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Early detection is critical for effective management of Alzheimer’s disease (AD) and
screening for mild cognitive impairment (MCI) is common practice. Among several deep-
learning techniques that have been applied to assessing structural brain changes on
magnetic resonance imaging (MRI), convolutional neural network (CNN) has gained
popularity due to its superb efficiency in automated feature learning with the use of
a variety of multilayer perceptrons. Meanwhile, ensemble learning (EL) has shown to
be beneficial in the robustness of learning-system performance via integrating multiple
models. Here, we proposed a classifier ensemble developed by combining CNN and
EL, i.e., the CNN-EL approach, to identify subjects with MCI or AD using MRI: i.e.,
classification between (1) AD and healthy cognition (HC), (2) MCIc (MCI patients who
will convert to AD) and HC, and (3) MCIc and MCInc (MCI patients who will not convert
to AD). For each binary classification task, a large number of CNN models were trained
applying a set of sagittal, coronal, or transverse MRI slices; these CNN models were then
integrated into a single ensemble. Performance of the ensemble was evaluated using
stratified fivefold cross-validation method for 10 times. The number of the intersection
points determined by the most discriminable slices separating two classes in a binary
classification task among the sagittal, coronal, and transverse slice sets, transformed
into the standard Montreal Neurological Institute (MNI) space, acted as an indicator
to assess the ability of a brain region in which the points were located to classify
AD. Thus, the brain regions with most intersection points were considered as those
mostly contributing to the early diagnosis of AD. The result revealed an accuracy rate of
0.84± 0.05, 0.79± 0.04, and 0.62± 0.06, respectively, for classifying AD vs. HC, MCIc
vs. HC, and MCIc vs. MCInc, comparable to previous reports and a 3D deep learning
approach (3D-SENet) based on a more state-of-the-art and popular Squeeze-and-
Excitation Networks model using channel attention mechanism. Notably, the intersection
points accurately located the medial temporal lobe and several other structures of the
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limbic system, i.e., brain regions known to be struck early in AD. More interestingly,
the classifiers disclosed multiple patterned MRI changes in the brain in AD and MCIc,
involving these key regions. These results suggest that as a data-driven method, the
combined CNN and EL approach can locate the most discriminable brain regions
indicated by the trained ensemble model while the generalization ability of the ensemble
model was maximized to successfully capture AD-related brain variations early in the
disease process; it can also provide new insights into understanding the complex
heterogeneity of whole-brain MRI changes in AD. Further research is needed to examine
the clinical implication of the finding, capability of the advocated CNN-EL approach to
help understand and evaluate an individual subject’s disease status, symptom burden
and progress, and the generalizability of the advocated CNN-EL approach to locate
the most discriminable brain regions in the detection of other brain disorders such as
schizophrenia, autism, and severe depression, in a data-driven way.

Keywords: Alzheimer’s disease, mild cognitive impairment, convolutional neural networks, ensemble learning,
magnetic resonance imaging, MRI biomarkers, MCI-to-AD conversion, Alzheimer’s Disease Neuroimaging
Initiative

INTRODUCTION

Alzheimer’s disease (AD) is a chronic, progressive, and
irreversible neurodegenerative disease clinically manifested by
amnesia, cognitive dysfunction, and gradual loss of multiple
other brain functions and daily living independency (Ulep et al.,
2018). The number of patients with AD worldwide is expected
to increase from the current 47 million to 152 million by 2050,
causing serious economic, medical, and societal consequences
(Christina, 2018). The pathogenesis of AD remains not fully
elucidated and no available therapy can cure AD or completely
stop disease progression. Amnestic mild cognitive impairment
(MCI) is a transitional stage between cognitively normal aging
and AD, and patients with MCI are more likely to develop AD
than age-matched healthy cognition (HC) (Liu et al., 2014). Early
detection of AD by screening MCI is crucial both for effective
management and care strategies and for developing new drugs
and measures to prevent further deterioration of the disease.

Brain magnetic resonance imaging (MRI) has enabled non-
invasive in vivo investigations of AD-related changes in the brain.
A large number of promising machine learning applications have
used MRI for AD prediction (Mateos-Pérez et al., 2018), which
include random forests (RF) (Tripoliti et al., 2011), support
vector machine (SVM) (Leemput et al., 2002), and boosting
algorithms (Hinrichs et al., 2009). Even so, existing machine
learning approaches typically involve manual selection of pre-
defined brain regions of interest (ROIs) based on known MRI
features of AD. Given the limited understanding of definitive
MRI biomarkers for AD, it is likely that pre-selected ROIs
cannot include all the information potentially useful to uncover
the complexity of AD. Manual selection can also be prone to
subjective errors and be time-consuming and labor-intensive
(Li et al., 2018).

Deep learning represents a more advanced approach; methods
such as stacked auto-encoder (SAE) (Vincent et al., 2010), deep
belief networks (DBNs) (Hinton, 2009), and convolutional neural

networks (CNNs) (LeCun, 2015) can automatically build a more
abstract high-level representation of the learning system by
integrating low-level features embedded in the data (Sun et al.,
2012). The CNN model has been widely used for classification
(Krizhevsky et al., 2012), segmentation (Long et al., 2015), and
object detection (Girshick et al., 2014), due to several advantages:
CNNs can directly accept images data as input, utilize spatial
information embedded in adjacent pixels, and effectively reduce
the number of model parameters by using local receptive fields,
weights sharing, and subsampling. When a CNN model is trained
with MRI slices, image features can be automatically retrieved,
eliminating the need of manual selection of features for the
learning process (Lin et al., 2018). Meanwhile, ensemble learning
(EL) has shown beneficial in the performance and robustness via
integrating multiple learning systems (Opitz and Maclin, 1999),
which has also been applied to MRI (Ortiz et al., 2016).

So far, some researchers have combined deep learning and
EL on MRI data for AD. A method for AD and early AD
diagnosis by fusing functional and structural imaging data based
on the use of the Deep Learning paradigm, and more specifically,
deep belief networks (DBN) has been advocated (Ortiz et al.,
2016). Gray matter (GM) images from each brain area have been
split into 3D patches according to the regions defined by the
Automated Anatomical Labeling (AAL) atlas, and these patches
were used to train a set of DBNs. The DBNs were then ensembled
where the final prediction was determined by a voting scheme.
Two deep learning based structures and four different voting
schemes were implemented and compared, giving as a result a
potent classification architecture where discriminative features
were computed in an unsupervised fashion (Ortiz et al., 2016).
Islam and Zhang (2018) proposed an ensemble of three deep
CNNs with slightly different configurations for Alzheimer’s
disease diagnosis using brain MRI data analysis. In addition,
sparse regression models were combined with deep neural
networks for AD diagnosis (Suk et al., 2017). Here, sparse
regression models with different regularization control values
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outputted their own prediction values. To obtain the final
prediction values, CNNs discovered the optimal weights to
ensemble multiple sparse regression models in a hierarchical and
non-linear way (Suk et al., 2017). In 2019, 20 white matter and
GM slices with significant brain structures from MR images were
selected to train an ensemble of ConvNet networks (Ji et al.,
2019). In Li et al. (2018), a whole MR brain image was partitioned
into different local regions and a number of 3D patches were
extracted from each region. Subsequently, the authors grouped
the patches from each region into different clusters with the
K-Means clustering method. Next, a DenseNet was constructed
to learn the patch features for each cluster and the features
acquired from the discriminative clusters of each region were
ensembled for classification. At the end, the authors combined
the classification results from different local regions to improve
final image classification.

