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Morphine is the most potent analgesic for chronic pain, 
but its clinical use has been limited by the opiate’s innate 
tendency to produce tolerance, severe withdrawal symp-
toms and rewarding properties with a high risk of relapse. 
To understand the addictive properties of morphine, past 
studies have focused on relevant molecular and cellular 
changes in the brain, highlighting the functional roles of 
reward-related brain regions. Given the accumulated find-
ings, a recent, emerging trend in morphine research is that 
of examining the dynamics of neuronal interactions in 
brain reward circuits under the influence of morphine ac-
tion. In this review, we highlight recent findings on the 
roles of several reward circuits involved in morphine ad-
diction based on pharmacological, molecular and physio-
logical evidences. 
 
 
INTRODUCTION 
1 
Morphine is the first-line choice for the management of chronic, 
moderate-to-severe pain in both cancer and non-cancer pa-
tients (Clark, 2002; Gretton et al., 2013; Manchikanti et al., 
2012; Schug et al., 1992; Schultheiss et al., 1992). Unfortunate-
ly, long-term treatment with morphine ultimately results in toler-
ance to morphine’s analgesic effect (Mercadante, 1999; Trujillo 
and Akil, 1991), limiting its efficacy in clinical practice. A higher 
dose of morphine is often used to overcome tolerance, but this 
strategy exposes patients to a higher risk of developing severe 
side effects, such as morphine rewarding and withdrawal symp-
toms (Kumar et al., 2001; LeResche et al., 2015). Thus, there is 
a need to understand the molecular and functional mechanisms 
of morphine addiction to develop less addictive therapeutic 
substitutes for morphine. Recently, a number of studies have 
provided evidence for the complexity of anatomical and func-
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tional interactions between neurons in brain reward circuits 
prompted by morphine’s rewarding action (Fig. 1; Table 1). 
Here, we review the neuronal interactions in brain reward cir-
cuits under morphine reward. 
 
VENTRAL TEGMENTAL AREA (VTA)-NUCLEUS  
ACCUMBENS (NAC) CIRCUIT: DOPAMINERGIC  
(DA)/GAMMA-AMINOBUTYRIC ACID (GABA)ERGIC  
TRANSMISSION 
 
The mu-opioid receptor (MOR) is key to morphine’s action, and 
there are several lines of evidence on the strong relationship 
between MOR activation in the ventral tegmental area (VTA) 
and reinforcing the effects of morphine. The VTA contains many 
MORs, and intra-VTA injection of a MOR antagonist significant-
ly reduced morphine-induced conditioned place preference 
(CPP) (Mamoon et al., 1995; Olmstead and Franklin, 1997). 
Additionally, a behavioral study using delta-opioid-receptor 
(DOR) knockout mice and a DOR antagonist showed that DOR 
prevented the rewarding effects of morphine, suggesting that 
the action of DOR on morphine affects the nucleus accumbens 
(NAc) gamma-aminobutyric acid (GABA)ergic and VTA dopa-
minergic (DA) neurons (Chefer and Shippenberg, 2009). How-
ever, there is a report that the systemic injection of the kappa- 
opioid receptor (KOR) does not alter the VTA DA release in-
duced by DAMGO (Devine et al., 1993). Furthermore, several 
studies have shown the changes in dopamine receptors during 
morphine reward and withdrawal in VTA-NAc circuits (Chartoff 
et al., 2006; Muller and Unterwald, 2005).  

For example, Chartoff et al. (2006) presented molecular evi-
dence that a D1 receptor agonist significantly reduced MOR-
antagonist-induced somatic withdrawal symptoms and in-
creased GluR1 phosphorylation in the NAc of morphine-
dependent rats. Additionally, D1 dopamine and an N-methyl-d-
aspartic acid (NMDA) glutamate receptor antagonist significant-
ly reduced Fos protein, which systemic morphine up-regulated, 
in the NAc and substantia nigra (SN) (Bontempi and Sharp, 
1997; Muller and Unterwald, 2005). 

