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Rheumatoid arthritis (RA) is associated with an increased risk for cardiovascular events
driven by abnormal platelet clotting effects. Platelets are produced by megakaryocytes,
deriving from megakaryocyte erythrocyte progenitors (MEP) in the bone marrow.
Increased megakaryocyte expansion across common autoimmune diseases was
shown for RA, systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome
(pSS). In this context, we evaluated the role of the microbial-derived short chain fatty acid
(SCFA) propionate on hematopoietic progenitors in the collagen induced inflammatory
arthritis model (CIA) as we recently showed attenuating effects of preventive propionate
treatment on CIA severity. In vivo, propionate treatment starting 21 days post
immunization (dpi) reduced the frequency of MEPs in the bone marrow of CIA and
naïve mice. Megakaryocytes numbers were reduced but increased the expression of the
maturation marker CD61. Consistent with this, functional analysis of platelets showed an
upregulated reactivity state following propionate-treatment. This was confirmed by
elevated histone 3 acetylation and propionylation as well as by RNAseq analysis in
Meg-01 cells. Taken together, we identified a novel nutritional axis that skews platelet
formation and function.

Keywords: rheumatoid arthritis, microbiota, short-chain fatty acids, hematopoietic progenitors,
megakaryocytes, platelets
INTRODUCTION

Short chain fatty acids (SCFA) are bacterial metabolites produced in the colon utilizing for the host
indigestible fibers (1). Interestingly, the carbon 3 SCFA propionate (C3) shows effects on a variety of
body compartments and cells, including the hematopoietic progenitor niche in the bone marrow (2).
As such, C3 was shown to affect disease outcome in mouse models of allergic airway disease, acute
radiation syndrome as well as osteoporosis (3–5). Interestingly, hematopoietic progenitor cells from
patients with rheumatoid arthritis (RA) show a phenotype characterized by defective proliferative
org July 2022 | Volume 13 | Article 9081741
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capacity (6). RA is a chronic and frequently progressive disease
which is characterized by a persistent inflammation of synovial
joints (7). In mice with collagen induced arthritis (CIA) - a
preclinical RA model - the disease led to an expansion of
myeloid cells (8). In addition to the joint pathology, RA patients
suffer from pro-inflammatory processes on a systemic level.
Generally, under inflammatory conditions, the frequency and
ratio of the different hematopoietic progenitor populations
changes (6, 8, 9). These changes in hematopoietic progenitor
populations during inflammation go together with changes in
blood parameters including platelet count and function as well as
the risk for thrombosis (10, 11). As shown in a study conducted on
RA patients with active inflammatory arthritis, and RA patients in
a non-active disease state, a significant higher platelet reactivity
was observed in patients with active disease (12). Moreover, also
the number, distribution and the volumetric indices of platelets
were shown to be altered in RA patients (13–16). Notably, studies
reveal an increased risk for RA patients for cardiovascular
mortality (17, 18), which negatively correlates with dietary fiber
intake (19). Moreover, platelet parameters can be shaped by
dietary patterns (20). In this context we evaluated the role of the
SCFA C3 on hematopoietic progenitor cells in the CIA mouse
model for RA as well as under steady state conditions.
METHODS

Mice and Treatments
Five to six week old WT C57BL/6N (Charles River) and DBA/1J
mice (Janvier) were acclimated for 1 week, followed by a 3 week co-
housing period before starting the experiments. All mice were
maintained under specific pathogen-free conditions at the
Präklinisches Experimentelles Tierzentrum (PETZ) Erlangen,
Germany and approved by the local ethics authorities of the
Regierung of Unterfranken (#55.2-2532-2-424). Supplementation
of sodium propionate (Sigma-Aldrich) was done in the drinking
water at a final concentration of 150 mM and changed every 3 days.
The animals received water w/wo C3 and standard chow (Ssniff
Spezialdiäten GmbH) ad libitum.

Collagen-Induced Arthritis
CIA was induced in 8-week-old female DBA/1J mice by
subcutaneous injection at the base of the tail with 100 µl of 0.25
mg chicken type II collagen (CII; Chondrex) in complete Freund
adjuvant (CFA; Difco Laboratory) containing 5 mg/ml killed
Mycobacterium tuberculosis (H37Ra). Mice were re-challenged
after 21 days intradermal immunization in the base of the tail with
this emulsion. The paws were evaluated for joint swelling three
times per week. Each paw was individually sored using a 4-point
scale: 0, normal paw; 1, minimal swelling or redness; 2, redness
and swelling involving the entire forepaw; 3, redness and swelling
involving the entire limp; 4, joint deformity or ankylosis or both.

