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Abstract: Chlorhexidine (CHX) and octenidine (OCT), antimicrobial compounds used in oral care
products (toothpastes and mouthwashes), were recently revealed to interfere with human sex
hormone receptor pathways. Experiments employing model organisms—white-rot fungi Irpex
lacteus and Pleurotus ostreatus—were carried out in order to investigate the biodegradability of these
endocrine-disrupting compounds and the capability of the fungi and their extracellular enzyme
apparatuses to biodegrade CHX and OCT. Up to 70%± 6% of CHX was eliminated in comparison with
a heat-killed control after 21 days of in vivo incubation. An additional in vitro experiment confirmed
manganese-dependent peroxidase and laccase are partially responsible for the removal of CHX. Up
to 48% ± 7% of OCT was removed in the same in vivo experiment, but the strong sorption of OCT on
fungal biomass prevented a clear evaluation of the involvement of the fungi or extracellular enzymes.
On the other hand, metabolites indicating the enzymatic transformation of both CHX and OCT were
detected and their chemical structures were proposed by means of liquid chromatography–mass
spectrometry. Complete biodegradation by the ligninolytic fungi was not achieved for any of the
studied analytes, which emphasizes their recalcitrant character with low possibility to be removed
from the environment.

Keywords: chlorhexidine; dental hygiene; laccase; manganese-dependent peroxidase; octenidine;
ligninolytic fungi; personal care products; quaternary ammonium compounds; recalcitrant pollutant

1. Introduction

Antiseptics and disinfectants, whose worldwide consumption is increasing year by year, rank
among the most intensively studied trace organic contaminants [1]. The wide range of their usage in
daily urban activities, including dental hygiene, contributes to the continual release of these biologically
active compounds into the environment in amounts that lack any control or restrictions. Quaternary
ammonium compounds (QACs), such as hexadecylpyridinium chloride (HDP) and octenidine (OCT),
phenolic derivatives (e.g., triclosan, TCS), and biguadines (e.g., chlorhexidine, CHX) belong among
frequently used antiseptic compounds in toothpastes and mouthwashes and some of them were already
detected in wastewater effluents [2,3].

The water solubility of these micropollutants has the potential to cause widespread contamination,
usually at very low concentration levels (pg–µg/L). Due to the fact that wastewater treatment plant
(WWTP) technologies are usually not designed for their removal, most disinfectants are not being
eliminated [4,5]. Several studies demonstrated that antiseptics and disinfectants were released from
WWTPs [2,6] and their ecotoxicological impact was observed. The increasing concentrations of
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disinfectants have caused changes in microbial communities in polluted rivers [7], sediments [8],
as well as in activated sludge [9]. Microbial resistance and/or cross-resistance with antibiotics was
already described for some disinfectants [4,10,11]. Michalíková et al. [12] revealed antiestrogenic
and/or antiandrogenic properties of dental care antiseptics CHX, OCT, and also HDP. The fate of these
compounds in the environment is not yet fully understood. For instance, the removal of CHX and
HDP in WWTPs was studied by several authors [9,13–16] with the same general conclusion that these
compounds are not biodegraded during wastewater treatment processes. The removal of OCT has not
been investigated so far. Moreover, the stability under different physical and chemical conditions and
resistance to hydrolysis has been presented as a benefit of this novel disinfectant [17].

Various anthropogenic pollutants persist in the environment and scientific interest is generally
aimed at the impacts on organisms and human health and also mechanistic studies of their degradability.
Besides physicochemical degradation, a lot of attention is focused on biodegradation studies.
In particular, microorganisms possess a wide range of metabolic pathways that have been shown to be
very effective in the decomposition of pollutants.

Ligninolytic (white-rot) fungi are excellent model degraders, well-known for their efficiency in
the decomposition of a broad range of xenobiotics, even those resistant to bacterial breakdown
or generally hardly biodegradable, e.g., polychlorinated biphenyls [18,19], polycyclic aromatic
hydrocarbons [20,21], chlorobenzoic acids [22], explosives [23], and also the most toxic organic
pollutant known so far—2,3,7,8-tetrachlorodibenzodioxin [24]. The degradation ability of ligninolytic
fungi to decompose xenobiotics has also been documented for dyes, several endocrine disruptors,
pharmaceuticals (including antibiotics), plasticizers, UV filters, etc. [25–28].

