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Abstract: Pneumonia is a common disease that occurs in many countries, more specifically, in poor
countries. This disease is an obstructive pneumonia which has the same impression on pulmonary
radiographs as other pulmonary diseases, which makes it hard to distinguish even for medical
radiologists. Lately, image processing and deep learning models are established to rapidly and
precisely diagnose pneumonia disease. In this research, we have predicted pneumonia diseases
dependably from the X-ray images, employing image segmentation and machine learning models.
A public labelled database is utilized with 4000 pneumonia disease X-rays and 4000 healthy X-rays.
ImgNet and SqueezeNet are utilized for transfer learning from their previous computed weights. The
proposed deep learning models are trained for classifying pneumonia and non-pneumonia cases. The
following processes are presented in this paper: X-ray segmentation utilizing BoxENet architecture,
X-ray classification utilizing the segmented chest images. We propose the improved BoxENet model
by incorporating transfer learning from both ImgNet and SqueezeNet using a majority fusion model.
Performance metrics such as accuracy, specificity, sensitivity and Dice are evaluated. The proposed
Improved BoxENet model outperforms the other models in binary and multi-classification models.
Additionally, the Improved BoxENet has higher speed compared to other models in both training
and classification.

Keywords: pneumonia; deep learning; pulmonary diseases; classification

1. Introduction

Pneumonia is a pulmonary disease that is considered as the top cause of death from
pulmonary diseases [1]. Providentially, this disease can be treated at early diagnosis
and subsequent management of medication [2]. X-rays are usually utilized for revealing
pulmonary pneumonia [3,4]. In medical practice, radiographs are inspected by medical
experts for the detection of this disease. Nevertheless, it is a time-intense and biased proce-
dure. Pneumonia is misdiagnosed as other pulmonary diseases of comparable radiologic
forms [5–8]. This can lead to incorrect prognosis and deterioration of the patient case.
Moreover, radiologists in poor countries and rural regions are rare. Therefore, automated
models can perform significant mass screening by investigating X-rays. Large-size labelled
databases and deep learning models yield correct X-ray diagnoses. Deep learning permits
hierarchical feature extraction from sufficient training inputs [8–11]. The medical sector is
also completely unlike other arenas as it has not satisfied the ambitions of humanity, while
it engages a large proportion of countries’ budgets [12]. The health experts’ investigative
methods with subjective variances lead to X-ray misinterpretation. Therefore, machine
learning in the medical sector is of great consideration in current times. Machine learn-
ing solutions have been presented for medical field including pneumonia, brain cancer
detection and health monitoring [12–19]. Deep and machine learning have presented great
potential in image segmentation and classification and are widely approved by the research
municipal [18–22]. Image radiography is a highly utilized imaging method. Moreover,
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there is a wealth of data accessible for network training and for deep learning. Such
methods are becoming standard for pulmonary disease detection from X-rays images.

Deep learning models are utilized for the classification of pulmonary diseases such
as fibrosis and pneumonia by examining X-ray radiology. In [23], the authors detected
coronavirus symptoms utilizing transfer deep learning of pretrained neural models with
accuracy higher than 94%. The authors of [24] proposed a deep learning model utilizing
an X-ray database to discriminate between COVID-19 and healthy cases. The authors
in [21] discovered the prospect of identifying pneumonia from images and validated the
accuracy of Resnet and other inception models. The authors of [25] described a transfer
learning model that can compact data imbalance challenge in X-ray image prediction. This
model enhanced the accuracy in identifying healthy and not healthy cases with a precision
of 98.7%.

Several papers have utilized machine learning models for detecting pneumonia and
non-pneumonia patients from X-ray medical images [23–25]. Deep learning models have
been successful in the diagnosis of pneumonia by changing the strictures of convolutional
layers [26–28]. Transfer learning is utilized in the diagnosis of pneumonia employing pre-
trained transfer learning and their assemblages [28]. The authors in [29] proposed a deep
learning algorithm to categorize medical images into pneumonia classes with precision of
92.49%. In [23], they described a computerized model utilizing pattern recognition with
deep learning from X-ray images with a precision of 89.96%.

