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Abstract

In discrete tomography, a scanned object is assumed to consist of only a few different materials. This prior knowledge can
be effectively exploited by a specialized discrete reconstruction algorithm such as the Discrete Algebraic Reconstruction
Technique (DART), which is capable of providing more accurate reconstructions from limited data compared to
conventional reconstruction algorithms. However, like most iterative reconstruction algorithms, DART suffers from long
computation times. To increase the computational efficiency as well as the reconstruction quality of DART, a multiresolution
version of DART (MDART) is proposed, in which the reconstruction starts on a coarse grid with big pixel (voxel) size. The
resulting reconstruction is then resampled on a finer grid and used as an initial point for a subsequent DART reconstruction.
This process continues until the target pixel size is reached. Experiments show that MDART can provide a significant speed-
up, reduce missing wedge artefacts and improve feature reconstruction in the object compared with DART within the same
time, making its use with large datasets more feasible.
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Introduction

Computed tomography (CT) is a non-invasive imaging tech-

nique which is based on reconstruction of an object from a series

of projection images. CT has applications on all scales, ranging

from 3D imaging of nanomaterials by electron microscopy to the

reconstruction of electron-density maps of the solar corona [2,3].

In many of these applications, it is highly desirable to reduce the

number of projections taken. In materials science, for example,

reducing the number of acquired projections leads to faster

imaging which allows to increase the time resolution to study the

evolution of structural changes in materials induced by stress or

temperature [4]. In electron tomography, the number of

projections is kept low either to limit the acquisition time or

because the electron beam may damage the sample [5].

Unfortunately, a low number of acquired projections leads to

artefacts in the image reconstruction. Indeed, analytical recon-

struction algorithms, such as Filtered Back Projection (FBP) [6],

require a large number of projections acquired from a full angular

range to obtain reconstructions of acceptable quality. Iterative

reconstruction algorithms, such as the Simultaneous Iterative

Reconstruction Technique (SIRT) [7], allow to incorporate prior

knowledge about the object into the reconstruction such that high

quality reconstructions can be obtained from even a low number

of projections. Various forms of prior knowledge about the object

can be employed. Sparsity of image derivative magnitude is used

in a total-variation (TV) minimization algorithm to address few-

view, limited-angle and bad-bin reconstruction problems [8].

Alternatively, information about the edges of the object is shown to

improve the reconstruction quality in case of limited data

problems [9]. Finally, prior knowledge about the number of

materials has also been shown to yield accurate reconstructions

from a small number of projections, which is the domain of

discrete tomography [10].

Recently, a practical algorithm for discrete tomography, the

Discrete Algebraic Reconstruction Technique (DART), was

introduced, which is able to produce high quality reconstructions,

even for large datasets [1]. Meanwhile, DART or variations of

DART [11–14] have been successfully applied in electron

tomography [2,15], micro-CT [16,17] and magnetic resonance

imaging (MRI) [18]. However, being an iterative reconstruction

algorithm, DART suffers from long computation times, which

limits its use for in applications where computation time is

important.

To decrease computation time or, alternatively, improve

reconstruction quality achieved in a certain computation time, a

new approach is proposed in which the available projection data is

first reconstructed using DART on a coarse grid. The obtained

reconstruction is then resampled on a grid with smaller pixels and

used as a starting point for a subsequent DART reconstruction.

This process is iteratively repeated until the target pixel size is

reached. The proposed approach can extend the area of
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applicability of DART, allowing its application to large experi-

mental datasets.

Motivation and approach

We will now briefly outline the basic concepts of the DART

algorithm [1], after which the extension to MDART is described.

A flow chart of DART is shown in Fig. 1. The algorithm starts

by calculating an initial reconstruction using an algebraic

reconstruction method (ARM). This reconstruction is then

segmented. Usually, only the pixels close to the object boundary

can be misclassified whereas the confidence in the classification of

the interior of the object and background pixels located far from

the object boundary is high. Therefore all pixels are assigned to

either fixed (F ) or non-fixed (U ) pixel sets. The non-fixed pixel set

U contains all boundary pixels, i. e. pixels having at least one

adjacent pixel with a different grey level. A randomly chosen

fraction of non-boundary pixels is also added to the set of non-

fixed pixels to allow the formation of new boundaries. The

remaining pixels form the fixed pixel set F . Next, several ARM

iterations are performed for the non-fixed pixels while keeping the

values in the fixed pixels unchanged. After that, a termination

criterion is checked (examples of termination criteria are given

later in this Section). If the criterion is not met, the entire

reconstruction is smoothed, finishing one DART iteration. The

process is iteratively repeated until a specified convergence

criterion is met.

