-Flag

or CiMKK7-Flag were significantly higher than those of cells

transfected with CiMEKK3 or CiMKKs alone (Figure 10C),

suggesting that CiMEKK3 could enhance the downstream MKK-

induced activation of the AP-1 signaling pathway. Collectively, the

present results clearly indicate that CiMEKK3 might serve as an

effective activator of the NF-kB and AP-1 signaling pathways.
B

A

FIGURE 2

Genomic organization and 5′ flanking regions of CiMEKK3. (A) The intron-exon organization of CiMEKK3. Exons and introns are indicated by
black boxes and black lines with the corresponding sizes (bp), respectively. (B) Transcription factor binding sites in the 5′ flanking regions (~1.5
kb) of CiMEKK3. The predicted binding sites are shown by different colors of ellipses, triangles, arrows or rectangles.
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Discussion

In vertebrates, MEKKs are essential signaling molecules of

the NF-kB and MAPK pathways which play important

regulatory roles in the immune response to pathogenic

challenges (37, 38). To date, several MEKK family members

have been identified from fish such as TAK1 in Oncorhynchus
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mykiss (39), Paralichthys olivaceus (40) and Megalobrama

amblycephala (41), c-Raf in Epinephelus coioides (42) and

Oreochromis niloticus (43), and MAP3K4 in C. idella (32).

However, information regarding MEKK homologs in bony fish

remains limited. In the present study, a member of the fish

MEKK family, CiMEKK3, was cloned from C. idella using RT-

PCR technology. Similar to other reported MEKK3 proteins, the
B

A

FIGURE 3

Multiple alignment of CiMEKK3 with other reported MEKK3 from GenBank database. (A) Identical amino acids are shaded in black and similar
amino acids are shaded in gray. The conserved PB1 domain and S_TKc domain are indicated by the red box and blue box, respectively. (B) The
similarities (red) and identities (green) of amino acid sequences were analyzed using MatGAT2.02 software.
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present CiMEKK3 contains a conserved S-TKc domain and PB1

domain, which were shown to be essential for its activation and

interaction with other signaling molecules in the MAPK

pathway (19–22). In addition, the kinase catalytic domain of

CiMEKK3 contains several phosphorylation sites (Thr294,
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Thr516, Ser520 and Ser526), which were observed in MEKK3s

from mammals. Previous studies have demonstrated that the

phosphorylation of specific Ser/Thr sites directly affects MEKK3

activation and its function in intracellular signal transduction

under physiological and pathological conditions (15–18). These
FIGURE 4

Phylogenetic tree of MEKK3 proteins from representative vertebrate species. The tree was constructed with the maximum likelihood method in
MEGA 5.0 software with 1000 bootstrap replications. The bar (0.02) indicates the genetic distance. CiMEKK3 is shown by a black triangle.
FIGURE 5

Relative expression levels of CiMEKK3 in various tissues of healthy grass carp. Each bar represents the mean of the normalized expression levels
of the replicates (N = 3). Bars marked with different letters indicate significant differences among different tissues (P < 0.05).
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findings suggested that MEKK3s may possess similar

phosphorylation mechanisms and signal transduction

functions in mammals and fish. Based on the analysis of the

5′-upstream DNA sequence, several potential immune-related

transcription factor-binding sites including NF-kB, AP-1, CREB
and STAT3 were observed in the promoter region of CiMEKK3,

suggesting that it may be involved in immune-related processes

in grass carp. Multiple sequence alignment analysis showed that

CiMEKK3 shares higher identity and similarity with other fish

MEKK3s than with the reported mammalian homologs. A

phylogenetic tree based on the amino acid sequences of

MEKK3s revealed that CiMEKK3 shares a close relationship

with C. carpio and C. auratus MEKK3. These results indicated

that CiMEKK3 is a novel member of the fish MEKK3 family.

Previous studies have reported that MEKK3 is ubiquitously

expressed in various tissues and cell types in mammals (12, 14,

25, 44). Recently, fish MEKK3 has been shown to be

constitutively expressed in all tissues of healthy hybrid

snakehead, including the liver, spleen, head kidney, trunk

kidney, skin, gill, muscle, intestine, heart, brain, and blood

(28). Similarly, the broad expression patterns of other MEKK

family members including TAK1 (39, 40) and MEKK4 (32) have

also been observed in fish. In our study, tissue expression

analysis revealed that CiMEKK3 is broadly expressed in all

selected tissues of healthy grass carp, consistent with the

tissue-expression profile of other reported MEKK3s, suggesting

the potential roles of CiMEKK3 in various biological processes.