In medical paradigm, an upsurge in the precision of pneumonia detection from X-ray
images with robust models can create dependable automatic analytic tools. The taxonomy
correctness can be enhanced by expending diverse deep learning processes and by employ-
ing ensemble methods. Usually, complete X-ray images are utilized for the recognition of
pulmonary illnesses utilizing deep learning models. Nevertheless, the X-ray images en-
compass pulmonary and other areas, while pneumonia is exhibited in the pulmonary area
only. Thus, focusing on the pulmonary area of the X-ray throughout training and grouping
will increase the accuracy of pneumonia detection. In research, no effort concerning the
practice of utilizing deep learning on segmented pulmonary images for pneumonia recog-
nition is conveyed. This research emphasis is on the recognition of pneumonia utilizing a
transfer learning model of deep learning on the segmented pulmonary in X-ray medical
images. Deep learning models using visualization methods are utilized to achieve better
classification utilizing the area of interest. Deep learning optimization can be achieved by
unrelated areas in the X-rays.

Some significant contributions are stated in this article. Initially, two diverse Box-
ENet prototypes are inspected for the segmentation of the X-rays. Additionally, several
pretrained models are employed for the recognition of pneumonia from the segmented
pulmonary X-rays. The accuracy of pneumonia recognition by the pretrained models utiliz-
ing original uncut X-ray and segmented X-rays are compared. Finally, a metric activation
visualization method is utilized to reveal the areas of the X-ray that are used in the classifi-
cation. The experiments also validate that segmented pulmonary X-rays classification is
more dependable.

A comparison of current research in pneumonia prediction deep learning models is
represented in Table 1.

This paper is organized as follows: Section 2 reviews diverse pre-trained models for
X-ray classification, BoxENet models for pulmonary segmentation. Section 3 describes the
utilized databases, preprocessing phase, materials and methods of this research. Section 4
recaps the results of the model utilizing complete X-rays and segmented pulmonary X-rays.
Section 4 presents the conclusions.
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Table 1. Recent research in pneumonia prediction deep learning models.

Ref. Method Model Database Average Accuracy

[13] Binary classification Spatial similarity matrix
Contrast-

weighed X-rays
database

90.23%

[14] Pneumonia identification Region CNN 4064 X-rays of
1200 patients 89.76%

[15] Classification of pneumonia
and healthy cases Capsule CNN 3770 X-rays 93.7%

[16]
Classification of pneumonia
into three stages (preliminary,

moderate, severe cases)
Deep CNN Architecture

2044 X-rays of
2000 patients (average
2 X-rays per patient)

96.4%

[17] Pneumonia and tuberculosis
classifications

CNN and discrete
wavelet transform 2054 X-rays 94.5–97.5%

[18] Pneumonia classification Transfer learning deep CNN 5942 X-rays 96.5% with less
CPU time

[19] Pneumonia classification Deep learning Region-based
CNN method 2115 chest X-ray 97.67%

[20] Pneumonia grading Textural based
feature extraction 640 lung X-ray 97.2%

[21] Pneumonia classification Texture and hue
feature extraction

670 cases with
1580 X-rays 95.8%

[22] X-ray pneumonia grading Genetic algorithms with
deep learning Unknown

achieves better
performance than

solo CNN

[23] Prediction of pneumonia
with high speed High-speed region CNN 320 chest X-rays 97.8%, with a small-size

database advantage

2. Materials and Methods

The method of this research includes two diverse datasets. Segmented/Complete
X-ray images for pneumonia classification are utilized. Three experiments are performed
in this research. Two BoxENet models are considered to find the appropriate model for
segmenting pulmonary areas of the X-ray. At the next stage, X-ray images are utilized
for pneumonia classification employing five pre-trained CNNs. The validation of the
classification accuracy is performed using class activation mapping (CAM) metric [15].
Segmented X-rays are utilized for pneumonia classification utilizing the five models and
tested their accuracy utilizing the CAM metric. At the last phase, the t-SNE method is
realized via Python programming language platform. The parameters are adjusted to check
the accuracy of the best model. Table 2 depicts the architecture of the BoxENet and its
parameters. Additionally, Figure 1 depicts the BoxENet dense structure.