In the present study, we proposed a novel CNN–EL approach
based on an established eight-layer CNN network structure
(Wang et al., 2018), to automatically retrieve features from brain
MRI data that can be used to differentiate subjects with clinical
diagnosed AD and MCI from HC, and those with MCIc and
MCInc. We are also interested in identifying patterns of MRI
brain changes that characterize AD and MCIc. To achieve the
study objectives, we first derived a CNN model using each
set of the sagittal, coronal, or transverse MRI slices; then, we
developed a classifier ensemble based on three-axis slices using
EL. A number of sophisticated techniques were employed in our
approach, which included six ways of data augmentation (DA)
to facilitate an equal and relatively large number of instances of
each class in the training dataset, top-performance enforcing to
achieve a high classification accuracy and robustness of the model
training, and parallel processing to improve the time efficiency of
the system function.

In the CNN-EL, a data-driven, homogeneous ensemble
learning approach was employed. A base classifier based on
2D CNN model was trained using each set of the sagittal,
coronal, or transverse MRI slices; that is, a trained base classifier
corresponds to a slice dataset, which is composed of slices in
a specific position in brain from the subjects in the training
dataset. The preparations of training datasets didn’t depend on
prior experience or domain knowledge. In order to reduce the
loss of information as much as possible during the process of
slicing the 3D volume into 2D slices, we have utilized as many
and meaningful 2D-sagittal, -coronal, or -transverse slices from
all over the brain as we can at the same time to train the
base classifiers. Among them, the trained base classifiers with
the best generalization performance on the validation datasets
were selected and combined to generate a refined final classifier
ensemble based on three-axis slices. In this data-driven way, the
slices corresponding to the selected trained base classifiers were
considered as those with the strongest capabilities to classify
AD. The number of the intersection points determined by the
most discriminable slices separating two classes in a binary
classification task among the sagittal, coronal, and transverse
slice-sets, transformed into the standard Montreal Neurological
Institute (MNI) space, acted as an indicator to assess the ability
of a brain region in which the points were located to classify

AD. Thus, we located the most discriminable brain regions
indicated by the trained CNN-EL model while its generalization
abilities were maximized and superior to those of the compared
methods. That is, we can understand the predictions made by the
trained CNN-EL model to some extent. However, the compared
methods, i.e., PCA+ SVM (Christian et al., 2015) and a 3D deep
learning approach (3D-SENet) based on a more state-of-the-
art and popular Squeeze-and-Excitation Networks model using
channel attention mechanism, which was derived from the paper
(Hu et al., 2018), were unable to do the same thing as the
above-mentioned and failed to provide meaningful explanations
for predictions since the models achieved with those compared
methods were still like a “black-box”. To our knowledge, this is
the first attempt to do the above way with both CNN and EL,
and at the same time, the promising experimental results have
been achieved.

In detail, the CNN-EL was different from the above-
mentioned methods which combined the deep learning with
the ensemble learning to analyze MRI data for detecting AD
in the base classifiers (Ortiz et al., 2016; Suk et al., 2017; Islam
and Zhang, 2018; Li et al., 2018), the ensemble methods (Ortiz
et al., 2016; Suk et al., 2017; Islam and Zhang, 2018), the model
interpretability (Ortiz et al., 2016; Suk et al., 2017; Islam and
Zhang, 2018), or the preparation of training datasets (Ortiz et al.,
2016; Li et al., 2018; Ji et al., 2019).

Furthermore, in the paper (Wen et al., 2019), the authors
firstly systematically and critically reviewed the state-of-the-art
on classification of Alzheimer’s disease based on convolutional
neural networks and T1-weighted MRI. Next, they proposed
an open-source framework for reproducible evaluation of
classification approaches. In this study, the fivefold cross
validation procedure was strictly followed and repeated ten times
for each binary experiment, i.e., AD vs. HC, MCIc vs. HC,
and MCIc vs. MCInc. The potential data leakage among binary
classification tasks was avoided and therefore the experimental
results were unbiased and reproducible.

MATERIALS AND METHODS

Participants and Datasets
Data used in the study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database.1 The ADNI
was launched in 2003 as a public–private partnership, led by
Principal Investigator, Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD.

To facilitate comparison of our results with those reported
previously, we used the same MRI dataset from the ADNI
database as utilized by Christian et al. (2015) in building the
eight-layer CNN networks (Wang et al., 2018) to train the
base classifiers, as well as to test the performance of the final
classifier ensemble based on three-axis slices (n = 509 subjects:

1adni.loni.usc.edu
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TABLE 1 | Characteristics of participants in (A) the training and testing dataset
(upper panel) and (B) the validation dataset (lower panel).

Variable AD MCIc MCInc HC

(A)

N 137 76 134 162

Gender
(male:female)

67:70 43:33 84:50 86:76

Age (year;
mean, std)

76.0,7.3 74.8, 7.3 74.5, 7.2 76.3, 5.4

Weight (kg;
mean, std)

70.9, 14.0 72.7, 14.3 76.2, 12.9 73.8, 13.6

MMSE
(mean, std)

23.2, 2.0 26.47, 1.84 27.19, 1.71 29.18, 0.96

CDR (mean,
std)

0.75, 0.25 0.50, 0.00 0.50, 0.00 0.00, 0.00

GDS (mean,
std)

1.59, 1.32 1.38, 1.14 1.52, 1.37 0.80, 1.08

(B)

N 100 39 39 100

Gender
(male:female)

60:40 23:16 29:10 45:55

Age (years;
mean, std)

74.24, 7.82 74.15, 7.10 76.02, 7.00 73.36, 5.70

Weight (kg;
mean, std)

76.04, 15.83 73.59, 14.14 78.35, 12.99 76.16, 15.66

MMSE
(mean, std)

23.84, 2.08 27.05, 1.59 27.56, 1.83 28.92, 1.25

CDR (mean,
std)

0.82, 0.24 0.50, 0.00 0.50, 0.00 0.00, 0.00

GDS (mean,
std)

1.81, 1.56 1.92, 1.35 1.79, 1.45 0.83, 1.34

AD, Alzheimer’s disease patients; MCIc, mild cognitive impairment patients who
will convert to AD; MCInc, mild cognitive impairment patients who will not convert
to AD; HC, healthy controls; MMSE, Mini Mental State Examination; CDR, Clinical
Dementia Rating; GDS, Global Deterioration Scale.