Measurement of Serum Cytokines
Serum cytokines were measured with the LEGENDplex™

MU Th Cytokine Panel (Biolegend) fo l lowing the
manufacturer’s instructions.
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Histology
For histological analysis, paws were fixed in 4% formalin for 12 h
and decalcified in EDTA (Sigma-Aldrich). Serial paraffin sections
(2 µm) were stained for H&E.

Flow Cytometry
Bone marrow was flushed out of femurs with PBS using a 27 G
needle and smashed through a 70 µM cell strainer. Single-cell
suspensions were then stained for flow cytometry with the
following antibodies: Lineage-Cocktail (BV421), CD34 (FITC),
CD117 (PE), CD127 (APC), Ly6A/E (PE/Cy7), CD16/32 (APC/
Cy7), CD45 (AF700), CD61 (PE), CD41 (FITC). Bone marrow
cells were gated as previously described by Luo et al. (2015) (21).
Meg-01 cells were collected, washed with PBS and then stained
with CD61 (PE) and CD41 (FITC). For the flow cytometric
analysis of megakaryocytes, cells were gated as described by
Matsumura-Takeda et al. (2007) with some modifications (22).

Platelet Aggregation Analysis
The effect of C3 on the platelet aggregation potential was assessed
using a Multiplate® (Dynabyte) platelet function analysis (23).
Therefore, blood was taken from C3 treated and control mice via
cardiac puncture with a 27 G needle, and directly transferred
with a Hirudin coated syringe to avoid clotting. The samples
were incubated at least 30 minutes at RT before the analysis.
Collagen (100 µg/ml) and Adenosine diphosphate (ADP) (0.2
mM) were used as agonists for platelet aggregation as previously
described (24–26).

In Vitro Experiments and RNA Sequencing
With the Meg-01 Cell Line
Meg-01 cells were purchased from the DSMZ - German
Collection of Microorganisms and Cell cultures GmbH
(ACC364) and cultured in RPMI Medium supplemented with
10% FCS, 1% Penicillin-Streptavidin and 2mM glutamine in a
humidified incubator at 37°C, 5% CO2. For experiments, cells
were seeded at a concentration of 0.3 x 106 cells/ml. For RNA
extraction cells were incubated for 24 h and 48 h in a humidified
incubator at 37°C, 5% CO2 until RNA extraction. For
monitoring of megakaryocyte maturation cells were grown in
medium containing 250 µM C3 or 1 nM phorbol 12-myristate
13-acetate (PMA) as a positive control and incubated for 7, 14 or
21 days until flow cytometric analysis. For the assessment of
histone acetylation via western blotting, Meg-01 were stimulated
with 500 µM C3 for 48 hours. Cells grown without C3 served as
negative controls. The Illumina RNA sequencing (RNAseq)
analysis was performed by Novogene Sequencing – Europe
(UK, Cambridge Sequencing Center). In brief, sequencing
libraries were generated using NEBNext® Ultra TM RNA
Library Prep Kit for Illumina® (NEB, USA) and sequenced on
an Illumina platform. Raw data (raw reads) of FASTQ format
were processed through fastp. Mapping of the processed data to
the reference genome homo sapiens (GRCh38/hg38) was
performed using the Spliced Transcripts Alignment to a
Reference (STAR) software (27). FeatureCounts was used for
the quantification of the mapped reads (28). Raw mapped reads
were processed in R (Lucent Technologies) with DESeq2 (29), to
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determine differentially expressed genes and generate
normalized read counts. Pathway enrichment analysis was
performed using the free online platform DAVID (30).

Quantitative PCR
RNA was isolated using Genazol (Genaxxon) following
manufacturer’s instructions. Gene expression results are
expressed as arbitrary units relative to expression of the house
keeping gene GAPDH. Primer sequences are as follows:

GAPDH: 5’-TGATGACATCAAGAAGGTGGTGAAG-3’
and 5’-TCCTTGGAGGCCATGTGGGCCAT-3’; CD61: 5′-
A G G C C C T C G A A A A C C C C T G C T - 3 ′ a n d 5 ′ -
GCCACCCTCTGGGGCATCTC -3′