In bony fish, the head kidney and intestine are important

immune-related tissues that are essential for host defense

responses to immune challenges (29, 45). It is well known that

fish gills are in direct contact with the aquatic environment,
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which serves as the first line of immune defense against various

pathogen infections (46). Our qRT-PCR results show that

CiMEKK3 displays relatively higher expression levels in the

gill, head kidney and intestine, indicating that CiMEKK3 may

play potential roles in the innate immunity of grass carp. To

further explore the distribution and function of CiMEKK3, the

subcellular localization of the CiMEKK3 protein was examined

using a fluorescence microscope. The results reveal that

CiMEKK3 is distributed mainly in the cytoplasm, suggesting

that MEKK3 may act as a cytoplasmic localized protein involved

in the signal transduction process of the MAPK pathway. Similar

results have been observed in hybrid snakehead MEKK3 where

CcMEKK3 is exclusively distributed in the cytoplasm of

HEK293T cells (28). Moreover, it was noted that other fish

MEKK family members, including TAK1 (47), c-Raf (42) and

MEKK4 (32), also exist in the cytoplasm of the cells, implying

that MEKKs may be mainly involved in biological events in

the cytoplasm.

Bacterial enteritis is one of the most frequent and serious

infectious diseases that occurs in the intensive cultivation of

grass carp (29–31). However, the exact pathogenesis of bacterial

enteritis is still not well understood. Similar to other bony fish,

innate immunity has been considered a first line of host defense

against invading pathogens in the intestines of grass carp (48).

Over the past decades, several immune-related signaling

pathways, including TLRs (49), IL-1R (50), NF-kB (51) and

MAPK/AP-1 (52), have been identified in grass carp and proven

to play important roles in the inflammatory response during

pathogen infection. In mammals, MEKK3 was shown to act as

an essential signal transducer of TLR- and IL-1R-mediated NF-

kB, JNK and p38 cascades in response to immune challenge (23).
FIGURE 6

Subcellular localization of CiMEKK3 in HEK293T cells. HEK293T cells were transfected with pEGFP-N1 (upper row) or CiMEKK3-GFP (lower row).
At 48 h post-transfection, the cells were fixed with 4% paraformaldehyde, stained with 4′,6-diamidino-2-phenylindole (DAPI), and then
observed with fluorescence microscopy.
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MEKK3 was reported to be involved in regulating the LPS-

induced production of proinflammatory cytokines in myeloid

cells (25). Recently, a study of fish MEKK3 revealed its potential

role in the immune response to pathogens and PAMPs challenge

in the hybrid snakehead (28). To determine whether fish

MEKK3 is involved in bacterial-induced intest inal

inflammation, the expression levels of CiMEKK3 were detected

in response to typical aquatic pathogens (A. hydrophila and A.

veronii) in intestinal cells of grass carp. Our results show that the
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transcript levels of CiMEKK3 in intestinal cells are significantly

induced by A. hydrophila and A. veronii challenges, suggesting

that gram-negative bacterial strains can activate the intestinal

MEKK3 pathway in grass carp. To gain more clues about the

function of CiMEKK3 in intestinal immune responses, we

further analyzed the expression profile of CiMEKK3 after

stimulation with LPS and PGN, the important components of

gram-negative and gram-positive bacteria, in intestinal cells at

different time points. The qRT-PCR data indicated that
B

A

FIGURE 7

Temporal expression profiles of CiMEKK3 mRNA in intestinal cells after challenge with A. hydrophila (A) or A veronii (B). Each bar represents the
mean of the normalized expression levels of replicates (N = 3). Significant differences between the challenge group and the control group are
indicated with an asterisk (** represents P < 0.01).
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CiMEKK3 transcripts have a strong responsiveness to LPS and

PGN challenges, further implying its potential role in intestinal

defense against bacterial infections.

In recent years, much progress has been made with regard to

the pathogenesis of bacterial-induced intestinal inflammation in

mammals (53). Recent research has found that products of

bacterial cell-wall PGN, including MDP and Tri-DAP, could

be transported by peptide transporter 1 (PepT1) in epithelial

cells of the small intestine, then recognized by the intracellular

NBS-LRR proteins (NOD1 and NOD2) and finally result in the

transcription of proinflammatory genes to initiate intestinal

inflammation through a series of signaling events (54, 55). A

large number of studies have shown that bacterial peptide MDP-

and Tri-DAP-mediated PepT1/NOD signaling pathways are

essential for the intestinal inflammatory response in mammals

(56, 57). However, whether MDP and Tri-DAP can induce the

intestinal inflammation and their related immune signaling

pathways remains poorly understood in bony fish. Over the

past few years, our laboratory has conducted work on bacterial

peptide-mediated intestinal inflammation in grass carp. Our
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previous studies showed that the bacterial peptides MDP and

Tri-DAP could induce intestinal inflammation and that MAPK

pathways participated in the regulation of the intestinal immune

response to bacterial peptide challenges in C. idella (52, 58). To

better understand the regulatory mechanism of bacterial

peptide-induced intestinal inflammation, the expression profile

of CiMEKK3 was analyzed after challenge with MDP and Tri-

DAP in the intestine of grass carp. The in vitro experiment

showed that CiMEKK3 transcript levels in the intestine were

significantly increased in a time-dependent manner upon MDP

and Tri-DAP challenge. Moreover, we found that the intestinal

expression levels of CiMEKK3 induced by MDP challenge could

be blocked by the nutritional peptides carnosine and Ala-Gln.