The VTA sends a dense pack of dopaminergic projections to 
the GABAergic medium spiny neurons (MSNs) in both the shell 
and core regions of the nucleus accumbens (Fig. 1; Table 1). 
Between the two sub-regions, dopaminergic transmission to the 
NAc shell is stimulated preferentially by morphine reward 
(Lecca et al., 2007; Pontieri et al., 1995). Specifically, it has 
been found that within VTA-NAc pathways, tyrosine hydrox-
ylase (TH), a well-known enzyme in the biosynthesis of dopa-
mine (Daubner et al., 2011), is up-regulated level of TH expres-
sion in response to chronic morphine treatment indicates that 
up-regulated level of dopamine in the VTA-NAc circuits may 
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Fig. 1. Schematic diagram of brain 
reward circuits involved in morphine 
reward. The ventral tegmental area 
(VTA) projects dopaminergic (purple) 
transmission to the nucleus accum-
bens (NAc), medial prefrontal cortex 
(mPFC), hippocampus (Hipp), bed 
nucleus of the stria terminalis (BNST), 
amygdala (Amy), dorsal striatum (dST) 
and it modulates glutamatergic (blue) 
and gamma-aminobutyric acid (GABA)
ergic (green) transmission. VTA dopa-
minergic (DA) neurons are also modu-
lated by lateral hypothalamus (LH) 
orexinergic (yellow) neurons and ros-
tromedial tegmental nucleus (RMTg) 
GABAergic neurons. Glutamatergic

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
projections from the mPFC and Amy innervate the NAc to modulate NAc GABAergic transmission to the VTA, and glutamatergic transmission 
from the mPFC and BNST modulates VTA DA neurons. 
 
 
 
play an important role in morphine and other opioid rewards 
(Beitner-Johnson and Nestler, 1991). Consistent with this, a 
study by Liang et al. (2012) confirmed dynamic changes in TH 
expression in VTA-NAc projection neurons by morphine-
induced CPP in rats. Furthermore, acute treatment with mor-
phine to rats followed by prolonged abstinence induces burst 
firing of VTA dopaminergic neurons, which are thought to play a 
role in encoding reward value (De Luca et al., 2011; Fields and 
Margolis, 2015; Jalabert et al., 2011; Schultz, 2002). A potential 
explanation for the increased burst firing rate of VTA dopamin-
ergic neurons is reduced neuronal size. Chronic morphine 
treatment can reduce the size of VTA dopaminergic neurons, 
and smaller neurons are known to have lower membrane re-
sistance, which could increase the overall neural firing rate in 
mice (Coque et al., 2011; Russo et al., 2007). Indeed, in vivo 
recording of mice brain has shown that chronic morphine 
treatment increased the basal firing rate and the burst firing rate 
in VTA dopaminergic neurons (Koo et al., 2012). 

Dopaminergic transmission in VTA-NAc circuits can be 
modulated by effects of morphine treatment via cannabinoid 
and cholinergic systems (Cossu et al., 2001; Karimi et al., 2013; 
Khaleghzadeh-Ahangar and Haghparast, 2015; Melis et al., 
2000; Rashidy-Pour et al., 2013; Rezayof et al., 2008). For 
example, Tanda et al. (1997) suggested that cannabinoids can 
activate VTA-NAc dopaminergic transmission by a common 
MOR-dependent mechanism shared with opioids, suggesting 
the possibility of crosstalk between cannabinoid and morphine 
signaling pathways. There is ultrastructural evidence that can-
nabinoid receptor type 1 (CB1)-labeled terminals interacted 
with 19% of the NAc shell and 13% of the NAc core containing 
MOR, and MOR-labeled terminals contacted 20% of the NAc 
shell and 10% of the NAc core containing CB1 receptors, sug-
gesting the role of CB1 receptors in the rat NAc (Pickel et al., 
2004). Indeed, intra-NAc injection of a CB1 receptor agonist 
can potentiate the rewarding effect of low-dose morphine and 
induce CPP, while a CB1 receptor antagonist inhibited mor-
phine-induced CPP in rats (Karimi et al., 2013). Additionally, 
cholinergic inputs to the VTA can control morphine reward as 
well as morphine related-learning and locomotion by activating 
VTA dopaminergic neurons (Darbandi et al., 2008; Rezayof et 
al., 2007; 2008; Steidl and Yeomans, 2009). Morphine treat-
ment induces a long-lasting increase in the cholinergic modula-

tion of GABA synapses in the NAc, suggesting a modulatory 
role for cholinergic systems on the VTA-NAc dopaminergic 
system in adult rats (De Rover et al., 2005). 