Ligninolytic fungi possess a unique extracellular enzyme apparatus with low substrate specificity
naturally targeted toward the degradation of the aromatic moieties of lignin. These extracellular
enzymes, such as lignin peroxidase, manganese-dependent peroxidase (MnP), and the phenol oxidase
laccase (Lac), catalyze nonspecific one-electron radical oxidations and have been shown to transform
a wide range of organic pollutants. TCS, a chlorinated antimicrobial compound, was shown to be
degraded in vitro by ligninolytic enzymes [29,30]. Baborová et al. [31] demonstrated the transformation
of polycyclic aromatic hydrocarbons by MnP from Irpex lacteus and proved the formation of oxidized
metabolites and aromatic ring cleavage. Extracellular enzymes are assumed to be responsible for the
main degradation ability of ligninolytic fungi. Nevertheless, several authors have proven the role of
the intracellular cytochrome P-450 of ligninolytic fungi in the transformations, e.g., with the synthetic
hormone 17α-ethynilestradiol [28] and chlorobenzoic acids [32].

The aim of this work was to investigate the biodegradability of CHX and OCT, which are used in
oral care products and were identified in our previous research as endocrine disruptors, by two model
ligninolytic fungal strains, I. lacteus and Pleurotus ostreatus, i.e., species with proven biodegradation
capabilities. To the best of our knowledge, no biodegradation study of these disinfectants by ligninolytic
fungi has ever been carried out. The biodegradability of CHX and OCT was studied in vivo with
fungal cultures grown in a liquid medium, as well as in vitro with concentrated extracellular liquids
rich in ligninolytic enzymes. The samples were evaluated for the presence of metabolites, which is
rarely described in the literature.

2. Results and Discussion

2.1. In Vivo CHX and OCT Transformation

Both CHX and OCT are designed to act against microorganisms. Thus, the highest nontoxic
concentrations of both analytes towards the fungal strains were investigated as the first step of the
assessment. Each compound was added in dimethyl sulfoxide (DMSO, final concentration 0.5% of
DMSO) to the medium with the fungal suspension, and the weight of the biomass was compared to a
control culture (0.5% DMSO) after 7 and 14 days (data not shown). The final concentrations of 3 and
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2 µg/mL of CHX and OCT, respectively, were established as nontoxic concentrations for the growth of
the studied fungal cultures.

The relationship between the presence of extracellular enzymes and degradation rates is often
monitored in order to explain a part of the complex in vivo degradation mechanisms [33]. Hence,
the most abundant enzymes were monitored throughout the entire in vivo experiment to observe
possible relationships.

2.1.1. Chlorhexidine

MnP was the major extracellular enzyme in the culture of I. lacteus and was produced continuously
with the activity level of 5 ± 1 U/L during the whole 21-day experiment. Even though I. lacteus was
found to also produce extracellular Lac [33], the enzyme activity measured in the culture medium was
usually low [34,35], which corresponds with our findings. The dominant enzyme in the culture of
P. ostreatus was Lac with the initial activity of 33 ± 4 U/L, which decreased about five times after three
weeks of cultivation (see Table S1 for details).

After 21 days of static in vivo cultivation of I. lacteus and P. ostreatus in a liquid medium, the
residual amounts of CHX were 30% ± 6% and 43% ± 9%, respectively, in comparison with the respective
heat-killed controls, HKCs (Figure 1a, left axis). The extraction recovery (the ratio of the concentration
of the analyte determined in the HKC versus in the abiotic control − AC) indicated that 99% ± 2% and
100% ± 2% of CHX was extracted from the fungal cultures of I. lacteus and P. ostreatus, respectively
(Figure 1a, right axis).

Molecules 2019, 24, x FOR PEER REVIEW 3 of 20 

 

a control culture (0.5% DMSO) after 7 and 14 days (data not shown). The final concentrations of 3 and 
2 µg/mL of CHX and OCT, respectively, were established as nontoxic concentrations for the growth 
of the studied fungal cultures. 

The relationship between the presence of extracellular enzymes and degradation rates is often 
monitored in order to explain a part of the complex in vivo degradation mechanisms [33]. Hence, the 
most abundant enzymes were monitored throughout the entire in vivo experiment to observe 
possible relationships.  

2.1.1. Chlorhexidine 

MnP was the major extracellular enzyme in the culture of I. lacteus and was produced 
continuously with the activity level of 5 ± 1 U/L during the whole 21-day experiment. Even though 
I. lacteus was found to also produce extracellular Lac [33], the enzyme activity measured in the culture 
medium was usually low [34,35], which corresponds with our findings. The dominant enzyme in the 
culture of P. ostreatus was Lac with the initial activity of 33 ± 4 U/L, which decreased about five times 
after three weeks of cultivation (see Table S1 for details). 