AD = 137, 18 months MCIc = 76 and MCInc = 134, and
HC = 162; Table 1A). We enrolled 162 cognitively normal elderly
controls (HC), 137 patients with diagnosis of AD, 76 patients
with diagnosis of MCI who converted to AD within 18 months
(MCIc), and 134 patients with diagnosis of MCI who did not
convert to AD within 18 months (MCInc). MCI patients who
had been followed less than 18 months were not considered
(Christian et al., 2015). A total of 509 subjects from 41 different
radiology centers were considered. Inclusion criteria for HC
were as follows: Mini Mental State Examination (MMSE) scores
between 24 and 30; Clinical Dementia Rating (CDR) (Morris,
1993) of zero; and absence of depression, MCI, and dementia.
Inclusion criteria for MCI were as follows: MMSE scores between
24 and 30; CDR of 0.5; objective memory loss, measured by
education adjusted scores on Wechsler Memory Scale Logical
Memory II (Wechsler, 1987); absence of significant levels of
impairment in other cognitive domains; and absence of dementia.
Inclusion criteria for AD were as follows: MMSE scores between
20 and 26; CDR of 0.5 or 1.0; and NINCDS/ADRDA criteria for
probable AD (McKhann et al., 1984; Dubois et al., 2007).

To facilitate the development of the EL process, an additional
validation dataset of 278 subjects (AD = 100, 36 months

MCIc = 39 and MCInc = 39, and HC = 100; Table 1B) was
also retrieved from the ADNI database and used to identify
the base classifiers showing the best generalization performance.
The validation data of 278 subjects had no overlapping with
the aforementioned data of 509 subjects, i.e., the validation data
were used for neither training the base classifiers nor testing
the acquired final classifier ensemble based on three-axis slices
(Table 1B). Here, among 164 patients with diagnosis of pMCI
(progressive MCI) used by Moradi et al. (2015), i.e., if diagnosis
was MCI at baseline but conversion to AD was reported after
baseline within 1, 2, or 3 years, and without reversion to MCI
or HC at any available follow-up (0–96 months), 39 patients
who were not in the 509 subjects were selected as MCIc subjects
in the validation dataset. Meanwhile, among 100 patients with
diagnosis of sMCI (stable MCI) used by Moradi et al. (2015), i.e.,
if diagnosis was MCI at all available time points (0–96 months)
but at least for 36 months, 39 patients who were not in the
aforementioned 509 subjects were chosen as MCInc subjects in
the validation dataset. In order to keep the validation dataset
relatively balanced, we enrolled 100 cognitively normal elderly
controls (HC) and 100 patients with diagnosis of AD who were
not in the aforementioned 509 subjects as well.

MRI Preprocessing
Upon downloading, the T1-weighted MRI data in.nii format were
processed using the CAT12 toolkit2 with default value setting. The
preprocessing pipeline included skull extraction, registration to
the MNI space, and image smoothing, so that after processing, all
the images had a dimension of 121× 145× 121 (X× Y × Z) with
a spatial resolution of 1.5× 1.5× 1.5 mm3 per voxel. Voxel-based
MRI signal intensity normalization was then performed for each
image; i.e., the value of each voxel was normalized as the original
value divided by the original maximal value of the image, yielding
a value between 0 and 1. The complete preprocessing pipeline is
summarized in Figure 1.

To facilitate the CNN training, verification, and testing, a
3D image set of each subject was re-sliced into three 2D image
sets, each of the sagittal, coronal, or transverse orientation (with
X, Y, and Z axes perpendicular to the sagittal, coronal, and
transverse planes, respectively). A preprocessed 3D MRI image
(of 121 × 145 × 121) was thus re-sliced into 121 sagittal, 145
coronal, and 121 transverse slices; the values on the X, Y, and Z
axis were {−90, −88, −87, . . . 90}, {−126, −125, −123, . . . 90},
and {−72, −71, −69, . . . 108}, respectively. For example, X(i),
i∈{−90, −88, −87, . . . 90} is the sagittal slice through the point
[i, 0, 0]. Here, the numbers within the brackets were the MNI
coordinates. To reduce the number of base classifiers without
compromising the effectiveness of the classification, every other
slice was used (given the relatively small difference between
two adjacent slices) and slices near either end of an axis were
discarded (given the relatively less amount of information useful
for classification), which lay outside the blue rectangle shown
in Figure 2. The CNN model training, testing, and verification
involved use of only 40 sagittal slices {X(−61), X(−58), X(56)},
50 coronal slices {Y(−91), Y(−88), Y(56)}, and 33 transverse

2http://dbm.neuro.uni-jena.de/cat/
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FIGURE 1 | Preprocessing pipeline—an example showing the formation of a transverse slice used in the learning. (A) Original image. (B) Skull-stripping and spatial
normalization. (C) Smoothing. (D) Gray normalization. (E) Slicing and resizing.

slices {Z(−28), Z(−25), Z(68)}, i.e., in total, 123 slices of a
subject’s 3D brain image.

Given the dimension of the 3D MRI (121 × 145 × 121),
the sizes of the sagittal, coronal, and transverse slices obtained
through re-slicing were 145 × 121, 121 × 121, and 121 × 145,
respectively. Each of the 2D slices was reformatted to 145 × 145
using edge padding and zero filling, so that the 2D slice is squared,
while the center and the spatial resolution of the resized image
remained unchanged.

Convolutional Neural Network
As an automated image recognition method, the CNN has
attracted widespread research attention with tremendous
success in recent years. Hubel and Wiesel first described
receptive fields, binocular interactions, and the functional
architecture of cat primary visual cortex about 55 years
ago (Hubel and Wiesel, 1962, 1965). Kunihiko Fukushima
proposed a neural network model nicknamed “Neocognitron”
(Fukushima, 1980) that is structurally similar to the hierarchy
model of the visual nervous system proposed by Hubel
and Wiesel. This unique network structure can effectively
reduce the complexity of feedback neural networks, which

FIGURE 2 | The cropping range (inside the blue rectangle) of the slices used
to train the model on (A) a sagittal plane and (B) a coronal plane, respectively.
(A) Sagittal Plane. (B) Coronal plane.

characterizes the CNN model. With the CNN, each input
image is passed through a series of convolution layers: filtering
layers (kernels), pooling layers, and fully connected layers
(FCs). A softmax function is then applied to classify an
image with probabilistic values between 0 and 1, making the
CNN suitable for learning representations of image features
(Schmidhuber, 2015).

A convolution layer in the CNN model is typically composed
of two segments: feature extraction and feature mapping
(Krizhevsky et al., 2012). In the feature-extraction segment, each
neuron is connected to the local receptive field of the upper
layer to extract local features. Once the local feature is extracted,
its spatial relationship with other features is also determined.
In the feature-mapping segment, convolution is performed on
the input data using a learnable filter or kernel to produce a
feature map. Feature mapping computes the outputs of neurons
connected to receptive fields in the input, with each neuron
computing a dot product between its weight (i.e., filter) and
a local receptive field (equivalent to filter size) to which it
is connected (the input volume). Multiple feature maps can
be calculated with a set of learnable filters. In this way, the
number of parameters to be tuned in the CNN is effectively
reduced. A convolutional layer is followed by a pooling layer,
e.g., max-pooling layer (Weng et al., 1992), which performs a
down-sampling operation along the spatial dimensions (e.g., X,
Y for a transverse slice). This unique dual-feature extraction
method can effectively reduce the feature resolution (Krizhevsky
et al., 2012). The basic structures of the convolutional layer
and the pooling layer of the CNN model are shown in
Figure 3.