Along with dopaminergic efferents, the VTA receives GA-
BAergic inputs from the rostromedial tegmental nucleus 
(RMTg) and the NAc (Fig. 1; Table 1). They are believed to 
modulate the activity of VTA dopaminergic neurons (Koo et al., 
2012; Tan et al., 2012; Taylor et al., 2015; van Zessen et al., 
2012). For example, during acute morphine treatment and 
withdrawal, VTA dopaminergic neurons are activated by disin-
hibition of GABAergic projections from the RMTg in rats (de 
Guglielmo et al., 2015; Kaufling and Aston-Jones, 2015; Lecca 
et al., 2012). Additionally, optogenetic stimulation of GABAergic 
inputs to VTA of mice brain can strongly inhibit the activity of 
VTA dopaminergic neurons and induce conditioned place aver-
sion (Tan et al., 2012). However, it remains to be determined 
how GABAergic inputs on VTA dopaminergic neurons modulate 
morphine-dependent states. 

Collectively, activation of dopaminergic neurons can potently 
modulate morphine reward. However, non-dopaminergic cir-
cuits also contribute to morphine reward (Miller et al., 2005; 
Neugebauer et al., 2013) but, currently, our knowledge of the 
non-dopaminergic circuits is limited. Understanding the contri-
bution of VTA dopaminergic and non-dopaminergic circuits to 
morphine reward is important in future studies.  
 
VTA-AMYGDALA/ BED NUCLEUS OF THE STRIA  
TERMINALIS (BNST) CIRCUIT: DOPAMINERGIC/ 
GLUTAMATERGIC/GABAERGIC TRANSMISSION 
 
The amygdala is located in the medial temporal lobe and has 
13 sub-regions, including the basolateral amygdala (BLA) and 
the central amygdala (CeA) (Amunts et al., 2005; Stamatakis et 
al., 2014). Several human studies have provided evidence for 
the role of the amygdala in drug-seeking behavior (Chase et al., 
2011; Kufahl et al., 2005).  

The BLA is thought to be a key region for reconsolidation of 
drug-related memory and reinstatement of drug-seeking behav-
iors (Fuchs et al., 2005; Kaufling and Aston-Jones, 2015). The 
VTA sends dopaminergic projections to the BLA and induces 
associative neuronal plasticity in the amygdala (Bissiere et al., 
2003; Ford et al., 2006) (Fig. 1; Table 1). BLA-projecting VTA 
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Table 1. Overview of the brain reward circuits in morphine reward 

Circuits Tools Phenotype Projection type References 

RMTg→VTA Antero/Retrograde tracer 

Pharmacology 

Inactivation of RMTg reduces morphine-  

induced increase of impulse activity of 

VTA DA neurons 

GABAergic 

transmission 

de Guglielmo et al. 

(2015) 

VTA→NAc Optogenetic stimulation Optical stimulation of VTA DA terminal in NAc 

increases morphine-induced CPP 

Dopaminergic  

transmission 

Koo et al. (2012) 

VTA→BLA Retrograde tracer 

ex vivo electrophysiology 

MOR agonist induces greater inhibition of  

BLA-projecting neurons than NAc projecting 

neurons 

Dopaminergic  

transmission 

Ford et al. (2006) 

Pharmacology Intra-VTA morphine-induced CPP was  

controlled by BLA Dopamine receptors 

Dopaminergic  

transmission 

Lintas et al. (2011)

BNST→VTA Retrograde tracer 

Electrophysiology 

Chronic morphine treatment up-regulated the 

excitatory transmission in a subpopulation of 

BNST neurons that project to the VTA 

Glutamatergic/ 

GABAergic  

transmission 

Dumont et al. (2008)

CeA→BNST Pharmacology Inhibition of CeA GABA neurons reduced  

morphine-induced CPP and reinstatement 

with Fos expression in BNST 

GABAergic  

transmission 

Ma et al. (2008) 

BLA→NAc Pharmacology Inhibition of NAc NMDA transmission blocks 

potentiation of intra-BLA morphine-induced 

CPP 

Glutamatergic  

transmission 

Lintas et al. (2012)

BLA→mPFC Pharmacology mPFC projecting BLA neurons control  

morphine rewarding via CaMKII  

signaling/NMDA signaling 

Glutamatergic  

transmission 

Gholizadeh et al. 