Any iterative reconstruction algorithm can be used as the ARM.

Throughout the paper, SIRT [7] is used as the ARM, which is

formulated as follows. Let W[Rm | n be a projection matrix and

let p[Rm denote a measured projection data. Denoting an

unknown image with x[Rn, we can formulate the reconstruction

problem as

Wx~p: ð1Þ

The update expression for SIRT is given by [7]

xtz1~xtzCWT R p{Wxtð Þ, ð2Þ

where C[Rn | n and R[Rm | m are diagonal matrices with

cjj~1=
P

i wij and rii~1=
P

j wij .

While DART has shown its efficacy in reconstruction of micro-

CT [17] and electron tomography [2,15] datasets, in some cases

DART can suffer from slow convergence, leading to long

computation times required to find a practically acceptable

reconstruction. Figure 2B illustrates one of such cases, where

DART is capable of providing an accurate reconstruction only

after a long iteration process. For the same phantom, Segmented

SIRT (SSIRT) converges rapidly, though yielding a reconstruction

of a poor quality (Fig. 2) (the definition of the relative number of
misclassified pixels (RNMP) and a detailed description of the

experimental conditions are given in the following section). Such

behaviour of DART is explained by a highly inaccurate initial

ARM reconstruction. Being calculated from only a few projec-

tions, the initial reconstruction often contains strong artefacts

which then require many DART iterations in order to reduce

these artefacts. Note that although the initial reconstruction has a

certain influence on the convergence of DART, it does not

determine the resulting reconstruction completely. Therefore,

improving the initial reconstruction will lead to faster convergence

and smaller computation time or to more accurate reconstructions

after a fixed computation time.

In [15], applying masking during the computation of the initial

SIRT reconstruction significantly reduced the missing wedge

artefacts in the initial reconstruction and allowed to improve the

resulting DART reconstruction. This improvement was attributed

to a better estimation of grey values used in DART as those grey

values were calculated from the initial reconstruction. While

inaccurate grey values may indeed result in inferior quality of the

DART reconstructions, even correct grey values do not guarantee

fast and accurate reconstructions simultaneously (Fig. 2).

The idea of the proposed multiresolution approach (MDART) is

to first start a DART reconstruction on a coarse reconstruction

grid and then use the resampled resulting reconstruction as a

starting point for a subsequent reconstruction on a finer grid

(Fig. 3). The use of coarser grids makes the reconstruction problem

less ill-posed as the number of unknowns decreases and the

number of equations remains the same. This allows to compute a

good estimation of the object and then improve it on finer grids to

reveal finer structures which cannot be reconstructed on the initial

coarse grid.

Since DART, and hence MDART, is a heuristic algorithm,

there is no formal definition of the conditions which guarantee the

convergence of the reconstruction process. The following termi-

nation criteria can be used in practice:

N a certain number of iterations are performed;

N the relative number of modified pixels is smaller than a given

threshold. If only a few pixels change their values during the

iteration, the object is mainly reconstructed;

N the difference in the projection distance (Eq. (3)) between the

reconstructions after two consecutive iterations is smaller than

a given threshold. This means that the reconstruction stops

improving.

Figure 1. Flow chart of DART [1].
doi:10.1371/journal.pone.0106090.g001
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The projection distance for a reconstruction x�[Rn is defined as

D x�ð Þ~ Wx�{pk k2: ð3Þ

In our experiments, the modified projection distance criterion

was used: iterations were stopped if the criterion held for three

consecutive iterations.

Let MDART q denote the multiresolution DART algorithm

which operates on q reconstruction grids or, alternatively,

performs q{1 switchings to a finer reconstruction grid, in which

the pixel size is halved. This algorithm starts from the pixel size

which is 2q{1 times bigger than the target pixel size. Note that

MDART 1 is identical to the conventional DART. Figure 4

illustrates these concepts showing the reconstruction grids and the

projection geometry for MDART 2.

Experiments

Noiseless simulations
A number of simulation experiments were run using phantom

images to demonstrate the proposed approach. In all simulation

experiments, the size of the phantoms was 4096|4096 pixels

while reconstructions were performed on a 1024|1024 recon-

struction grid to reduce the effect of the pixelation on the

reconstructions. A number of m equiangular fan-beam projections

were computed from the original phantoms using Joseph’s

projection method [19]. A detector with n~1024 elements was

used. All experiments presented in the paper were implemented

using the ASTRA toolbox [20] where GPU acceleration was used

extensively [21]. A desktop PC equipped with an Intel Core i7 930

processor, 12 GiB of RAM and NVIDIA GeForce GTX 285

graphics card was used for computations.