After 21 days of static in vivo cultivation of I. lacteus and P. ostreatus in a liquid medium, the 
residual amounts of CHX were 30% ± 6% and 43% ± 9%, respectively, in comparison with the 
respective heat-killed controls, HKCs (Figure 1a, left axis). The extraction recovery (the ratio of the 
concentration of the analyte determined in the HKC versus in the abiotic control − AC) indicated that 
99% ± 2% and 100% ± 2% of CHX was extracted from the fungal cultures of I. lacteus and P. ostreatus, 
respectively (Figure 1a, right axis).  

 
Figure 1. Cont.



Molecules 2020, 25, 400 4 of 15Molecules 2019, 24, x FOR PEER REVIEW 4 of 20 

 

 

Figure 1. Residual concentration of (a) chlorhexidine (CHX) and (b) octenidine (OCT) after the 21-day 
in vivo degradation by I. lacteus and P. ostreatus related to the respective heat-killed controls (HKCs). 
The red (CHX) and blue (OCT) line graphs show extraction recovery during the experiment expressed 
as the HKC and abiotic control (AC) ratio. Error bars represent standard deviation (n = 3). The asterisk 
marks a significant difference between the individual harvesting day and the control group—0 d (post 
hoc Dunnett’s Test). 

Notably, the extraction solvent, 0.8% formic acid (FA) in 20% acetonitrile (ACN, v/v), together 
with sonication at elevated temperature improved CHX recovery from both fungal cultures by a 
factor of 1.4 (compared to the value obtained without any extraction). This result proposes the 
disruption of the ionic binding of the analyte to the negatively charged sites of the fungal cultures. 
The enhancement of the CHX recovery in acidic conditions are in accordance with the observation of 
Havlíková et al. [36]. 

A strong sorption phenomenon on the biomass of an activated sludge studied for its potential 
to remove CHX was observed under laboratory conditions [9]. The authors concluded that 
biosorption was mainly responsible for the CHX elimination. Similarly, a study of the mass balance 
of CHX in a WWTP revealed its 98% removal from the wastewater. In this specific case, the sorption 
to the sludge was the only mechanism of elimination and the authors highlighted the lack of CHX 
degradation [13]. The bioaccumulation of CHX in the lipids of both diatoms and bacteria in river 
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in vivo degradation by I. lacteus and P. ostreatus related to the respective heat-killed controls (HKCs).
The red (CHX) and blue (OCT) line graphs show extraction recovery during the experiment expressed
as the HKC and abiotic control (AC) ratio. Error bars represent standard deviation (n = 3). The asterisk
marks a significant difference between the individual harvesting day and the control group—0 d (post
hoc Dunnett’s Test).

Notably, the extraction solvent, 0.8% formic acid (FA) in 20% acetonitrile (ACN, v/v), together with
sonication at elevated temperature improved CHX recovery from both fungal cultures by a factor of
1.4 (compared to the value obtained without any extraction). This result proposes the disruption of the
ionic binding of the analyte to the negatively charged sites of the fungal cultures. The enhancement of
the CHX recovery in acidic conditions are in accordance with the observation of Havlíková et al. [36].

A strong sorption phenomenon on the biomass of an activated sludge studied for its potential to
remove CHX was observed under laboratory conditions [9]. The authors concluded that biosorption
was mainly responsible for the CHX elimination. Similarly, a study of the mass balance of CHX
in a WWTP revealed its 98% removal from the wastewater. In this specific case, the sorption to
the sludge was the only mechanism of elimination and the authors highlighted the lack of CHX
degradation [13]. The bioaccumulation of CHX in the lipids of both diatoms and bacteria in river
biofilm communities was also observed and a subsequent stable isotope analysis indicated the absence
of CHX mineralization [37,38]. Fortunato et al. [6] performed a degradation study with several adapted
bacterial strains that were characterized and isolated from water samples in urban regions. CHX
was found to be the most resistant and toxic compound in comparison with TCS and benzalkonium
chloride. These observations emphasize the recalcitrant character of CHX and the low possibility of its
removal from the environment. Microbial degradation of CHX was accomplished by bacterial isolates
from an activated sludge in a study by Tanaka [39]. An 80% reduction of CHX antimicrobial activity
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was achieved and the structure where pyruvate is bound to the CHX molecule was proposed as a less
active intermediate.

2.1.2. Octenidine

In the case of OCT, the residual concentration of the analyte reached values of 52% ± 7% and
65% ± 6% in comparison with the HKC after 21-day cultivation in the cultures of I. lacteus and
P. ostreatus, respectively (Figure 1b, left axis). The activities of the enzymes were comparable with the
values reached in the experiment with CHX. MnP activity (2.6 ± 0.8 U/L) remained nearly constant
until the termination of the experiment with I. lacteus, while the initial activity of Lac of P. ostreatus
(31.5 ± 0.5 U/L) was suppressed approximately 10 times after the 21-day degradation of OCT.