Histone Extraction and Western Blotting
Meg-01 cells were pre-treated with 500 µM C3 and only
medium as a negative control for 48 hours. Cells were then
washed with ice cold PBS supplemented with 5 mM sodium
butyrate. Then the cytoplasm was extracted by resuspending
cells in ice cold extraction buffer at 107 cell/mL, incubating on
ice for 5 minutes, and centrifuging at 6500xg for 10 minutes at
4°C. Supernatant was discarded and the cytoplasm extracted for
the second time. Histones were extracted by resuspending the
pellet in 0.25 M HCl at a density of 4x107 cells/mL. Samples
were then sonicated for 30 seconds, placed on ice, then
sonicated for further 30 seconds. Afterwards, tubes were
placed on rollers at 4°C for 1 hour. Then, samples were
centrifuged at 12000xg for 10 minutes at 4°C. Supernatant
was collected and neutralized with 2M NaOH at 1/10th of the
volume of the supernatant. Extracted histones were frozen and
stored at -80°C until analyzed by western blotting. Protein
extracts were separated on 4-12% Bis-Tris gradient SDS-
polyacrylamide gel, then transferred onto PVDF membrane,
blocked with 5% milk in TBS 0.05% Tween 20 for 1 hour. To
assess Histone 3 propionylation levels membranes were probed
with anti-propionyl-histone H3 (lys23) Mouse mAB (# PTM-
208, PTM BIO). For determination of Histone acetylation levels
membranes were probed with anti-acetyl-lysine-27-histone-3
(ab 4729, abcam). For normalization membranes were probed
with an anti-histone 3 antibody (9715S, cell signaling).
For visualization appropriate HRP-conjugated secondary
antibodies were used (donkey anti rabbit (ab6802, abcam);
m-IgG FC BP-HRP (sc-525416, santa cruz). The signal
acquired from chemiluminescence (Celvin S) for protein of
interests were optimized to loading control and quantified with
Image J blot analysis tool.

Statistical Analysis
Statistical analyses were performed using Prism 8 software
(GraphPad). Comparisons between two groups were
performed using unpaired or paired, two-tailed, Student’s t
test. Comparisons between more than two groups were
performed using one-way ANOVA and Tukey’s or Dunnett’s
multiple comparison test. Statistical significance: * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001. Details on the
statistical analysis are listed in the figure legends.
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RESULTS