Four reconstruction algorithms were compared:

N Segmented SIRT (SSIRT). The well known SIRT reconstruc-

tion algorithm [7] was used to calculate the reconstructions

which were then segmented using a global threshold for a fair

comparison.

N DART [1]. An initial reconstruction was calculated using 50
SIRT iterations; 10 SIRT iterations were applied to the non-

fixed pixels during each DART iteration.

N MDART 2 and MDART 4. All parameters of the underlying

DART algorithm were identical to the ones described above.

Reconstruction resampling was performed using the bilinear

interpolation.

Correct grey values and a global threshold were used in the

simulation experiments. All participating algorithms were stopped

after a certain iteration time. The quality of the reconstructions

was assessed by calculating the relative number of misclassified
pixels (RNMP) according to

RNMP I ,~I
� �

~
D i, jð ÞD~I i, jð Þ=I i, jð Þ
� �

D
D i, jð ÞDI i, jð Þw0f gD , ð4Þ

Figure 2. Example illustrating slow convergence of DART for some datasets. Phantom, 4096|4096 pixels size, with holes of radius 100
pixels (A) and RNMP as a function of the computation time for the reconstruction of this phantom using SSIRT and DART from m~20 projections (B).
Error images for SSIRT (C) and DART (D) reconstructions after 500 s iteration time. Red and green in the error images correspond to misclassified
background and object pixels, respectively, black and yellow represent correctly classified background and object pixels, respectively.
doi:10.1371/journal.pone.0106090.g002
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where I is the original phantom and ~I denotes the reconstruction

resampled on the same grid as I using the nearest-neighbour

interpolation.

In the first series of experiments, four phantom images (Fig. 5)

were used. Phantom 1 (Fig. 5A) is a disk with a number of holes of

radius 100 pixels. It is identical to the phantom used in the

previous section (Fig. 2A). Phantom 2 (Fig. 5B) represents a

cylinder head of an internal combustion engine, Phantom 3

(Fig. 5C) is a Siemens star-like phantom, Phantom 4 (Fig. 5D)

consists of a number of intersecting ellipses and has three grey

values, whereas the former three phantoms are binary. From these

phantoms, a number m equiangular projections were computed.

These projections were then reconstructed using the SSIRT,

DART, and MDART.

The obtained results are shown in Figs. 6 and 7, which suggest

that MDART can provide significantly better reconstruction

quality in only a fraction of computation time compared to SSIRT

and DART, especially when there are only a few projections

available.

Figure 3. Flow chart of the MDART algorithm.
doi:10.1371/journal.pone.0106090.g003

Figure 4. Projection geometry and reconstruction grids used
by MDART 2. The coarse reconstruction grid (A) and the target
reconstruction grid (B).
doi:10.1371/journal.pone.0106090.g004
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For the second series of experiments, a number of phantoms

were used, each consisting of a disk with randomly placed circular

holes of a particular size (Fig. 8). Three phantoms were created for

each hole size. For these phantoms, projections from complete and

from the limited angular ranges were computed in order to

evaluate the applicability of the proposed approach for objects

with features of various size and for the datasets with the missing

wedge.

Figure 9 presents the obtained results after 30 s iteration time,

demonstrating the average RNMP over the phantoms with the

holes of the particular size together with the standard errors

(shown as shaded areas in the plots). Figure 10 shows the

corresponding reconstructions of one of the phantoms with holes

of radius 50 pixels calculated from 20 projections with 90 0 missing

wedge. These plots demonstrate the ability of MDART to provide

reconstructions of significantly higher quality compared to SSIRT

and DART and to reduce missing wedge artefacts. The biggest

gain compared to DART is achieved in the experiments with

bigger missing wedge and smaller number of projections. The

poor performance of MDART 4 on the phantoms with the hole

radii of 30 pixels is explained by the fact that on the coarsest

reconstruction grid used by MDART 4 such holes have a radius of

less than one pixel which complicates their detection with a

discrete reconstruction algorithm. Note that for the holes of radius

60 pixels or bigger MDART 4 shows the best results among all

considered algorithms gaining from the use of coarser grids.
Figure 5. Phantoms 1–4 (A–D), 4096|4096 pixels.
doi:10.1371/journal.pone.0106090.g005

Figure 6. Noiseless simulation results for Phantoms 1–2. RNMP as a function of the computation time for the reconstructions of Phantoms 1–2
(Figs. 5A and 5B) from m projections (A–D). Black and grey points on the MDART curves mark the moments of switching to a finer reconstruction grid.
doi:10.1371/journal.pone.0106090.g006
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Simulations with noise
In order to evaluate the proposed multiresolution approach in a

more realistic situation, Poisson noise was added to one of the

noiseless experiments. For the cylinder head phantom (Fig. 5B),

K~5 noisy sets of projection data were obtained for each noise

level. For each noisy projection dataset the reconstructions were

built. The mean values of RNMP I ,~II
� �

over these K reconstruc-

tions after 25 s iteration time are shown in Fig. 11, from which we

see that the proposed method can outperform SSIRT and DART

even in the presence of noise. This plot also demonstrates a slightly

higher MDART 4 robustness against noise compared to MDART

2.