(2013) 

Rosen et al. (2015)

VTA→mPFC Retrograde tracer 

Pharmacology 

Lesion of VTA DA terminal to mPFC blocks 

infra-VTA MOR agonist induced CPP 

Dopaminergic  

transmission 

Narita et al. (2010)

mPFC→VTA Pharmacology Decreased glutamate transmission via NMDAR 

and AMPAR enhances morphine-induced 

CPP  

Glutamatergic  

transmission 

Bishop et al. (2011)

mPFC↔VTA Pharmacology Inactivated CB1 receptors induce motivational 

valence to morphine  

Cannabinoidergic 

transmission 

De Jaeger et al. 

(2013) 

Ahmad et al. (2013)

Tan et al. (2014) 

LH→VTA Pharmacology Intra-VTA orexin induces reinstatement of  

morphine 

Orexinergic  

transmission 

Harris et al. (2005)

VTA→Hipp Pharmacology D1/D2 antagonist blocks acquisition of  

morphine induced CPP 

Dopaminergic  

transmission 

Esmaeili et al. (2012)

VTA→dST Pharmacology MOR antagonist injection in the VTA blocked 

Fos induction in the dST 

Dopaminergic  

transmission 

Bontempi and Sharp 

(1997) 

VTA, ventral tegmental area; NAc, nucleus accumbens; Hipp, hippocampus; BNST, bed nucleus of the stria terminalis; Amy, amygdala; dST, dorsal 
striatum; RMTg, rostromedial tegmental nucleus; LH, lateral hypothalamus, mPFC, medial prefrontal cortex. CPP, conditioned place preference; CeA, 
central nucleus of the amygdala; BLA, basolateral amygdala; NMDA, N-methyl-D-aspartate receptor; CaMKII, Ca2+/calmodulin-dependent protein ki-
nase II; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid. CB1, cannabinoid receptor type 1 
 
 
 
neurons are regulated by opioid agonists independently from 
NAc-projecting VTA neurons, indicating that VTA dopaminergic 
neurons are heterogeneous and the opioid-induced behavioral 
effects may vary by specific changes in distinct subpopulations 
of dopaminergic neurons within the VTA (Ford et al., 2006). 
Similarly, Lintas et al. (2011) reported that blockade of dopa-

mine D1 and D2 receptors in the BLA of Sprague Dawley (SD) 
rats can modulate intra-VTA morphine-induced CPP in both 
morphine-naïve and -dependent states.  

The CeA sends out GABAergic projections that primarily con-
trol GABAergic drive in the bed nucleus of the stria terminalis 
(BNST), which receives dopaminergic inputs from the VTA 
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(Dong et al., 2001; Li et al., 2012; Rezayof et al., 2009; Zarrin-
dast et al., 2013) (Fig. 1; Table. 1). Intra-CeA injection of a D1 or 
D2 receptor agonist can induce morphine-induced CPP in rats 
(Rezayof et al., 2002; Zarrindast et al., 2003). In turn, chronic 
morphine treatment increases FosB expression in the CeA of 
rats, indicating initiation or maintaining of state of rewarding 
(Nestler, 2004; Nunez et al., 2010). Ma et al. (2008) also 
showed that inhibition of the CeA of rat brain reduced mor-
phine-induced CPP and foot shock-induced CPP reinstatement 
with concurrent reduction of Fos expression in the BNST and 
the VTA, but Fos expression in the BNST was not altered by 
CeA modulation. Finnegan et al. (2006) examined that MOR 
activation on CeA-projecting GABAergic BLA neurons de-
creased GABAergic inputs to CeA via Kv1.1 and Kv1.2 signal-
ing. Also, molecular and behavioral studies have shown the 
possible involvement of CeA in expression and reinstatement of 
morphine-induced CPP. Furthermore, Watanabe et al. (2003) 
suggested that non-dopaminergic systems, such as the nora-
drenergic system, also contribute to morphine rewarding in the 
CeA. The BNST sends glutamatergic and GABAergic projec-
tions to the VTA (Jennings et al., 2013; Kudo et al., 2012; 2014; 
van Zessen et al., 2012). An early study provided electrophysio-
logical evidence that chronic morphine can selectively increase 
α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)- 
mediated excitatory postsynaptic currents in specific VTA-
projecting BNST neurons of rats (Dumont et al., 2008). To sup-
port this result, more recent studies also found that optogenetic 
or pharmacological activation of GABAergic projections from 
the BNST to the VTA can inhibit VTA dopaminergic transmis-
sion (Jennings et al., 2013; van Zessen et al., 2012). Collective-
ly, these findings indicate that amygdala subcircuits to the VTA 
may play important roles in modulating diverse components in 
morphine addiction. 
 