Propionate Alleviates CIA Symptoms
and Alters Bone Marrow
Progenitor Distribution
To determine the effect of C3 on arthritis progression and bone
marrow progenitor populations in mice, we supplemented CIA
mice with C3 with the onset of clinical arthritis scores starting
at 21 days post immunization (dpi) in the drinking water
(Figure 1A). Interestingly, beside our previously published
results on C3 treatment throughout the experimental CIA
model (4), we identified that nutritional supplementation
with C3 was equally effective to promote significantly lower
arthritis scores compared to untreated controls by starting at 21
dpi (Figures 1C, D). Furthermore, H&E staining of paw
sections showed a prominent decrease in leukocyte
infiltration in C3 treated mice compared to the control group
(Figure 1B). The measurement of cytokines by a Legendplex
assay revealed significant lower levels of TNFa (Figure 1E), IL-
6 (Figure 1F) and IL-17A (Figure 1G) in the serum after C3
treatment. Analysis of bone marrow progenitor populations at
day 28 post CII immunization revealed a significant decrease in
the MEP population (Figure 1H), whereas CMP and GMP
percentages remained unchanged (Figures 1I, J). To assess
whether this effect is disease-dependent or a general effect of
C3, we treated naïve WT mice for 3 to 6 weeks with C3 in the
drinking water. Consistent with the results in the CIA model,
we observed a significant decrease in MEP after three and six
weeks following C3-treatment (Figure 1K). Of note, GMP
populations again remained unchanged (Figure 1M) whereas
after 3 weeks treatment a significant decrease of CMP was
observed (Figure 1L). As MEP are the precursors of
erythrocytes and platelets we investigated if there are changes
in standard platelet parameters such as platelet counts, volume
and mean platelet component. However, blood analysis
revealed no changes in erythrocyte or platelet-parameters
following nutritional C3 supplementation in CIA and WT
mice (Figure S1).
Propionate Reduced Megakaryocyte
Numbers but Promoted Maturation
MEP give rise to megakaryocytes that are in turn responsible
to produce blood platelets. Therefore, we next analysed
megakaryocytes after C3 treatment. Flow cytometric analysis of
bone marrow cells revealed significantly decreased percentage of
megakaryocytes after three or six weeks of C3 treatment
(Figure 2A). In vitro, C3 treatment of the megakaryoblastic
cell line Meg-01, upregulated the maturation marker CD61 on
mRNA level (Figure 2B and Figure S1). In addition, flow
cytometric analysis of Meg-01 after 7, 14 or 21 days of 250 µm
C3 stimulation, confirmed increased surface expression of CD61
over untreated controls (Figure 2C). These data show that C3
treatment leads to a decrease in megakaryocytes frequencies in
vivo along with an increased surface expression of the maturation
marker CD61 in vitro.
July 2022 | Volume 13 | Article 908174
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FIGURE 1 | C3 treatment induces changes of bone marrow progenitor cells in mice with CIA and naïve WT mice. (A) Flow diagram illustrating the experimental
setup of C3 treatment (B) H&E staining of paw sections, (C) joint swelling clinical scores and (D) weight of CIA controls and CIA treated with 150 mM C3 in the
drinking water. (E) Serum cytokine levels of TNFa (F) IL-6 and (G) IL-17A of CIA controls and CIA treated with 150 mM C3 in the drinking water. (H) Total
percentage of bone marrow MEP, (I) CMP and (J) GMP of CIA controls and CIA treated with 150 mM C3 in the drinking water. (K) Total percentage of MEP,
(L) CMP and (M) GMP in untreated naïve controls and naïve mice treated with 150 mM C3 in the drinking water for 3 and 6 weeks. Pictures are representative for 2
independent experiments. Data are expressed as the mean ± sd. Statistical difference was determined by Two-way ANOVA, Student’s t-test and One-way ANOVA.
*p < 0.05; **p < 0.01.
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Propionate Selectively Increased
Platelet Reactivity
Next, to address whether platelets from C3-treated mice have
altered function compared to those from untreated controls, we
isolated platelets from naïve WT mice after 3 or 6 weeks of C3
treatment. Coagulation activity was analysed using two standard-
stimuli, adenosine diphosphate (ADP) and collagen, to induce
platelet aggregation (26). Platelets from C3 treated mice showed
increased reactivity towards ADP, whereas - compared to
controls - no significant effect on collagen induced platelet
reactivity was observed (Figures 2D, E). These findings match
with results from our mRNA data in the Meg-01 cell line that
shows megakaryocyte characteristics such as RNA content and
surface receptors being shared between mother cell and
produced platelets (31). The selective increase in reactivity
towards ADP but not collagen could be explained by changes
in receptor expression responsible for coagulation signalling
upon a specific stimulus. After C3 treatment, Meg-01 cells
expressed significantly higher levels of P2RY1 (32), the
receptor responsible for reactivity towards ADP (Figure 2G),
whereas GP6 expression, responsible for acting upon collagen
stimulation (33), remained unaltered (Figure 2F) in the current
setting. These results indicate a selective effect of C3 treatment on
platelet reactivity towards ADP but not collagen possibly via
alterations in surface receptor expression.
Frontiers in Immunology | www.frontiersin.org 5
Propionate Upregulates Megakaryocyte
Differentiation and Platelet
Activation Pathways
To further investigate potential C3 effects on megakaryocytes in
general we moved on with RNAseq of Meg-01 cells. Taking a
closer look at the gene expression profile (Excel table with
significant DEGs in the online Supplementary Material), C3
treatment induced a pronounced upregulation of genes as
opposed to downregulation (Figure 3A). Highly upregulated
genes (fold change < 30%, adjusted p-value < 0.01) include
NOVA alternative splicing regulator 2 (NOVA2), notch
receptor 3 (NOTCH3) and SLC44A2 - genes involved in cell
fate decisions (34), megakaryocyte differentiation (35) and
platelet activation (36). Of interest, RNAseq analysis confirmed
identified upregulated genes such as CD61 in isolated bone
marrow megakaryocytes following in vivo C3 treatment
(Figure S1). To assess the biological meaning of differentially
expressed genes (DEG) upon C3 treatment, we performed a
KEGG pathway analysis of the DEG using the Functional
Annotation Tool at the DAVID bioinformatics database
(Figure 3B). DEGs were defined as genes with a fold change
greater than 30% and an adjusted p-value < 0.01. DEGs
upregulated upon C3 treatment are involved in Rap1
signalling, cell adhesion molecules as well as the regulation of
the actin cytoskeleton – pathways associated with megakaryocyte
B C