Previously, it was reported that PepT1 ligand Lys-Pro-Val

(KPV) could inhibit NF-кB signaling and decrease the

production of proinflammatory cytokines in Caco2-BBE and

Jurkat cells (59). These findings suggested that carnosine and

Ala-Gln may exert an anti-inflammatory role similar to that of

KPV, which may be useful for the future treatment of

intestinal inflammation.
B

C D

A

FIGURE 8

Temporal expression profiles of CiMEKK3 mRNA in intestinal cells at 3 h (A), 6 h (B), 12 h (C) and 24 h (D) post-challenge with MDP, Tri-DAP,
PGN or LPS. Data are shown as the mean ± standard error of three individual fish (N = 3). Significant differences between the challenge group
and the control group are indicated with different letters (P < 0.05).
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B

A

FIGURE 9

Temporal expression profiles of CiMEKK3 mRNA in the intestine after injection with MDP (A) or MDP + carnosine/Ala-Gln (B). Comparative
analysis and statistical tests were performed on the challenge groups and PBS group at the same time point. Each bar represents the mean of
the normalized expression levels of replicates (N = 3). Significant differences are indicated with an asterisk (** represents P < 0.01) or different
letters (P < 0.05).
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Nuclear factor-kB (NF-kB) is a group of immune-related

transcription factors that play a predominant role in regulating

the expression of various immune effectors, including

proinflammatory cytokines, antimicrobial peptides and

chemokines (60). MEKK3 has been previously shown to

participate in the NF-kB signal transduction pathway (23, 24,

26). For example, MEKK3 has been shown to be essential for

TNF-induced NF-kB activation in fibroblast cells (24).

Additionally, Sun et al. reported that MEKK3 is a central

intermediate signaling component in lysophosphatidic acid

(LPA) -induced activation of NF-kB. In ovarian epithelial
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cells, overexpression of MEKK3 has been proven to increase

NF-kB activity and the expression of Bcl-2, Bcl-xL and survivin

(61). In addition to the NF-kB pathway, MEKK3 is involved in

the regulation of MAPK/AP-1 signaling activation (62).

Reportedly, MEKK3 is involved in TNFa, IL-1b, and TLR-

induced MAPK activation in vivo and in vitro (23). To

determine whether fish MEKK3 could activate the NF-kB and

AP-1 signaling pathways, CiMEKK3 expression plasmids were

cotransfected with the AP-1 or NF-kB luciferase reporter genes

into HEK293T cells. Our dual-luciferase reporter assays revealed

that overexpression of CiMEKK3 alone could significantly
B

C

A

FIGURE 10

Effects of CiMEKK3 overexpression on the activity of the AP-1 and NF-kB pathways. The CiMEKK3-Flag (0, 300 and 600 ng/well) was cotransfected with
100 ng/well AP-1-Luc (A) or NF-kB-Luc (B) into HEK293T cells. (C) CiMEKK3-Flag (300 ng/well) was cotransfected with 100 ng/well AP-1-Luc, 300 ng/
well CiMKK4-Flag, CiMKK6-Flag or CiMKK7-Flag into HEK293T cells. Each bar represents the mean (three replicates) ± standard deviation. Firefly and
Renilla luciferase activities were detected in cell lysates 48 h after transfection. Data are the fold changes relative to the empty vector transfected cells.
Significant differences are indicated with different letters (P < 0.05).
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induce the activation of the AP-1 and NF-kB luciferase reporter,

which was similar to the results observed in MEKK3 of hybrid

snakehead (28). These results suggest that fish MEKK3 may also

act as a positive regulator of the NF-kB and AP-1 signaling

pathways. Moreover, our results showed that CiMEKK3 may

enhance the CiMKK4-, CiMKK6- and CiMKK7-induced

activation of the AP-1 luciferase reporter. MKK6 and MKK7

specifically phosphorylate and activate p38 and JNK,

respectively, while MKK4 can act as an activator of both the

p38 and JNK pathways (63, 64). These findings may suggest that

CiMEKK3 regulates the activity of the p38- and JNK-induced

AP-1 signaling pathways by interacting with downstream

MKKs. Combined with the gene expression profile during

immune challenge, it is speculated that CiMEKK3 may act as

an important signal transducer of the NF-kB, JNK and p38

MAPK cascades involved in the intestinal immune response of

grass carp. However, more experimental evidence is needed to

support this speculation.

In conclusion, a functional fish MEKK3 gene (CiMEKK3)

was identified and characterized in grass carp, which contained

the typical characteristic features of the MEKK3 family. Tissue-

specific expression analysis showed that CiMEKK3 mRNA was

highly expressed in immune-related tissues of C. idella. The

intestinal expression levels of CiMEKK3 mRNA were

significantly upregulated after challenge with bacterial

pathogens (A. hydrophila and A. veronii) and PAMPs (MDP,

Tri-DAP, PGN and LPS). Moreover, overexpression analysis

revealed that CiMEKK3 acted as an intracellular signaling

molecule involved in the regulation of the NF-kB and AP-1

pathways in HEK293T cells. These results suggested that

CiMEKK3 plays essential roles in the intestinal immune

response to bacterial challenges, which may provide new

insights into the intestinal immunity of bony fish.
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