In this study, the CNN was utilized mainly to recognize
2D images with displacement, scaling, and other non-deformed
distortions. Data were reconstructed, so that an image was
inputted into the CNN model as a vector for easy feature
extraction and classification. The effectiveness of the CNN
was improved as the pooling layer learned the features
from training data without manual extraction. Applying the
learnable kernels and convolution operation, the CNN was
trained in parallel, while the local weight-sharing effectively
reduced its complexity.
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FIGURE 3 | Basic structures of the CNN convolutional layer and pooling layer. (A) Convolutional layer. (B) Pooling layer.

Ensemble Learning
EL algorithms including Bagging (Breiman, 1996), Boosting
(Freund and Schapire, 1997), and Random Forest (Breiman,
2001) have been typically used to construct a set of base
classifiers in solving a given problem. Using a training dataset,
EL discriminates features to produce a weighted vote for
classes, which is then applied in classifying more cases in new
datasets. Based on the methods with which a base learner
is generated, each of the EL algorithms can be divided into
two general approaches: the heterogeneous approach, which
applies different learning algorithms in the same training
data, and the homogeneous approach, which applies the
same learning algorithm in different training data (Zhang
and Zhang, 2011). Both approaches have been shown to
significantly improve the generalizability and robustness of a
learning system.

In the present study, the homogeneous EL approach was
adopted from the stratified Bagging method. The same CNN
algorithm was employed to train different base classifiers
using different 2D MRI slices. The outputs from the multiple
trained base classifiers with the best generalization performance
on the validation dataset were then combined to generate
a refined final classifier ensemble based on three-axis slices
that was used to predict classification results for new cases,
i.e., 3D MRI data.

Classification Experiment
A total of 787 subjects’ 3D MR images from the ADNI
database were partitioned into three datasets: training and
testing datasets to build the base classifiers and examine the
performance of the final classifier ensemble based on three-
axis slices (n = 509; Table 1A) and a verification dataset to
evaluate and select the best base classifiers (n = 278; Table 1B).
For training and testing, a stratified fivefold cross-validation
method was employed, such that each binary classification task

(e.g., MCIc vs. MCInc) was conducted five times. No images
in the training/testing datasets were used to select the best
base classifiers, and thus potential data leakage among binary
classification tasks was avoided.

In each binary classification task, a total of 123 2D sagittal,
coronal, and transverse slices extracted from each 3D MRI
were employed to generate 123 trained base classifiers. Using
classification of AD (n = 137) vs. HC (n = 162) as an example, 299
labeled 3D MRI (Table 1A), were partitioned into 80% training
and 20% testing cases with stratified random sampling. The 299
2D slices of X(i) [or Y(j), or Z(k)] were compiled as a 2D dataset,
where i∈{−61, −58, . . . 56}, j∈{−91, −88, . . . 56}, and k∈{−28,
−25, . . . 68}; 239 (or 80%) of stratified randomly selected cases
were employed to train the X(i) [or Y(j), or Z(k)] base classifier,
while the remaining slices of 60 (or 20%) cases were used to
test the trained classifier ensemble based on three-axis slices. In
this way, all 123 trained base classifiers to classify AD vs.HC
were acquired.

Then, the 123 labeled 2D MR images from each of AD
(n = 100) and HC (n = 100) cases were altogether used
as the validation dataset (Table 1B): they were employed
to select the five base classifiers (i.e., in total 15) with the
best generalization performance, as determined by classification
accuracy, among the sagittal, coronal, and transverse slice-
based base classifiers, respectively. The number of five was
determined by the experiments. Finally, after building three
classifier ensembles based on single-axis slices (i.e., sagittal,
coronal, and transverse), a classifier ensemble based on three-axis
slices, which was composed of all the three classifier ensembles
based on single-axis slices, was finally built using these 15 base
classifiers, following a simple majority voting scheme (Arora
et al., 2012). The 2D slices that were extracted from the 3D MR
images of the remaining 60 (or 20%) cases in the training and
testing dataset and were corresponding to the 15 base classifiers
were used to test the performance of the built classifier ensemble
based on three-axis slices.
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TABLE 2 | Numbers of augmented images in the MCIc and MCInc datasets.

Augmentation methods MCIc MCInc Total

Original slices 76 134 210

Rotation 1368 1340 2708

Translation 1368 1340 2708

Gamma correction 1368 1340 2708

Random noise 1368 1340 2708

Scaling 1368 1340 2708

Random affine transformation 1368 1340 2708

Total number of images in the augmented dataset 8284 8174 16,458

Data Augmentation
To overcome the possible over-fitting problem in training robust
CNN models and to incorporate possible image discrepancy,
augmented images were generated from the original slices by
six operations: rotation, translation, gamma correction, random
noise addition, scaling, and random affine transformation. The
augmented data were added to the original training dataset
to allow a sufficiently large sample size (Table 2). Data
augmentation was also used to mitigate the originally imbalanced
dataset (e.g., there were more subjects with MCInc than those
with MCIc), for which the preset number of augmented slices to
be generated varied from class to class. For example, to classify
MCIc vs. MCInc, there were 76 MCIc and 134 MCInc cases.
Using six data augmentation operations, 10 new slices were
generated from an MCInc case and 18 from an MCIc case with

each operation. In this way, slice ratios of MCInc:MCIc became
∼1:1 after data augmentation from the original∼1.8:1.

RESULTS

Base Classifiers
To address the objective of the study, i.e., binary classification of
AD or MCIc vs. HC, and MCIc vs. MCInc, three corresponding
classifier ensembles based on the three slice orientation groups
(sagittal, coronal, and transverse), i.e., classifier ensembles based
on three-axis slices, were trained. The overall architecture of
the proposed classifier ensemble based on three-axis slices is
shown in Figure 4 and the flow chart of the experiment is
shown in Figure 5.

Each base classifier consisted of six convolution layers
(conv) and two fully connected layers (FCs). The last FC layer
had only two nodes, and the softmax function was used to
implement the binary classification. The network architecture
and corresponding hyper-parameters are shown in Figure 6 and
Table 3, respectively. Each base classifier was trained for 30
epochs, as 30 epochs proved sufficient for a base classifier to
converge. That is, after 30 epochs, a trained base classifier could
achieve 100% classification accuracy on the original slices (rather
than the augmented slices) in the training dataset. Activation
functions in all convolutional layers were of the leaky rectifier
linear activation (LReLU) type (Shan et al., 2016), while the
Adam optimization algorithm (Kingma and Ba, 2014) was used

FIGURE 4 | The architecture of the classifier ensemble based on the three sets of 2D slices (from left to right: sagittal, coronal, and transverse).
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FIGURE 5 | Experimental flow chart. (A) Training phase. (B) Testing phase.
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FIGURE 6 | Base-classifier architecture used in the CNN-EL approach proposed here.

to update network weights. The learning rate and the batch size
were set to 0.0001 and 200, respectively.

Ensemble Learning
The proposed model employed a two-stage EL scheme. Phase
1 involved building three classifier ensembles based on single-
axis slices (i.e., sagittal, coronal, and transverse) and Phase 2
involved constructing a classifier ensemble based on three-axis
slices, which was composed of all the three classifier ensembles
based on single-axis slices acquired in Phase 1. In total, 40 sagittal,
50 coronal, and 33 transverse base classifiers were acquired. Then,
the five base classifiers with the best generalization performance
for each slice orientation were selected using the verification
dataset, yielding three classifier ensembles based on single-axis
slices, each with the 5 best base classifiers. The output of a
classifier ensemble based on single-axis slices was generated by
combining the outputs of the five best base classifiers. Finally,
a simple majority voting scheme was used to combine the
predictions of these three classifier ensemble based on single-
axis slices to yield the output of the classifier ensemble based on
three-axis slices. Experimental results demonstrated that this EL
method greatly improved the generalizability and robustness of
early stage AD detection.