Healthcare 2022, 10, x FOR PEER REVIEW 4 of 14 
 

 

Table 2. The architecture of the BoxENet and its parameters. 

Layer 
Number Layer Type Properties 

1 Input Layer 512 × 512 images 
2 First Dense Block 60 layers of 128 × 5 × 5 convolutions  
3 Pooling Block 4 × 4 Max pooling  
4 Second Dense Block 30 layers of (32 × 3 × 3) convolutions  
5 Pooling Block  3 × 3 max pooling  
6 Third Dense Block 40 (16 × 3 × 3)  
7 Pooling Block 2 × 2 average pooling  
8 Fully Connected (FC) Layer 2048 hidden neurons  
9 Softmax classifier Softmax 

10 

Binary Classifier Output  
Binary output classes:  
1. Pneumonia;  
2. Healthy. 

Multiclassifier Output  

Multi output classes:  
1. Congestion;  
2. Red Hepatization;  
3. Grey Hepatization; 
4. Resolution. 

 
Figure 1. The architecture of the BoxENet. 

2.1. Data Set 
In this research, the Kaggle X-ray dataset and pulmonary mask database [29] are uti-

lized for training the pulmonary segmentation method. Eight hundred X-rays and their 
analogous ground truth pulmonary masks are presented. All masks were annotated by 
expert radiologists and labelled by medical experts; X-ray instances and their analogous 
masks are depicted in Figure 2. The database includes 460 healthy X-ray images and 340 
diseased pulmonary X-ray images. Consequently, BoxENet model are trained with both 
X-ray images. 

 
Figure 2. X-ray instance and their analogous mask from the Kaggle database. 

Figure 1. The architecture of the BoxENet.



Healthcare 2022, 10, 987 4 of 15

Table 2. The architecture of the BoxENet and its parameters.

Layer Number Layer Type Properties

1 Input Layer 512 × 512 images
2 First Dense Block 60 layers of 128 × 5 × 5 convolutions
3 Pooling Block 4 × 4 Max pooling
4 Second Dense Block 30 layers of (32 × 3 × 3) convolutions
5 Pooling Block 3 × 3 max pooling
6 Third Dense Block 40 (16 × 3 × 3)
7 Pooling Block 2 × 2 average pooling
8 Fully Connected (FC) Layer 2048 hidden neurons
9 Softmax classifier Softmax

10

Binary Classifier Output

Binary output classes:

1. Pneumonia;
2. Healthy.

Multiclassifier Output

Multi output classes:

1. Congestion;
2. Red Hepatization;
3. Grey Hepatization;
4. Resolution.

2.1. Data Set

In this research, the Kaggle X-ray dataset and pulmonary mask database [29] are
utilized for training the pulmonary segmentation method. Eight hundred X-rays and their
analogous ground truth pulmonary masks are presented. All masks were annotated by
expert radiologists and labelled by medical experts; X-ray instances and their analogous
masks are depicted in Figure 2. The database includes 460 healthy X-ray images and
340 diseased pulmonary X-ray images. Consequently, BoxENet model are trained with
both X-ray images.
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Four public datasets are utilized for pneumonia classification. The datasets are PND
Pneumonia, BelPnem dataset, NIAPn Pneumonia dataset and RPNA dataset: the PND
database is found in the US public library of medicine [25], and it has two pulmonary X-ray
datasets containing 230 and 767 posterior-anterior lung X-rays. The X-ray image resolution
is 2048 × 2048 pixels. In the first dataset (DS1) of 230 X-rays, 100 images are captured from
diverse pneumonia cases and 130 images are from healthy cases. In the second dataset
(DS2), out of 767 X-rays, 467 X-rays are captured from pneumonia cases and 300 X-rays are
normal cases. Thus, in this PND dataset, there are 430 normal and 567 Pneumonia cases.
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The BelPnem database [7] was composed for drug research started by the Institute
of Infections, USA. The database has 400 X-rays of 160 cases. The X-rays were captured
utilizing the Kodak-370 system and the X-ray resolution is 3200 × 3200 pixels. All the
X-rays of this dataset are of pneumonia cases.