A comparison of the extraction yields of OCT in the AC and HKC revealed massive sorption of
OCT on the biomass. The sorption of OCT was already evident at the beginning of the experiment
(day 0)—it was possible to extract only about 70% of the analyte from the biomass, in both cultures
(Figure 1b, right axis). At the end of the experiment, 70% ± 3% and 51% ± 8% of OCT was adsorbed
in the cultures of I. lacteus and P. ostreatus, respectively. The analyte did not release from the fungal
mycelium, even after the ultrasound-assisted extraction at elevated temperature in the acidified polar
organic solution. Despite our best effort to achieve better extraction yields, it is not clear whether the
extracellular enzymes of I. lacteus and P. ostreatus were responsible for the biodegradation of OCT
in vivo or if the sorption was the only reason for its removal. Differences between HKC and live
biomass (ANOVA, p < 0.05) favor the enzymatic transformation. However, the changes in the sorption
capacity of the HKC samples caused by autoclaving might also play a role in the data interpretation.
Unfortunately, information about the fate of OCT in the environment is insufficient so far. Nevertheless,
the adsorption of different QAC on particulate matter is often discussed in the literature [2,14]. The
characteristics of OCT, namely the positive charge in physiological conditions and the strong binding
to the negatively charged sites of biological membranes [17,40], indicate that the interaction with the
mycelium will be similar.

2.2. Extracellular In Vitro Transformation

Detectable activities of the extracellular enzymes MnP and Lac were recorded during the in vivo
transformation experiments with I. lacteus and P. ostreatus, respectively (see Table S2 for details).
Transformation associated with the activities of MnP and Lac was further investigated employing a
concentrated extracellular liquid of the eight-day-old malt extract-glucose (MEG) culture of I. lacteus
supplemented with Mn2+ and a hydrogen peroxide-generating system and the eight-day-old MEG
culture of P. ostreatus, respectively. The initial activities of MnP and Lac in the reaction mixture were
60 U/L and 120 U/L, respectively, and they did not decrease below 25% of their initial value during the
whole 192-h experiment.

2.2.1. Chlorhexidine

The residual amounts of CHX related to the HKC after in vitro incubation with MnP and Lac
were 59% ± 2% and 72% ± 2%, respectively (Figure 2, left axis). Significant removal of CHX was
recorded after 4 h in the case of MnP and after 24 h in samples enriched by Lac (ANOVA, p < 0.05).
The percentage of the extraction recovery reached 94% ± 3% on average (Figure 2, right axis).

Several studies have documented that the degradation of various recalcitrant pollutants by
ligninolytic enzymes is usually very fast (in the range of hours) and mostly up to 100% effective [20,41,42].
Our results show that MnP and Lac were able to catalyze only 41% ± 2% and 28% ± 2% of the
transformation of CHX after 192 h, respectively. Interestingly, even though the activities of the enzymes
were higher than in the case of the in vivo experiment, the degradation achieved with the whole
fungal culture was faster. The presence of enzymes bound to the mycelia (e.g., Lac), which were not
harvested for the in vitro enzyme experiment and thus were available only in the in vivo incubation
(where they were unaccounted for by the enzyme activity assays), could be a possible explanation [28].
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In conclusion, the in vitro results suggest both mechanisms—sorption and biotransformation—might
be involved in the removal of CHX.
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Figure 2. In vitro degradation of chlorhexidine (CHX) in concentrated extracellular liquids of I. lacteus
(manganese-dependent peroxidase, MnP) and P. ostreatus (laccase, Lac). Initial concentration of CHX
was 5 µg/mL in both experiments. The red line graphs show the recovery of CHX extraction during
the experiment expressed as the heat-killed control (HKC) and abiotic control (AC) ratio. Error bars
represent standard deviation (n = 3). The asterisk marks a significant difference between the individual
harvesting day and the control group—0 d (post-hoc Dunnett’s Test).

2.2.2. Octenidine

The removal of OCT was not recorded until the 96th hour of incubation in the case of MnP
(ANOVA, p < 0.05). No decrease of the initial amount of OCT in time was observed with samples
containing Lac after 192 h, ANOVA, p > 0.05 (see Figure 3 for details). Due to the sorption of the
analyte observable for the HKC and the high variability of the data, the participation of MnP and Lac
in OCT biodegradation is disputable. It is also important to note that the crude extracellular liquid is a
complex matrix containing concentrated proteins and the involvement of other extracellular enzymes
not considered in the activity assays might be another possible explanation for the removal of OCT. We
argue that the slight decrease in the residual concentration relates rather to the sorption (~20%). This
experiment did not support the theory that extracellular enzymes are responsible for the removal of
OCT, but points toward the adsorption mechanism.