TABLE 3 | Detailed hyper-parameters of base classifiers of the CNN-EL
approach advocated here.

Layer # Layer
name

Kernel size Strides Input
channels

Output
channels

1 conv1 3*3 3 1 32

2 conv2 3*3 3 32 64

pooling1 3*3 1 N/A N/A

3 conv3 3*3 3 64 128

pooling2 3*3 1 N/A N/A

4 conv4 1*1 1 128 256

pooling3 3*3 1 N/A N/A

5 conv5 1*1 1 256 512

pooling4 3*3 1 N/A N/A

6 conv6 1*1 1 512 1024

pooling5 3*3 3 N/A N/A

7 FC1 N/A N/A 4096 100

8 FC2 N/A N/A 100 2

Classification Performance
Using the stratified fivefold cross-validation procedure and
repeating it 10 times, the average classification accuracies were
84% for AD vs. HC, 79% for MCIc vs. HC, and 62% for MCIc
vs. MCInc. The average classification accuracies for AD vs. HC
and MCIc vs. HC were statistically significantly higher than those
achieved using principal component analysis (PCA) plus the
SVM method described in a previous study (Christian et al.,
2015), while the average classification accuracy for MCIc vs.
MCInc was not statistically significantly lower (Christian et al.,
2015). As for the reason why the classification accuracy for MCIc
vs. MCInc task was relatively low, we suppose the performance
of the proposed CNN-EL method, as a deep learning approach,
which usually demands more training data, was a little bit more
negatively affected by the insufficient training samples in the
MCIc vs. MCInc classification task. Plus, one additional possible
reason might be the cutoff threshold of follow-up duration
to define MCIc and MCInc, and the cohorts of MCIc and
MCInc subjects might be highly heterogeneous regardless of the
threshold used (Li et al., 2019).

More importantly, the standard deviations of the classification
accuracies were only 0.05 for AD vs. HC, 0.04 for MCIc vs. HC,
and 0.06 for MCIc vs. MCInc, all of which were about one-third
of those reported previously (Christian et al., 2015).

In this study, all of the experiments were run on one node in
a GPU cluster with five nodes, each of which had two NVIDIA
Tesla P100-PCIe-16GB 250W cards. For a 1 × 5-fold cross-
validation process, the computing time of the CNN-EL proposed
here in AD vs. HC, MCIc vs. HC, and MCIc vs. MCInc task was
about 21, 19, and 15 h, respectively.

At the same time, the proposed approach here was compared
with the 3D-SENet. As the central building block of CNNs,
the convolution operator could enable networks to acquire
informative features by fusing both spatial and channel-wise
information within local receptive fields at each layer. To achieve
better generalization performance, the SENet automatically
learned the weight of each feature channel to enhance the
useful features and suppress the useless features for the task
to be tackled, by introducing “Squeeze-and-Excitation” block
as a self-attention function on channels (Hu et al., 2018).
Here, the architecture of the compared 3D-SENet model and
corresponding detailed hyper-parameters are shown in Figure 7
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FIGURE 7 | The architecture of the 3D-SENet model. (A) Convolution block (Conv), (B) Squeeze-and-Excitation block (Se_block), (C) 3D-SENet model.

TABLE 4 | Detailed hyper-parameters of 3D-SENet model.

Layer name Sub-layer name Kernel size Strides Filters Output size

MRI_images N/A N/A N/A N/A 121 × 145 × 121

Conv N/A 3 × 3 × 3 1 64 121 × 145 × 121

Maxpooling N/A 3 × 3 × 3 2 N/A 60 × 72 × 60

Se_block1 Block1 3 × 3 × 3 2 256 30 × 36 × 30

Se_block1 Block2 3 × 3 × 3 1 256 30 × 36 × 30

Se_block1 Block3 3 × 3 × 3 1 256 30 × 36 × 30

Se_block2 Block1 3 × 3 × 3 2 512 15 × 18 × 15

Se_block2 Block2 3 × 3 × 3 1 512 15 × 18 × 15

Se_block2 Block3 3 × 3 × 3 1 512 15 × 18 × 15

Se_block3 Block1 3 × 3 × 3 2 1024 8 × 9 × 8

Se_block3 Block2 3 × 3 × 3 1 1024 8 × 9 × 8

Se_block3 Block3 3 × 3 × 3 1 1024 8 × 9 × 8

Se_block3 Block4 3 × 3 × 3 1 1024 8 × 9 × 8

Avg_pool N/A 8 × 9 × 8 1 1024 1 × 1 × 1024

Softmax N/A N/A N/A N/A 2

and Table 4, respectively. With 10 × 5-fold cross-validation
processes, the accuracy rates of 0.80 ± 0.05, 0.75 ± 0.07, and
0.57 ± 0.11 were obtained, respectively, for classifying AD vs.
HC, MCIc vs. HC, and MCIc vs. MCInc. For a 1 × 5-fold cross-
validation process, the computing time of the 3D-SENet in AD
vs. HC, MCIc vs. HC, and MCIc vs. MCInc task was about 11.5,
10.9, and 10.6 h, respectively.

In order to evaluate the classification performance more
comprehensively, the Area Under the Curve (AUC) and

Matthews Correlation Coefficient (MCC) (Matthews, 1975) have
been used as the performance metrics in this study as well.
To verify whether or not our performance is different from
those of two methods, i.e., Christian et al. (2015) and the
3D-SENet model, we have further run six hypothesis tests (p-
value approach) for three binary experiments, i.e., AD vs. HC,
MCIc vs. HC, and MCIc vs. MCInc. After the homogeneity
of variance test was performed, the Student’s t-test with the
Cox-Cochran correction for unequal variances was applied if
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TABLE 5 | Comparison of experimental results with PCA + SVM (Christian et al., 2015) and 3D-SENet.

Experiment model AD vs. HC MCIc vs. HC MCIc vs. MCInc

ACC AUC MCC ACC AUC MCC ACC AUC MCC

PCA + SVM 0.76 ± 0.11 – – 0.72 ± 0.12 – – 0.66 ± 0.16 – –

3D-SENet 0.80 ± 0.05 0.88 ± 0.04 0.62 ± 0.09 0.75 ± 0.07 0.79 ± 0.07 0.42 ± 0.16 0.57 ± 0.11 0.57 ± 0.08 0.11 ± 0.15

CNN + EL proposed here 0.84 ± 0.05 0.92 ± 0.03 0.68 ± 0.10 0.79 ± 0.04 0.83 ± 0.06 0.49 ± 0.12 0.62 ± 0.06 0.59 ± 0.07 0.10 ± 0.15

the homogeneity of variance test failed. Experimental results
and corresponding statistical performance comparisons with p-
values are summarized in Tables 5, 6, respectively. For all three
binary classification tasks, the average classification accuracies
of the CNN-EL were statistically significantly higher than those
achieved using the 3D-SENet, while the standard deviations of
the CNN-EL were lower than or equal to those of the 3D-SENet.