VTA-MEDIAL PREFRONTAL CORTEX (MPFC)/NAC  
CIRCUIT: DOPAMINERGIC/GLUTAMATERGIC  
TRANSMISSION 
 
The VTA sends dopaminergic projections to the mPFC, while 
the mPFC sends glutamatergic projections to both the VTA and 
the NAc (Peters and De Vries, 2012; Sesack and Carr, 2002) 
(Fig. 1; Table 1). Several studies have demonstrated that the 
VTA-mPFC circuit is involved in morphine reward. For example, 
intra-VTA infusion of a MOR agonist increased the dopamine 
level in the mPFC, and a decreased dopamine level in the 
mPFC can disrupt acquisition of mu-opioid agonist-induced 
CPP in rats (Narita et al., 2010). Furthermore, pharmacological 
blockade of either mPFC AMPA or NMDA receptors in the 
mPFC of rats increases morphine-induced CPP to its sub-
threshold dose and decreases dopamine release properties as 
changes of firing and bursting activities in VTA dopaminergic 
neurons (De Jaeger et al., 2013; Tan et al., 2014). However, 
either cellular or molecular contributions of altered glutama-
tergic transmission from the mPFC to VTA dopaminergic neu-
rons in morphine addiction remains to be determined.  

Another bidirectional circuit in the mPFC is the retrograde 
signaling of endocannabinoids from the VTA (Szabo et al., 
2002). Cannabinoid transmission through CB1 receptor in 
mPFC is known to modulate emotional processing, memory, 
and balance of morphine-related reward and aversion in rats 
(Ahmad et al., 2013; Milad and Quirk, 2002). According to Ah-
mad et al. (2013), activation of CB1 transmission induces aver-
sion to morphine, whereas inhibition of CB1 transmission pro-
duces motivation towards morphine. This bidirectional control of 

morphine preference could be interpreted with the mPFC-VTA 
circuit. Low activation of CB1 receptors in the mPFC is known 
to increase the spontaneous firing of VTA dopaminergic neu-
rons, whereas high activation inhibits spontaneous dopaminer-
gic neuron activity (Ahmad et al., 2013). The major modulatory 
signaling in the mPFC-VTA circuit for morphine reward may be 
inhibitory, because CB1 receptors in the mPFC can control VTA 
dopaminergic transmission through GABAergic signaling 
(Dacher and Nugent, 2011; Dazzi et al., 2014). Together, these 
studies suggest that CB1 transmission from the mPFC plays a 
prominent role in emotional processing for morphine through 
the modulation of VTA dopaminergic neurons.  
 
VTA-HIPPOCAMPUS CIRCUIT: DOPAMINERGIC/ 
GLUTAMATERGIC TRANSMISSION 
 
According to Lisman and Grace (2005), the hippocampus-VTA 
circuit consists of bidirectional pathways. The first pathway 
involves dopaminergic projections from the VTA to the hippo-
campus (Fig. 1; Table 1). Dopamine transmission can induce 
long-term potentiation (LTP) in the hippocampus when pre-
sented with novel stimuli in rodents (Gasbarri et al., 1997; Lis-
man and Grace, 2005; Schott et al., 2004). Accordingly, the role 
of the VTA-hippocampus circuit in rewards could be involved in, 
and may be restricted to, the acquisition of novel rewarding 
stimuli in the fMRI study using human brain (Bunzeck et al., 
2012). Recent studies in morphine reward also showed a role 
for the VTA-hippocampus in the acquisition of morphine-
induced CPP. For example, administering an antagonist of D1 
or D2 receptors in the hippocampal CA1 can inhibit the acquisi-
tion of intra-VTA morphine-induced CPP in rats (Esmaeili et al., 
2012; Haghparast et al., 2013). The second pathway is from 
the hippocampus to the VTA, which is activated when the hip-
pocampus detects a previously learned rewarding cue (Lisman 
and Grace, 2005) and plays a role in spatial reinforcement 
learning (Keleta and Martinez, 2012). This circuit is also inter-
mingled with other brain regions. Specifically, hippocampal CA3 
glutamatergic neurons can activate GABAergic neurons of the 
caudodorsal lateral septum and the NAc, which, in turn, in-
crease dopamine releases in the VTA by the disinhibition of 
GABAergic projections to the VTA (Luo et al., 2011). Together, 
these studies suggest a relationship between morphine reward 
and the hippocampus-VTA circuit.  
 