D E F G

A

FIGURE 2 | C3 reduced megakaryocyte numbers in vivo but promoted maturation in vitro and increased reactivity of platelets to ADP after three or six weeks of C3
treatment but not to collagen. (A) Total percentage of Megakaryocytes in the bone marrow after three and six weeks of C3 treatment. (B) Gene expression CD61 in
Meg-01 cell line after treatment with 250 µM and 500 µM C3. (C) Percentage of viable CD41+ CD61+ Meg-01 after treatment with 250 µM C3 or 1 nM PMA as a
positive control after 7, 14 or 21 days of treatment in vitro. (D) Platelet reactivity to ADP after three or six weeks of C3 treatment. (E) Platelet reactivity to collagen
after three or six weeks of C3 treatment. (F) Gene expression of GP6 in Meg-01 cells between control and 500 µM C3 treatment. (G) Gene expression of P2RY1in
Meg-01 cell between control and 500 µM C3 treatment. Data are expressed as the mean ± sd. Statistical difference was determined by Two-way ANOVA, Student’s
t-test and One-way ANOVA. *p < 0.05; **p < 0.01; ***p < 0.001; **** means p < 0.0001.
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maturation (37, 38). To test whether changes in histone
acetylation or propionylation could be responsible for the
observed modified transcriptional activation, we analysed
histones for these post-translational modifications (PTMs) in
Meg-01 cells. Immunoblotting for H3 in acidic histone extracts
following C3 stimulation in Meg-01 cells revealed significantly
increased acetylation (H3K27) and propionylation (H3K23)
(Figure 3C). This is of great interest and will allow new
experimental designs in follow-up studies to in depth asses the
role of C3 in the context of cardiovascular events during RA.
DISCUSSION

In the current study, we found that C3 consumption significantly
reduced the frequency of the MEP population in the bone
marrow of CIA and naïve mice. Despite subsequent lower
megakaryocyte numbers, no differences were observed in
typical platelet parameters such as platelet counts, MPV and
MCP values. However, our observed increased functional platelet
reactivity assays along with C3 induced overall transcriptional
activity of platelets and Meg-01 cells further emphasized
previous findings showing that both megakaryocytes and
platelets are sensible towards extrinsic influences and
can adapt to conditions such as the nutritional state and
Frontiers in Immunology | www.frontiersin.org 6
inflammation (21, 39). Further, our findings are of high
relevance in light of a recent publication providing clear
evidence for peripheral megakaryocyte expansion across
common autoimmune diseases such as RA, systemic lupus
erythematosus (SLE) and primary Sjögren’s syndrome (pSS)
(40). In peripheral blood, megakaryocytes are a heterogeneous
cell population that comprises a subpopulation with distinct
immune characteristics in these autoimmune diseases. The
authors discuss the idea that that the observed megakaryocyte
expansion might initially prime autoimmune T cells in the
pathogenesis of these autoimmune diseases. Although
very speculative at the current state, prophylactic C3
nutritional supplementation was shown to effectively attenuate
inflammatory arthritis onset (4) and here we provide additional
data showing that C3 treatment at the time of clinical onset is
also effective in attenuating disease symptoms. Another recent
study reported that supplementation with a high fibre-rich diet -
providing the fuel for increased C3 levels by fermentation
process of the gut microbiota - improved lupus-related disease
manifestations in a Toll-like receptor 7-dependent lupus-like
mouse model (41). Last, as for pSS the involvement of the gut
microbiota along with SCFAs was well reviewed by Zhang et al.
(42) this further suggested the general potential benefit of C3
supplementation on autoimmune diseases via modulation of
megakaryocytes. A direct role of megakaryocytes in the
B

C

A

FIGURE 3 | C3 significantly upregulates expression of genes involved in megakaryocyte maturation. (A) Volcano plot of fold change (FC) values of mRNA
sequencing RNAseq analysis from Meg-01 cells treated with 500 mM C3 compared to non-treated cells (control). n = 3 technical replicates. Gates were set at an
adjusted p-value < 0.01 and a fold change > 30% and depicted as log2 fold change. Genes marked in blue display genes above log2 fold change gate and p-value
gate. Grey dots display genes below the log2 fold change gate and above the p-value gate. Black dots display genes below the log2 fold change and p-value gate.
(B) KEGG pathway analysis of the upregulated differential expressed genes (DEGs) identified from comparison of Meg-01 cells cultured in 500 mM C3 vs. untreated
cells (Control). DEGs were filtered on adjusted p-values lower than 0.01 and fold changes greater than 30%. (C) Western blot analysis of H3 histone acetylation and
propionylation of Meg-01 after stimulation with 500 µM C3. Untreated cells (only medium) served as negative controls (n ≥ 3 technical replicates). Data are expressed
as the mean ± sd. Statistical difference was determined by ordinary one-way ANOVA. ***p < 0.001.
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susceptibility of arthritis was shown by a study on IgG-mediated
arthritis in different mouse models of kit-insufficiency. Kit-
insufficiency normally serves as a model for mast cell
deficiency – however also megakaryocytes are affected – with
either increased or decreased levels of megakaryocytes depending
on the type of kit-deficiency model used. Interestingly, kit-
insufficient mice with low levels of megakaryocytes are
resistant to arthritis induced by transfer of IgG autoantibody–
containing serum from K/BxN mice. Thereby, the transfer of
megakaryocytes restored the susceptibility whereas mice which
received IL-1 -/- megakaryocytes remained resistant to the
disease. Mechanistically Il-1 was shown to activate synovial
fibroblast which may be the link between megakaryocytes and
inflammatory arthritis in this model (43).