It can be seen that the proposed early detection model for
Alzheimer’s disease based on CNN and EL was more accurate and
robust than the PCA plus SVM method (Christian et al., 2015)
and the 3D-SENet model.

Discriminable Brain Regions
In the first phase of EL, the validation set was employed to
examine each base classifier and subsequently to acquire three
classifier ensembles based on each of the three single-axis slice
datasets, each comprising of the best five sagittal, coronal, and
transverse base classifiers in generalization capabilities. As a base
classifier corresponds to a slice dataset, all 15 best base classifiers
correspond to 15 slices in the X–Y–Z coordinate system, which
can define 5 × 5 × 5 points in the X–Y–Z coordinate system.
As an example, the sagittal, coronal, and transverse slice numbers
corresponding to the 15 best base classifiers for the first time to
run the stratified fivefold cross-validation procedure are shown
in Table 7.

Take the AD vs. HC classification task for the first time
to run the stratified fivefold cross-validation procedure as
an example. One hundred twenty-five points in the X–Y–Z

TABLE 6 | Statistical comparisons with p-values about accuracy mean of the
three methods for (A) AD vs. HC task (upper panel), (B) MCIc vs. HC task (middle
panel), and (C) MCIc vs. MCInc task (lower panel).

Model PCA + SVM 3D-SENet CNN + EL
proposed here

(A)

PCA + SVM N/A p > 0.05 p < 0.05

3D-SENet p > 0.05 N/A p < 0.05

CNN + EL proposed here p < 0.05 p < 0.05 N/A

(B)

PCA + SVM N/A p > 0.05 p < 0.05

3D-SENet p > 0.05 N/A p < 0.05

CNN + EL proposed here p < 0.05 p < 0.05 N/A

(C)

PCA + SVM N/A p < 0.05 p > 0.05

3D-SENet p < 0.05 N/A p < 0.05

CNN + EL proposed here p > 0.05 p < 0.05 N/A

coordinate system were determined by the top 5 sagittal, coronal,
and transverse slices, respectively, e.g., (22, −5, −23), (20,
−17, −25). . . (28, −7, −11). These 125 points were mapped
onto various brain regions using the Brainnetome Atlas (Fan
et al., 2016), which can facilitate investigation of structure-
function relationships and comparative neuroanatomical studies.
The Brainnetome Atlas currently contains 246 regions of the
bilateral hemispheres. Moreover, the atlas connectivity-based
parcellation-yielded regions are functionally defined according to
behavioral domain and paradigm class meta-data labels of the
BrainMap database3 using forward and reverse inferences. The
brain regions corresponding to the 125 points in the standard
MNI space were located with the help of the Brainnetome
Atlas. In this way, the brain regions with particularly significant
contributions to the classification were identified according to
the number of intersection points located in those regions.
Here, the number of the intersection points determined by the
most discriminable slices separating two classes in a binary
classification task among the sagittal, coronal, and transverse
slice sets, transformed into the standard MNI space, acted as an
indicator to assess the contributions of a brain region in which
the points were located to classifying AD. Given that the brain
regions in a discriminable slice contribute to the classification

3http://www.brainmap.org/taxonomy

TABLE 7 | Sagittal, coronal, and transverse slice numbers corresponding to the
15 best base classifiers for the first time to run the stratified fivefold
cross-validation procedure.

Experiment Rank Sagittal slice # Coronal
slice #

Transverse
slice #

AD vs. HC 1 22 −5 −23

2 20 −17 −25

3 16 −13 −19

4 −20 −23 −17

5 28 −7 −11

MCIc vs. HC 1 16 −13 −17

2 20 −7 −25

3 14 −11 −7

4 26 −31 −23

5 −20 −5 −29

MCIc vs. MCInc 1 −46 −13 −23

2 −16 7 −19

3 −44 −1 55

4 −56 −79 −25

5 −50 −35 −29
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of AD, we cannot deny the fact that a brain region at which
an intersection point formed by three discriminable sagittal,
coronal, and transverse slices is located contributes most to the
classification of AD among all the brain regions that existed in the
sagittal, coronal or transverse discriminable slice since the brain
region exists in the three slices at the same time.

In this way, for all the 10 × 5-fold cross-validation processes,
the number of all the intersection points located in the same
brain region is summed to measure the ability of the brain
region to classify AD. The brain regions identified with the
most intersection points might be the most discriminable for a
binary classification task. Thus, the details of the identified brain
regions with the classification capacity are shown in Figure 8 and
Tables 8a–c. It is notable that the sum of the last column (i.e.,
the number of points located in a brain region) in each of the

three tables was less than 1250 since some intersection points
were located in the unlabeled brain regions. In Figure 8, values
on the vertical and the horizontal axes represent the brain region
labels and the number of intersection points located in each brain
region, respectively. The prefix capital letters R and L of a brain
region label (e.g., R.rHipp) refer to the right and left cerebral
hemispheres, respectively.

From the above figures and tables, the most discriminable
brain regions in the AD vs. HC classification task were the
rostral hippocampus (Greene et al., 2012), medial amygdala
(Nelson et al., 2018), globus pallidus (Baloyannis, 2006), lateral
amygdala (Kile et al., 2009), area 28/34 (EC, entorhinal cortex),
and caudal area 35/36, i.e., parahippocampal gyrus (van Hoesen
et al., 2000), while those in the MCIc vs. HC classification
task were rostral hippocampus (Ighodaro et al., 2015), medial

FIGURE 8 | The list of brain regions with the classification capacity in each classification task. (A) Discriminable brain regions in the AD vs. HC. (B) Discriminable
brain regions in the MCIc vs. HC. (C) Discriminable brain regions in the MCIc vs. MCInc.

Frontiers in Neuroscience | www.frontiersin.org 12 May 2020 | Volume 14 | Article 259

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00259 May 13, 2020 Time: 15:47 # 13

Pan et al. A Novel Approach Combining CNN and EL

TABLE 8a | Details of the discriminable brain regions in the AD vs. HC task.

Label of a
brain region

Name of a brain region # of points located
in a brain region

R.rHipp Rostral hippocampus 365

L.rHipp Rostral hippocampus 215

R.mAmyg Medial amygdala 93

L.mAmyg Medial amygdala 38

R.36c Caudal area 35/36 34

L.GP Globus pallidus 28

R.GP Globus pallidus 26

R.lAmyg Lateral amygdala 26

R.34 Area 28/34 (EC, entorhinal cortex) 25

L.36c Caudal area 35/36 21

L.cHipp Caudal hippocampus 12

R.cHipp Caudal hippocampus 12

R.TH Area TH (medial PPHC) 8

L.34 Area 28/34 (EC, entorhinal cortex) 7

L.dlPu Dorsolateral putamen 6

R.dlPu Dorsolateral putamen 6

L.lAmyg Lateral amygdala 5

R.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

5

R.NAC Nucleus accumbens 4

L.NAC Nucleus accumbens 3

L.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

2

amygdala (Cavedo et al., 2014), caudal hippocampus (Chen
et al., 2015), lateral amygdala (Kile et al., 2009), dorsolateral
putamen (Reeves et al., 2010), rostroventral area 20, i.e., Fusiform
gyrus (Bokde et al., 2006), globus pallidus (Hernández et al.,
2020), area 28/34 (EC, entorhinal cortex) (Du et al., 2001;
Burggren et al., 2011; Tward et al., 2017), and area TL (lateral
PPHC, posterior parahippocampal gyrus) (Devanand et al.,
2007). Finally, the most discriminable brain regions in the
MCIc vs. MCInc classification task were rostral area 21 and
anterior superior temporal sulcus, i.e., middle temporal gyrus
(Karas et al., 2008); rostral area 22 and lateral area 38, i.e.,
superior temporal gyrus (Karas et al., 2008); lateroventral area
37, i.e., fusiform gyrus (Guillozet et al., 2003); and caudoventral
of area 20 and intermediate lateral area 20 and caudolateral
of area 20, i.e., inferior temporal gyrus (Scheff et al., 2011)
and caudal hippocampus (Thomann et al., 2012). The top 10
most discriminable brain regions are mapped onto brain images
in Figure 9.