Real experiments
The following experiments were conducted in order to

demonstrate the performance of the proposed multiresolution

approach on real data.

For the first experiment, a hardware phantom with a diameter

of 70 mm was scanned using the HECTOR micro-CT system

developed by UGCT (the Ghent University Centre for X-ray

Tomography, Belgium) in collaboration with X-Ray Engineering

(XRE bvba, Ghent, Belgium) [22]. For this object, a full-angle

cone-beam dataset was acquired containing 2401 projections of

2000|2000 pixels, the X-ray tube voltage was 120 kV and the

tube current was 333 mA. The source-detector distance was 1250
mm and the source-object distance was 275 mm. One slice from

this dataset was reconstructed with 1000 iterations of SIRT

(Fig. 12A) on a 2000|2000 reconstruction grid with a pixel size of

44 mm.

In the second experiment, a gypsum jaw model was scanned

using a desktop micro-CT system SkyScan-1172 (Bruker-Mi-

croCT, Belgium). A full-angle cone-beam dataset consisting of 400
projections of 1984|524 pixels was acquired, the X-ray tube

voltage was 100 kV and the tube current was 100 mA. One slice

from this dataset was reconstructed on a 1984|1984 grid with a

pixel size of 34:7 mm using 500 SIRT iterations (Fig. 12B).

Figure 7. Noiseless simulation results for Phantoms 3–4. RNMP as a function of the computation time for the reconstructions of Phantoms 3–4
(Figs. 5C and 5D) from m projections (A–D). Black and grey points on the MDART curves mark the moments of switching to a finer reconstruction grid.
doi:10.1371/journal.pone.0106090.g007

Figure 8. Examples of the phantoms, 4096|4096 pixels size,
with holes of radius 50 (A) and 80 (B) pixels.
doi:10.1371/journal.pone.0106090.g008
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Finally, a coral was scanned on the TOMCAT beamline [23] at

the Swiss Light Source, Paul Scherrer Institut (Villigen, Switzer-

land). A full-angle parallel-beam dataset consisting of 1001
projections of 1022|378 pixels was acquired, the beam energy

was 28 keV and the ring current was 401 mA. One slice from this

dataset was reconstructed on a 1022|1022 grid with a pixel size

of 3:25 mm using 500 SIRT iterations (Fig. 12C).

The reconstructions using all available projections (Fig. 12) were

segmented using the Otsu segmentation algorithm [24] and used

as a ground truth in the following experiments. A number of m
projections of the same slice were chosen from the corresponding

original datasets to form datasets with limited angular ranges.

These datasets were then reconstructed using the algorithms

described above. Since true grey values to be used in DART and

MDART were not known, these values were estimated as mean

values in each segmentation class of the Otsu segmentation of the

SIRT reconstructions shown in Fig. 12.

Figure 9. Noiseless simulation results for the phantoms with holes. RNMP for the reconstructions of the phantoms with various hole sizes
from m~20 projections after 30 s iteration time: (A) as a function of the hole radius for the 90 0 missing wedge and (B) as a function of the missing
wedge for the phantoms with the hole radius of 50 pixels.
doi:10.1371/journal.pone.0106090.g009

Figure 10. Reconstructions of the phantom with holes of radius
50 pixels. The reconstructions obtained after iterating for 30 s with
SSIRT (A), DART (B) and MDART 2 (C) using m~20 projections with 90 0

missing wedge together with the corresponding error images (D–F).
Red and green in the error images correspond to misclassified
background and object pixels, respectively, black and yellow represent
correctly classified background and object pixels, respectively.
doi:10.1371/journal.pone.0106090.g010

Figure 11. Results of the simulations with noise. RNMP as a
function of the photon count for the reconstructions of the cylinder
head phantom (Fig. 5B) from m~20 projections with noise. The
iteration process was stopped after 25 s.
doi:10.1371/journal.pone.0106090.g011

Figure 12. SIRT reconstructions of slices of the real datasets
using all available projections. (A) The hardware phantom, 2401
projections, (B) the jaw model, 400 projections, (C) the coral, 1001
projections.
doi:10.1371/journal.pone.0106090.g012
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The obtained results are presented in Figs 13 and 14.