Performing RNAseq analysis of the megakaryoblastic cell
line Meg-01 we could show that C3 regulates gene-expression
which may affect their functional role in the disease course of
arthritis. The strongest upregulated genes upon C3 treatment in
megakaryocytes include the NOVA alternative splicing
regulator 2 (Nova2), and the notch receptor 3 (Notch3).
Nova2 regulates pre-mRNA splicing and was shown to be
involved in cell fate decisions for assignment of cell fate in
the context of vascular differentiation (34). Notch 3 protein is a
transmembrane receptor and was recently shown to be involved
in late megakaryocyte differentiation (35). Transcriptomic
changes might be linked to our here reported histone post-
translational modifications, where histone acetylation
and propionylation are marks of active chromatin (44–46).
Further, flow cytometry analysis revealed that C3 also increased
CD61 surface expression, a marker of megakaryocyte
maturation. Thus, C3 seems to affect megakaryocyte
maturation in vitro, although we see lower frequencies of
megakaryocytes and their progenitors in vivo. The lower
abundance of megakaryocytes in vivo – also shown in the
arthritis resistant kit-insufficient mice (43)– could at least
partly explain the lower arthritis scores during C3 treatment,
maybe due to lower Il-1 dependent synovial fibroblast
activation. However, here we do not provide data showing
the direct link between C3 effects on megakaryocytes and their
progenitors and arthritis symptoms, Therefore, identifying the
effect of C3 on the whole differentiation progress from HSC to
megakaryocyte using HSC tracing, as previously described by
Grinenko et al. (47), would be an interesting approach.
Moreover, the direct effect of C3 on the secretion of Il-1 by
megakaryocytes under pro-inflammatory conditions, would be
interesting to assess in an in vitro approach. As in RA
frequencies of peripheral megakaryocytes are changed (48) it
would be further worth investigating if the effect of C3 is also
directed towards the peripheral population. Certainly, although
further studies are needed here to unravel the consequences and
identify potential therapeutic approaches, our here identified
differences in platelet functionality and their progenitors
support the concept that megakaryocytes effectively confer
immune functions in RA and SLE (49) which are altered
upon C3 treatment.
Frontiers in Immunology | www.frontiersin.org 7
CONCLUSIONS

Our findings identified a novel nutritional axis that skews platelet
formation and function. This data could serve as a first step in
identifying novel therapeutic approaches additionally to the
preventive setting as recently shown by our group. Further, our
data may suggest that C3 nutritional supplementation could
directly support the reported inflammatory arthritis attenuating
effects by modulating megakaryocyte numbers and platelet
immunomodulatory functions.
LIMITATIONS

Although the finding from this study has a high potential,
especially in the line of recent findings on increased
megakaryocyte numbers in autoimmune diseases, the data
presented here as a brief research report are mainly descriptive
and follow-up studies are needed to better interpret the results.
Functional consequences of modulated platelet reactivity in
inflammatory arthritis models and in depth ChIP analysis in
megakaryocytes to link upregulated genes with increased histone
acetylation and propionylation at the respective genomic loci
would further strengthen our observations. Further, Mulan et al.
identified a general platelet hyper-reactivity to ADP – as observed
following C3-treatment in our study - in inflammatory arthritis
and suggested this a new potential therapeutic target which maybe
a critical point to mention (50).
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Supplementary Figure 1 | C3 does not alter platelet and erythrocyte parameters
in whole blood from mice with CIA and naive WT mice. Platelet parameters include
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sd. Statistical difference was determined by Student’s t-test. **p < 0.01.
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