AMYGDALA-NAC/HIPPOCAMPUS/MPFC CIRCUIT:  
GLUTAMATERGIC TRANSMISSION 
 
The BLA sends glutamatergic projections to NAc GABAergic 
neurons, and neurotransmission within BLA-NAc circuit is in-
volved in reward-seeking behavior (Ambroggi et al., 2008; Everitt 
et al., 1999; Stamatakis et al., 2014) (Fig. 1; Table 1). Specifically, 
BLA projections to NAc neurons are necessary for cue-evoked 
excitation of NAc neurons, through which the excited NAc neu-
rons promote reward-seeking behavior (Ambroggi et al., 2008). 
Additionally, BLA efferents to the NAc shell can control opiate 
reward via differential regulation of D1 or D2 receptor signaling 
in rats (Lintas et al., 2012). 

The BLA also sends glutamatergic projections to the hippo-
campus (Rei et al., 2015), and the synaptic plasticity induced by 
BLA-hippocampus glutamatergic transmission mediates the 
formation of learning and memory required for opioid addiction 
(Eisch et al., 2000; Han et al., 2015; Lu et al., 2010; Pu et al., 
2002). Also, cannabinoids are involved in hippocampal reward-
related learning by modulating glutamatergic transmission in 
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rodents (Polissidis et al., 2013; Zarrindast et al., 2007). Howev-
er, the neuronal interplay between the BLA and the hippocam-
pus still needs to be clarified in the context of morphine reward.  
The mPFC receives glutamatergic inputs from the BLA, and 
this circuit plays a role in memory consolidation (Yu et al., 2012). 
The mPFC is known to be related to the formation of associa-
tive memory between morphine and non-salient cues, and 
relapse in morphine addiction in rodents animal models (De 
Jaeger et al., 2013; Li et al., 2008; Ventura et al., 2005). Fur-
thermore, the mPFC is believed to be important for processing 
salient information that drives conditioned behavioral responses 
(Quirk and Mueller, 2008; Stamatakis et al., 2014). Consistent 
with this, Gholizadeh et al. (2013) revealed that protein synthe-
sis in the BLA controls the consolidation of morphine-related 
memory in mPFC via calcium/calmodulin-dependent protein 
kinase II (CaMKII) signaling. Additionally, a morphine-related 
memory switch is controlled by D2 receptor-CaMKII signaling 
within the BLA-mPFC circuit in rats (Rosen et al., 2015). Specif-
ically, blockade of NMDA receptors in the prelimbic subdivision 
of the mPFC of rats can strongly potentiate the rewarding ef-
fects of systemic and intra-VTA morphine treatment, but inacti-
vation of the BLA blocks this behavioral potentiation (Bishop et 
al., 2011). Together, these data suggest that chronic morphine 
treatment induces excitatory synaptic drive in the BLA-NAc 
circuit that is strongly involved in morphine addiction, and 
demonstrate that the BLA-mPFC circuit plays an important role 
in drug-related cue learning. 
 
LATERAL HYPOTHALAMUS (LH)-VTA CIRCUIT:  
OREXINERGIC TRANSMISSION 
 
Hypothalamus neurons in the brain are known to exclusively 
produce orexin neuropeptides that bind to orexin-1 or orexin-2 
receptors (de Lecea et al., 1998; Sakurai et al., 1998). The 
hypothalamus consists of small sub-regions, and each has 
varied and segregated functions (Merkle et al., 2015). Among 
the sub-regions, the lateral hypothalamus (LH) is considered to 
play a role in reward-related behavior (Cason et al., 2010; Ca-
zala et al., 1987; Richardson and Aston-Jones, 2012). 