NIAPn Pneumonia database: The NIAPn Pneumonia portal dataset [17] features
2500 pneumonia cases from a total of 3500 X-rays. All X-rays are stored in PNG format. In
this research, we utilized 3200 pneumonia cases out of the total X-rays. From this dataset,
300 X-rays of unsatisfactory quality were excluded.

RPNA database: The RPNA pneumonia detection database [12] has more than
3000 lung X-rays, of which 1000 X-rays are healthy, and the rest of the cases are pneu-
monia or pulmonary opaque. All X-rays are in Digital Communications Medical Imaging
format (DCMI). To generate a standard database of 4000 normal healthy X-rays for this
research, 2900 normal X-rays were obtained from this dataset and the remaining of the
1100 healthy X-rays were obtained from the PND dataset. Nevertheless, the number of
Pneumonia X-rays are collected as 300 X-rays from PND, 400 images from BelPnem and
3000 X-rays from NIAPn pneumonia dataset. In total, 700 pneumonia and 4000 healthy
images are utilized in this research. Instances of the collected X-rays are depicted in
Figure 3.
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The X-ray image resolutions for various CNNs are different and hence the preprocess-
ing phase is required to resize the input images. In the segmentation phase, the X-rays are
downsized to 412 × 412 pixels for both the BoxENet and the improved BoxENet. In the
classification phase, X-rays are downsized to 256 × 256 pixels for BoxENet and SqueezeNet.
All X-rays are normalized utilizing Z-metric process utilizing mean and variance.

2.2. Methodology

The improved BoxENet is described as follows:
We classified pneumonia from segmented X-rays through transfer learning from

two CNNs (ImgNet and Squeeznet) followed by deep dense learning from BoxENet. As
depicted in Figure 4, the improved BoxENet is composed of:

1. An input feeding stage;
2. Parallel ImgNet and Squeezenet for transfer learning to produce the parameters;
3. Fusion layer to fuse the best parameters;
4. BoxENet for final prediction (it is also fed with the segmented X-ray lung images).

The BoxENet structure has three dense blocks each followed by convolution and
pooling. A Softmax classifier produces the predicted output. Dense blocks tackle the fading
gradient problem utilizing preceding feature maps as the input to the next layer.
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The improved BoxENet with transfer learning is utilized on Kaggle X-ray. Pulmonary
mask images are utilized for pulmonary X-ray segmentation. Of all X-rays and labelled
masks, 70% are utilized for training, 15% for the testing phase and 15% for the validation
phase, as depicted in Table 3. A ten-fold cross-validation technique is utilized for the
validation of the whole database.

Table 3. Details of the test dataset for the BoxENet Segmentation phase.

Database Total Number of X-rays Training Subset Validation Subset Testing Subset

Kaggle 1000 700 150 150

The models are executed utilizing PyTorch Python 3.7 on Xeon CPU v4 (3.3 GHz) and
128 GB RAM, with a 32 GB GTX GPU. Both BoxENet architectures are trained utilizing a
Gradient Descent model with a learning rate of 10-2 and a dropout rate of 0.3 with batch
size of 64 X-rays with 80 epochs.

Five different deep learning architectures are trained and tested disjointedly utilizing
complete and segmented X-rays for the detection of pneumonia and non-pneumonia
images. The image set is partitioned into 70% training set and 30% for validation and
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testing. Data used in the ten-fold validation is 10% of training subset for validation. For
instance, 70% (2800) of 4000 healthy X-rays are utilized for training and 15% (600) images
are utilized for validation and 600 X-rays for testing. Table 4 depicts the training, validation
and testing X-rays utilized in experiment settings of whole and segmented X-rays.