In the paper (Yang et al., 2019), the results showed that
the patients with aMCI (elderly patients with amnestic MCI)
merely had slight atrophy in the inferior parietal lobe of the
left hemisphere but a significant difference was NOT found
in comparison with the NC (normal controls). The results
are consistent with the highly lateralized MCIc vs. MCInc-
related features acquired in this study, to some degree. Plus,
the most discriminable brain regions identified in the MCIc
vs. MCInc classification task in our study were in agreement
with the conclusion of the paper (Yang et al., 2019) that

TABLE 8b | Details of the discriminable brain regions in the MCIc vs. HC task.

Label of a
brain region

Name of a brain region # of points located
in a brain region

R.rHipp Rostral hippocampus 268

L.rHipp Rostral hippocampus 158

R.mAmyg Medial amygdala 77

R.cHipp Caudal hippocampus 46

R.lAmyg Lateral amygdala 40

R.dlPu Dorsolateral putamen 34

R.A20rv Rostroventral area 20 29

L.mAmyg Medial amygdala 26

L.GP Globus pallidus 25

R.34 Area 28/34 (EC, entorhinal cortex) 23

R.GP Globus pallidus 23

R.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

20

L.TE1.0 TE1.0 and TE1.2 18

L.A22r Rostral area 22 17

L.cHipp Caudal hippocampus 16

R.TH Area TH (medial PPHC) 14

L.36c Caudal area 35/36 13

R.36c Caudal area 35/36 12

L.34 Area 28/34 (EC, entorhinal cortex) 12

R.NAC Nucleus accumbens 12

L.A20rv Rostroventral area 20 10

L.dlPu Dorsolateral putamen 8

L.vmPu Ventromedial putamen 7

L.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

7

L.A21r Rostral area 21 7

L.lAmyg Lateral amygdala 6

L.A20iv Intermediate ventral area 20 6

R.36r Rostral area 35/36 6

L.NAC Nucleus accumbens 5

L.A20cv Caudoventral of area 20 4

L.aSTS Anterior superior temporal sulcus 3

L.vIg Ventral dysgranular and granular
insula

3

L.A37lv Lateroventral area 37 2

L.A38l Lateral area 38 2

L.A20il Intermediate lateral area 20 2

L.Otha Occipital thalamus 1

R.vmPu Ventromedial putamen 1

the atrophy of cortical thickness and surface area in aMCI
began in the temporal lobe but the range of atrophy gradually
expanded with the progression of disease, to a great extent.
Furthermore, in the paper (Karas et al., 2008), the obtained
results were that MCI converters (patients with MCI who
will progress to AD) had more left lateral temporal lobe
atrophy (superior and middle temporal gyrus) and left parietal
atrophy (angular gyrus and inferior parietal lobule) than MCI
non-converters, i.e., stable patients with MCI, and the drawn
conclusion was that by studying two MCI converter vs. non-
converter populations, atrophy beyond the medial temporal
lobe was found to be characteristic of converters and atrophy
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TABLE 8c | Discriminable brain regions in the MCIc vs. MCInc classification task.

Label of a
brain region

Name of a brain region # of points located
in a brain region

L.A21r Rostral area 21 121

L.A22r Rostral area 22 112

L.A38l Lateral area 38 69

L.A37lv Lateroventral area 37 66

L.A20cv Caudoventral of area 20 46

L.aSTS Anterior superior temporal sulcus 40

L.A20il Intermediate lateral area 20 26

R.cHipp Caudal hippocampus 20

L.A20cl Caudolateral of area 20 20

L.rHipp Rostral hippocampus 18

L.mAmyg Medial amygdala 18

L.A13 Area 13 17

L.vIg Ventral dysgranular and granular
insula

15

R.A20rv Rostroventral area 20 14

R.mAmyg Medial amygdala 14

R.A38m Medial area 38 13

L.A20rv Rostroventral area 20 13

R.rHipp Rostral hippocampus 13

R.A38l Lateral area 38 13

R.A13 Area 13 12

L.A20iv Intermediate ventral area 20 10

R.A37lv Lateroventral area 37 7

L.A38m Medial area 38 7

R.vIa Ventral agranular insula 6

L.3ulhf Area 1/2/3 (upper limb, head and
face region)

5

R.dId Dorsal dysgranular insula 5

R.A20iv Intermediate ventral area 20 5

L.34 Area 28/34 (EC, entorhinal cortex) 4

R.NAC Nucleus accumbens 4

L.TI Area TI (temporal agranular insular
cortex)

3

L.A6cvl Caudal ventrolateral area 6 3

L.A4tl Area 4 (tongue and larynx region) 3

L.dId Dorsal dysgranular insula 3

R.TE1.0 TE1.0 and TE1.2 3

R.A20cv Caudoventral of area 20 3

L.A6cdl Caudal dorsolateral area 6 2

L.A2 Area 1/2/3 (tongue and larynx
region)

2

L.A37mv Medioventral area 37 2

R.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

2

L.cHipp Caudal hippocampus 2

L.A40rv Rostroventral area 40 (pfop) 2

R.A22r Rostral area 22 2

R.A21r Rostral area 21 2

L.A4hf Area 4 (head and face region) 1

L.A6vl Ventrolateral area 6 1

R.34 Area 28/34 (EC, entorhinal cortex) 1

L.vIa Ventral agranular insula 1

R.A23v Ventral area 23 1

L.A44v Ventral area 44 1

(Continued)

TABLE 8c | Continued

Label of a
brain region

Name of a brain region # of points located
in a brain region

L.TE1.0 TE1.0 and TE1.2 1

L.dIg Dorsal granular insula 1

L.G Hypergranular insula 1

R.A44op Opercular area 44 1

R.G Hypergranular insula 1

L.lPFtha Lateral pre-frontal thalamus 1

L.47l Lateral area 12/47 1

L.NAC Nucleus accumbens 1

of structures such as the left parietal cortex and left lateral
temporal lobe might independently predict conversion. The
results and conclusion were consistent with most of our
results to some extent.