Figures 13A, 13C and 13E demonstrate the ability of MDART

to significantly speed up the reconstruction process and to yield

more accurate results compared to SSIRT and DART. Figur-

es 13B, 13D and 13F confirm that MDART suffers less from the

missing wedge in the projection data than SSIRT and DART.

The decreased performance of all methods on the jaw model

dataset without the missing wedge compared to the dataset with

the 30 0 missing wedge (Fig. 13D) may be explained by the

dependency of the reconstruction quality on the actual projection

directions for some objects, especially if there are only a small

number of projections used [25]. Moderate performance of

MDART 4 on the coral dataset (Figs. 13E and 13F) compared

to the performance of DART and MDART 2 is caused by the

presence of very fine details in the object, which cannot be

reconstructed on the coarsest reconstruction grid used by this

Figure 13. Results of the real data experiments. RNMP for the reconstructions of the real datasets (Fig. 12) as a function of the computation
time from the data with the missing wedge (A, C, E) and as a function of the missing wedge after 50 s iteration time (B, D, F). Missing wedge is 90 0 in
(A) and (C) and 30 0 in (E). Black and grey points on the MDART curves (A, C, E) mark the moments of switching to a finer reconstruction grid.
doi:10.1371/journal.pone.0106090.g013
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algorithm. Examples of the reconstructions of the hardware

phantom using m~20 projections with 90 0 missing wedge shown

in Fig. 14 suggest that the proposed approach, and MDART 4 in

particular, can significantly reduce missing wedge artefacts and

improve feature reconstruction for real objects. Therefore,

experimental studies conform to the simulation experiments,

showing the ability of the proposed approach to faster yield

reconstructions of superior quality compared to those produced by

SSIRT and DART for real datasets.

Discussion

The proposed multiresolution DART algorithm starts a

reconstruction on a coarse reconstruction grid and then uses the

resampled resulting reconstruction as an initial point for a new

reconstruction process on a finer grid, iteratively switching to the

new grid until the target pixel size is reached. In our experiments,

the next pixel size was always two times smaller than the current

one. A certain variation in the pixel size changing strategy can

have additional benefits in terms of computation time.

Experiments show that the proposed approach allows to create

accurate reconstructions significantly faster than DART. Speed-up

comes from the following two facts: iteration time decreases

together with the number of pixels in the reconstruction and

DART converges faster when starting from a better initial

reconstruction. More accurate initial reconstruction results from

the fact that use of the coarse grids makes the reconstruction

problem less ill-posed decreasing the number of unknowns while

preserving the number of equations. This is especially important in

case when the limited number of projections is available or the

projections were acquired from a limited angular range since the

initial reconstruction calculated from such data can suffer from

strong artefacts which sometimes slow down the convergence of

conventional DART.

The choice of the starting pixel size has a significant influence

on the performance of the proposed approach. On the one hand,

the smaller the features present in the object, the smaller should be

the starting pixel size. On the other hand, the bigger the starting

pixel, the higher the potential for a speed-up and for robustness

against noise. This trade-off should be made having a particular

reconstruction problem in mind.

The proposed multiresolution approach can broaden the use of

DART for large experimental datasets. It also allows to further

decrease the number of projections required to obtain accurate

reconstructions in a reasonable time.

Conclusion

We proposed a multiresolution DART (MDART) algorithm for

discrete tomography. This approach is based on the iterative use of

a resampled reconstruction created on a coarse grid as a starting

point for a subsequent reconstruction on a finer grid. Our

experiments showed that MDART can lead to accurate recon-

structions calculated in only a fraction of time compared to

DART. The biggest improvement is reached for the datasets with

a very small number of projections and acquired from a limited

angular range. Reconstructions of the real datasets demonstrated

an ability of MDART to significantly decrease the missing wedge

artefacts and improve feature reconstruction in the object

compared to the conventional DART algorithm being iterated

for the same time.

Figure 14. Reconstructions of the hardware phantom (Fig.
12A). The reconstructions obtained after iterating for 50 s with SSIRT
(A), DART (C), MDART 2 (E) and MDART 4 (G) using m~20 projections
with 90 0 missing wedge together with the corresponding error images
(B, D, F, H). Red and green in the error images correspond to
misclassified background and object pixels, respectively, black and
yellow represent correctly classified background and object pixels,
respectively.
doi:10.1371/journal.pone.0106090.g014
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