Table 4. Training, validation and test subsets for the deep learning model.

Data Set
Training with Whole X-ray/Segmented X-ray

Training Subset Validation Subset Testing Subset

CHN, MC and BelPnem
Healthy 4000 2800 600 600

Pneumonia 4000 2800 600 600

All five CNNs are realized utilizing PyTorch Python 3.7 on Xeon CPU v4 (3.3 GHz)
and 128 GB RAM, with a 32 GB GTX GPU. Two shallow CNNs, namely, MobNetv2 and
ResNet, and three deep CNNs, namely, Inceptionv3, BoxENet and DensNet, were tested in
our research to study whether shallow CNNs or deep architectures are appropriate for this
medical application. Performance variance of pretrained models on images of other lung
X-ray were compared with BoxENet CNN. BoxENet is a 130-layer DensNet and is only pre-
trained using lung X-rays. The five models are pertained utilizing similar parameters and
discontinuing criteria. Thirty-five epochs were utilized for prediction. Ten-fold validation
values were averaged to generate the resultant accuracy, and other evaluation confusion
matrices. Image amplification and overriding aid in evading overfitting problem [13].
Table 5 depicts the comparison of both BoxENet networks in terms of Loss Function and
Batch segmentation. Other parameters (epochs count and learning rate) were automated to
be updated in case that no enhancement of accuracy was detected.

Table 5. Comparative Performance of Original BoxENet and Improved BoxENet.

Batch Size Loss Function CNN Testing Loss Accuracy %

8 Dice BoxENet 0.0321 92.5

16 Dice BoxENet 0.0223 93.1

32 Dice BoxENet 0.0133 92.5

64 Dice BoxENet 0.0132 93.2

8 Dice
Improved BoxENet
(with transfer learning
and majority voting)

0.0012 98.7

16 Dice Improved BoxENet 0.0203 95.8

32 Dice Improved BoxENet 0.0010 97.2

64 Dice Improved BoxENet 0.0092 97.3

8 SGD BoxENet 0.324 91.7

16 SGD BoxENet 0.223 91.4

32 SGD BoxENet 0.343 92.6

64 SGD BoxENet 0.442 92.4

8 SGD Improved BoxENet 0.124 95.9

16 SGD Improved BoxENet 0.203 94.8

32 SGD Improved BoxENet 0.440 94.9

64 SGD Improved BoxENet 0.1392 96.3
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3. Experimental Results

The accuracy of various CNNs was compared at the end of the training stage and it uti-
lized several metrics as follows: model accuracy (ACC), sensitivity (SEN), specificity (SPEC)
and Dice coefficient (D). The formulas utilized to compute these metrics are presented in
the following equations:

ACC =
TP + TN

TP + FP + FN + TN
(1)

SEN =
TP

TP + FN
(2)

SPEC =
TN

FP + TN
(3)

D =
2TP

2TP + FP + FN
(4)

where TP is the count of true positives, TN is the count of true negatives, FP is the count
of false positives and FN is the count of false negatives. The sensitivity is defined as the
rate of true correctly predicted as positives, and the specificity is defined as the rate of true
correctly predicted as of negatives.

The comparison of the accuracies of various CNNs networks, for the testing subset, is
performed at the end of the training stage. The accuracy is measured utilizing six metrics:
model accuracy (Equation (1)), model sensitivity (Equation (2)) or recall, model specificity
(Equation (3)), model precision (Equation (5)), area under curve (AUC) and F1 (Dice) metric
(Equation (4)). TP, TN, FP and FN are defined in the following table (Table 6)

Precision =
TP

TP + FP
(5)

Table 6. Definitions of TP, TN, FP and FN.