Fifty percent of LH neurons are orexinergic neurons 
(Georgescu et al., 2003), while the other 50% consists of vari-
ous other neuropeptidergic neurons, including glucagon-like 
peptide-1, oxytocin, and arginine-vasopressin neurons (de Lecea 
et al., 1998; Merkle et al., 2015). The transmission from LH orex-
inergic neurons to VTA dopaminergic neurons is mediated by 
the orexin-1 receptors (Razavi et al., 2014). LH orexinergic 
neurons have a role in rewarding, withdrawal, and synaptic 
plasticity induced by morphine (Baimel and Borgland, 2015; 
Georgescu et al., 2003). For example, withdrawal after treat-
ment with an escalating dose of morphine for 10 days caused 
the up-regulation of MOR and orexin mRNA in the LH, as well 
as the striatum (Zhou et al., 2006). In addition, Georgescu et al. 
(2003) reported that MOR on LH orexinergic neurons induced 
cAMP response element-binding protein (CREB) and c-Fos 
expression during chronic morphine exposure and withdrawal 
using orexin knockout mice. Furthermore, LH orexin knockout 
mice show reduced both rewarding and withdrawal responses 
(Georgescu et al., 2003). 

The circuitry between the LH and VTA could indirectly or di-
rectly control rewarding effects of morphine (Baimel and Bor-
gland, 2015; Harris et al., 2005) (Fig. 1; Table 1). Specifically, 
activation of LH orexinergic neurons by rat pancreatic polypep-
tide or intra-VTA injection of orexin can reinstate previously 
extinguished morphine-induced CPP in rats (Harris et al., 2005). 

Furthermore, morphine exposure-mediated modulation of the 
orexin-1 receptors in VTA dopaminergic neurons can increase 
presynaptic glutamate releases and decrease GABA releases, 
supporting the idea that LH orexinergic projections to VTA do-
paminergic neurons play a modulatory role in morphine reward 
(Baimel and Borgland, 2015). 
 
DORSAL STRIATUM (DST) 
 
The role of the dorsal striatum (dST) in addiction is important in 
the development of habitual and compulsive drug use (Everitt 
and Robbins, 2013; Koob and Volkow, 2010). Especially within 
the dST, the dorsomedial striatum is more closely related to 
acquisition and drug seeking than the dorsolateral striatum 
(Everitt, 2014). Nguyen et al. (2014) reported that injection of a 
transient receptor potential vanilloid type 1 (TRPV1) antagonist 
into the dST inhibited morphine-induced MOR interaction pro-
teins, such as adenylyl cyclase 1 (AC), p38 mitogen-activated 
protein kinase (p38 MAPK), and nuclear factor kappa B (NF-
κB), suggesting the important role of MOR in the dST. 

Moreover, many studies stressed that the dST and the NAc 
shell play roles in morphine-seeking behavior induced by drug-
associated cues (Bontempi and Sharp, 1997; Gao et al., 2013; 
Guo et al., 2008; Suto et al., 2011). More specifically, morphine-
induced MOR activation in the SN and the VTA leads to Fos 
expression within the dST of rats, suggesting dST function is 
controlled by dST projecting VTA dopaminergic neurons 
(Bontempi and Sharp, 1997) (Fig. 1; Table 1). Additionally, 
chronic morphine can decrease expression of the delta-opioid 
receptor in the cholinergic interneurons of the dorsolateral stria-
tum (Leah et al., 2015). A recent study by Ziolkowska et al. 
(2015) reported that morphine induced two distinct episodes of 
immediate early gene induction in the dST, where the first was 
related to the dST-NAc shell circuits and the subsequent ex-
pression was related to the dST-cortex circuits in mice 
(Ziolkowska et al., 2015). These studies suggest a role for the 
dST in morphine reward. 
 
CONCLUSION 
 
Brain reward circuitry studies have provided an improved 
mechanistic understanding of morphine addiction. Specifically, 
clarifying the causal relationship within reward circuitry has 
served to further interpret morphine-specific functional and 
molecular changes in multiple reward-related brain regions. 
Various changes are reflected in the distinct connectivity and 
function of brain reward circuits. In this era, advances in sophis-
ticated imaging, tracing, and genetic and optogenetic tools 
make it possible to analyze the complex neural networks under-
lying the morphine-specific brain reward circuits. With these 
new tools, future studies should focus on identifying the exact 
afferents and efferents modulated under specific symptoms of 
morphine reward, which may provide novel pharmacological 
targets for the treatment of morphine addiction. 
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