After location mapping, the corresponding behavioral
domains to every identified brain region were obtained from

FIGURE 9 | Top 10 most discriminable brain regions in each binary
classification task: (A) AD vs. HC; (B) MCIc vs. HC; (C) MCIc vs. MCInc.
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FIGURE 10 | Distributions of the identified brain regions on the relevant behavioral domains in each binary classification task: (A) AD vs. HC; (B) MCIc vs. HC;
(C) MCIc vs. MCInc.

the Brainnetome Atlas official website,4 and the functions of
these identified brain regions were analyzed. Then, the number
of identified brain regions corresponding to each AD-related
behavioral domain was calculated for each task (Figure 10)
to reveal the distribution of structures showing the largest
differences between classes and thus most informative for
classification (e.g., emotion-related structures for AD vs. HC).
In the figure, the vertical and horizontal axes show the relevant
behavioral domains and the number of identified brain regions
associated with these relevant behavioral domains, respectively.

From Figure 10, it can be seen that the functions related
to these identified brain regions with the discriminability were
mainly involved with the behavioral domains of emotion,
memory, language, perception, internal feelings, and activity.
The most common symptoms of AD, especially in the early

4www.Brainnetome.org

stage, include memory loss that disrupts daily life, challenges in
planning or problem solving, difficulty completing familiar tasks
at home, at work, or at leisure, confusion with time or place,
trouble understanding visual images and spatial relationships,
new problems with words in speaking or writing, misplacing
things and losing the ability to retrace steps, decreased or poor
judgment, and changes in mood and personality (Mantzavinos
and Alexiou, 2017). Thus, the behavioral domains relevant to
the identified brain regions were generally consistent with the
common symptoms of AD.

DISCUSSION

In this study, we developed a novel deep learning approach that
combined CNN and EL and applied it to the most commonly
acquired anatomical MRI of the brain, i.e., T1WI. We aimed to
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achieve two objectives: i.e., classification of AD or MCIc vs. HC,
and MCIc vs. MCInc and identification of the complex change
patterns associated with AD.

In comparison with a previous PCA plus SVM method
(Christian et al., 2015), the current method does not require
manual selection of ROIs, but automatically extracts the
discriminable features from the MR images using a CNN-
based adaptive representation learning method in a data-
driven way. The proposed method employs a two-stage EL
scheme to improve generalization and robustness. The model
achieved average classification accuracies (± standard deviation)
of 0.84 ± 0.05 for AD vs. HC, 0.79 ± 0.04 for MCIc vs. HC, and
0.62± 0.06 for MCIc vs. MCInc. Compared to the PCA plus SVM
method, the proposed method showed statistically substantially
improved accuracy and robustness for distinguishing among the
AD, MCIc, and HC groups, while model accuracy was NOT
statistically lower than that achieved by the PCA plus SVM
method for distinguishing MCIc from MCInc. At the same time,
compared to the 3D-SENet model, the CNN-EL method achieved
statistically higher accuracy and robustness for all the three
binary classification tasks.

For a 1 × 5-fold cross-validation processes, we also identified
the 15 slices and resultant 125 (i.e., 5× 5× 5) intersection points
in the standard MNI space based on the five best base classifiers
trained respectively with sagittal, coronal, or transverse slice data.
These points were then mapped onto the Brainnetome Atlas to
identify the corresponding brain regions with the discriminability
in the three binary classification tasks. For all the 10 × 5-fold
cross-validation processes, the number of all the intersection
points located in the same brain region was summed to evaluate
the capability of the brain region to help diagnose AD. The
identified brain regions included hippocampus, amygdala, and
temporal lobe, which are known to be affected by AD and
involved in neurological processes impaired in AD (Schroeter
et al., 2009). Also, we acquired the corresponding behavioral
domains based on all identified brain regions, which were
generally consistent with the common symptoms of AD.

In two-dimensional convolutional neural network (2D-
CNN)-based models for early detection of AD, only sagittal,
coronal, or transverse slices of 3D MR images are usually used
as the training dataset. A specific slice, such as a transverse
slice through the hippocampus, was often selected based on
experience or prior domain knowledge (Wang et al., 2018).
Using only the data from a single 2D slice of a 3D MR image
removes potentially valuable information. In comparison, the
novel CNN-EL approach that we proposed here has the following
significant features:

(1) Six data augmentation (DA) methods are used to deal
with the imbalanced data problem by disproportionately
increasing the number of image slices in classes with fewer
samples. As a result, each class can have approximately
an equal increased number of training instances in the
augmented dataset.

(2) The proposed ensemble model combines features
identified from the sagittal, coronal, and transverse slices
of a 3D MRI dataset together, to improve classification

accuracy and model adaptability. Each of the base 2D
CNN classifier was trained with the data from a single
slice orientation. Then, the top “N” trained base classifiers
were selected according to the generalization performance
on the verification dataset to build the final ensemble. In
this way, the method effectively improved classification
accuracy and robustness. The slices used as training
data to construct base classifiers were not necessarily
specified based on prior domain knowledge; rather, each
available and valid slice (sagittal, coronal, or transverse)
in the dataset was used to train the corresponding
base classifier.

(3) Compared to the length of time spent on building a model
with data from only a single slice orientation, it may take
more time to build the proposed model since many more
base classifiers need to be trained. To effectively solve this
problem, the parallel processing method was adopted to
train the base classifiers used to build the ensemble model.
This greatly improved the training efficiency and made the
proposed model scalable.

(4) According to the classification performances of all trained
base classifiers on the verification dataset, the three
sets of top “N” base classifiers trained using data from
sagittal, coronal, and transverse slices, respectively, were
determined. Since a base classifier was trained with the
data from only a specific slice orientation, the most
important sagittal, coronal, or transverse slice for a binary
classification task (e.g., AD vs. HC) could be located
according to the three sets of top “N” base classifiers
in a data-driven way. Furthermore, the brain regions
corresponding to the intersection points determined by the
top “N” sagittal, coronal, and transverse slices could be
located with the help of the Brainnetome Atlas. The brain
regions identified with the most intersection points might
be the most discriminable for a binary classification task,
given that the number of the intersection points could be an
indicator to measure the ability of a brain region in which
the points were located to classify AD.

(5) The performance of the proposed classifier ensemble was
compared to that of other machine learning models using
the same dataset. The experimental results showed that
the proposed model achieved better classification accuracy
and robustness.

The relatively low classification accuracy for MCIc vs. MCInc
warrants further investigation and the classification performance
needs to be improved with the optimization methods and/or
other deep learning models to identify the brain regions with
stronger discriminability.

For an individual subject to be diagnosed, the votes of base
classifiers in the trained classifier ensemble based on the three-
axis slices and the number of resulting intersection points located
in each brain region might be employed to disclose the extent
to which AD impaired each brain region and each behavioral
domain, which could help understand and evaluate the subject’s
disease status, symptom burden and, more importantly, progress.
Plus, with the advancements of brain atlases and advanced
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ultra-high-field scanners, chances are that the positions and the
number of the intersection points determined by the proposed
CNN-EL methods might provide more details on and insights
into the progress of AD pathology.

Furthermore, the advocated method may be useful for
identifying additional candidate neuroimaging biomarkers for
AD as well as for other brain diseases such as Parkinson’s
disease, autism, schizophrenia and severe depression, especially
for identifying candidate neuroimaging biomarkers for other
little-known brain disorders, in a data-driven way.

The above-mentioned discussions, the clinical implication of
the finding applying other samples, and the generalizability of
the advocated CNN-EL approach need to be examined in the
future research.
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