Term Definition

True positive Count of pneumonia X-rays detected as pneumonia

True negative Count of normal X-rays detected as normal

False positive Count of normal X-rays detected as pneumonia

False negative Count of pneumonia X-rays detected as normal

The various CNNs were evaluated using both the average processing time (CPU time)
for test image classification, and the average training time per single epoch. The average
CPU time per test image is the average CPU time required by a CNN to classify an X-ray
over an experiment of 200 test images.

The average training time per single epoch is defined as the average time required by
a CNN to train a single epoch and is computed over 80 epochs.

∆tC = tC1 − tC0 (6)

∆tT = tT1 − tT0 (7)

where tC1 and tC0 define the start time and the end time for a CNN to predict the diagnosis
of an X-ray, while tT1 and tT0 are the start time and the end time of the training of a single
epoch by a CNN.

The experimental results are depicted below.

3.1. X-ray Segmentation

Both BoxENet and the improved BoxENet CNNs were trained and tested on the
testing subset for the X-rays segmentation process. The highest accurate parameters for
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X-ray segmentation are depicted in Table 7. In Figure 5, testing X-rays radiography and
associated ground truth are displayed. Segmented pulmonary radiography was produced
by both BoxENet CNNs for the Kaggle database. It is depicted that the improved BoxENet
outperformed the original BoxENet in the segmentation process of the pulmonary areas
from the X-ray radiography.

Table 7. The highest accurate parameters for X-ray segmentation.

The Highest Accurate Parameters for X-ray Segmentation

X-ray Segmentation Process Classification Process

Batch size 16 32

Learning rate 0.0015 0.0015

Number of epochs 80 80

Stopping parameter 3 3
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The most accurate BoxENet model is utilized to segment the dataset (4000 healthy
and 3700 pneumonia X-rays) and used for the classification process. It is imperative to
evaluate a whole untested X-rays set with pneumonia and healthy X-rays to prove the
correctness and performance of the segmentation process. It is shown that the original
BoxENet network that is trained on Kaggle database will segment the pulmonary areas of
the X-rays in a robust way.

3.2. Pneumonia Classification

In our research, we performed two experiments (utilizing non-segmented X-rays
and complete pulmonary images) for the prediction of pneumonia and healthy (non-
pneumonia) cases. The comparison between the various models for the binary prediction
is depicted in Table 8. It is obvious that the pretrained transfer models outperform other
models in binary classification of pneumonia and healthy cases. BoxENet is one of the
models that is trained with unsegmented X-rays and still achieves high performance
for predicting pneumonia from the X-rays. BoxENet with initial pretraining offers more
benefits in predicting pneumonia from X-rays and is presenting higher accuracy than other
models. Deeper CNNs usually outperform other shallow CNNs. In our research, we found
that BoxENet is a worthy transfer learning model and it achieves better accuracy than
other CNNs. Comparable performance has been attained by researchers in the COVID-19
prediction model [14]. BoxENet is also characterized by high speed, as seen from the CPU
time needed for average testing (∆tT) being the shortest among all other compared models.
The training processing time used per each single epoch (∆tC) is also equated to other
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CNNs, which is credited to the count of convolutional layers in this CNN being reduced
than other deeper CNNs such as InceptV5 and DSNet3. It also indicates that the accuracy
for pretrained BoxENet is the highest with non-segmented X-rays.

Table 8. Comparison of various CNNs for pneumonia classification with whole and segmented
X-rays.

Reference Accuracy [%] Sensitivity [%] Specificity [%]

Average CPU
Time per

Testing of a
Single X-ray

Average CPU
Time per

Training of a
Single Epoch

Whole X-ray
(without
segmentation)

InceptV5 [19] 94.04 94.80 93.40 0.92 72.7
DSNet3 [20] 93.68 93.30 94.00 1.89 101.89
DSNet5 [21] 94.68 94.60 93.44 2.78 176.7
Improved
BoxENet 97.40 98.44 97.34 0.98 38.7

Segmented
X-ray

InceptV5 [19] 94.04 94.80 93.40 1.4 45.6
DSNet3 [20] 96.68 96.30 95.31 3.34 80.9
DSNet5 [21] 94.68 94.60 93.44 5.89 120.76
Improved
BoxENet 95.40 96.44 95.34 0.56 32.5

The segmented pulmonary X-rays yield a higher performance in terms of all accuracy
metrics for pretrained CNNs. This echoes the point that pretrained CNNs can differentiate
between pneumonia and healthy cases with high accuracy. Even though all the networks
deliver better accuracy in classification, DSeNet3 exhibited the best performance in predict-
ing pneumonia and healthy cases for segment X-rays. Even though accuracy-wise DSNet3
is the most accurate, it exhibits relatively low speed in classifying and training. DSNet3
also requires a longer time to process an X-ray because of its extremely deep structure. It is
also noted that ∆tC is greater and ∆tT is less for all the CNN when processing segmented
pulmonary X-rays in comparison with nonsegmented X-rays.

In summary, BoxENet and DSNet3 are generating the greatest prediction accuracies of
97.4% and 96.68% for whole and segmented X-rays, respectively. DSNet3 is outperforming
all other models for the segmented X-rays, which reveals that deeper CNN can perform
with higher accuracy for segmented pulmonary X-rays. It is obvious that the segmentation
process enhances the accuracy of classification considerably. Nevertheless, as this model
solves a binary classification, all the tested CNNs performed in a better manner. Therefore,
we tested the models to perform multiclassification by classifying four stages of pneumonia,
namely: Congestion, Red Hepatization, Grey Hepatization and Resolution [26–29]. In
Table 9, comparison of various CNNs for pneumonia multiclassification with whole and
segmented X-rays are presented.

Confusion matrices for multiclassification for segmented and non-segmented X-rays
for the proposed Improved BoxENet are depicted in Figures 6 and 7.

Training accuracy and loss are depicted in Figures 8 and 9 for the proposed improved
BoxENet model.
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Table 9. Comparison of various CNNs for pneumonia multi-classification with whole and
segmented X-rays.

Model Accuracy [%] Sensitivity [%] Specificity [%]

Average CPU
Time per

Testing of a
Single X-ray

Average CPU
Time per

Training of a
Single Epoch

Whole X-ray
(without
segmentation)

InceptV6 [19] 96.06 96.90 94.60 0.73 73.7
DSNet4 [20] 94.69 94.40 96.00 1.77 101.77
DSNet6 [21] 96.69 96.60 94.66 3.77 176.7
Improved
BoxENet 97.60 99.66 97.46 0.77 67.7

Segmented
X-ray

InceptV6 [19] 96.06 96.90 94.60 1.6 66.6
DSNet4 [20] 96.69 96.40 96.41 6.66 70.7
DSNet6 [21] 96.69 96.60 94.66 6.77 130.76
Improved
BoxENet 98.60 98.66 98.46 0.66 63.6
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4. Conclusions

Pneumonia is a common disease in many countries, especially in poor countries.
This disease is defined as obstructive pneumonia which has the same impression on pul-
monary radiographs as other lung diseases, which makes it hard to distinguish it from
other pulmonary diseases, even for medical radiologists. Lately, image processing and deep
learning models have been established to rapidly and precisely diagnose pneumonia. In
this research, we predict pneumonia diseases from X-ray images, employing image segmen-
tation and machine learning models. This work proposes a transfer learning pre-training
classification model with a deep learning model for the binary and multiclassification of
pneumonia from X-rays. The performance metrics of five CNN models were tested for
the prediction of pneumonia. The proposed Improved BoxENet model with two transfer
learning models with majority voting method outperforms other deep learning models for
the databases for both whole and segmented X-rays, whereas DSNet3 is comparable for the
segmented X-rays but consumes much more CPU time. The prediction accuracy, sensitivity
and specificity for the multiclassification of pneumonia were measured to be 98.60%, 98.66%
and 98.46% with X-ray segmentation and 97.6%, 99.66%, and 97.46% without segmenta-
tion respectively for multiclassification. It is also depicted that X-ray segmentation can
considerably enhance multiclassification precision.
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