Total removal was achieved for neither CHX nor OCT under any conditions and the
biotransformation of CHX in vitro was considered slow and less efficient in comparison with previous
studies dealing with the biodegradation of recalcitrant pollutants by white-rot fungi. For instance,
P. ostreatus was found to decompose nearly 100% of a mixture of polychlorinated biphenyls in MEG and
low-nitrogen mineral medium after 42 days of incubation [18]. An excellent degradation rate (≥88%) of
endocrine-disrupting compounds as well as the suppression of estrogenic activity were accomplished
with various ligninolytic fungal strains in 14 days [26]. In addition, Muzikář et al. [22] demonstrated
that selected ligninolytic fungal strains are powerful degraders of chlorobenzoic acids under both model
liquid conditions and in contaminated soil—the chlorobenzoic acids reached 85%–99% degradation
within 60 days.
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2.3. Identification of Metabolites

In vivo experiments did not reveal any transformation products. Detectable amounts of metabolites
were recorded only during the in vitro tests carried out with both enzymes. Figures 4 and 5 show the
LC-UV chromatograms obtained during the 8-day experiment spiked with 50 µg/mL of CHX and OCT,
respectively (for the sake of clarity only the experiment with one of the enzymes—MnP—is displayed
because the same products were observed). All peaks, especially those that did not appear in the
control samples, were carefully assessed by nontargeted LC-MS analysis.

2.3.1. Chlorhexidine

An additional peak with the retention time (Rt) 5.3 min, whose area increased within the
degradation experiment, was recorded in the chromatogram (Figure 4). A similar profile of the UV
absorption spectra (λmax = 260 nm) suggested a relationship with CHX (Rt = 4.8 min).

LC-MS analysis (full-scan mode) revealed the major m/z 258.2 [M + 2H]2+ and 515.2 [M + H]+

for the peak with the Rt = 5.3 min. Detailed characteristics of the ESI+ mass spectra of CHX and
its transformation product, the comparison of their m/z values with the theoretical ones, as well as
the suggested structures of the metabolites, are given in Table 1. The specific isotopic pattern of the
CHX metabolite (ions 258.2; 259.0; 260.0 and 515.2; 517.1; 519.1) indicated the existence of multiple
chlorine atoms in the molecule. According to the presented structure (Table 1, Rt 5.3 min), oxidation
and simultaneous dehydrogenation seemed to be involved in the CHX transformation. Hydroxylation
is a common reaction facilitated by ligninolytic enzymes possessing low substrate specificity [43].
Dehydrogenation was described for the degradation of steroid compounds by P. ostreatus [28]. Our
observation suggests multiple dehydrogenation of the alkyl chain of CHX. Product ion spectra of
[M + 2H]2+ and [M + H]+ obtained by fragmentation in a linear ion trap and the description of the
main fragments are proposed in Figure S1.
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in the concentrated extracellular liquid of I. lacteus supplemented with Mn2+ and H2O2. The UV
absorption spectra of specific peaks are given in the insets.
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Table 1. Characterization of the detected chlorhexidine (CHX) and octenidine (OCT) metabolites by
nontargeted LC-MS.

Rt [min] Suggested Structure
Theoretical Mass

(Monois.)
m/z

Mass Spectra
Characteristics (ESI+)

m/z (Intensity, %)

CHX
4.8
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Several authors tracked CHX degradation by bacterial isolates (Pseudomonas sp.) from activated
sludge [15,16,44]. As a result, Tanaka et al. [39] proposed two ways of CHX transformation. The first is
a direct degradation to p-chlorophenylurea (PCPU) and p-chloroaniline (PCA). The second pathway
assumes an intermediate in which pyruvate is bound to the CHX molecule (m/z 531 [M + H]+). PCA
and PCPU are also known products of the hydrolysis of CHX under acidic or alkaline conditions [45,46].
We did not observe any detectable amount of PCA or PCPU in the degradation samples.

2.3.2. Octenidine

Three additional peaks appeared at Rt 5.9, 6.9, and 7.1 min (Figure 5). The detailed mass spectral
information of all observed OCT transformation products together with the comparison of the proposed
chemical structures of OCT metabolites and their theoretical m/z values are summarized in Table 1.
The product assigned with the Rt = 5.9 min, distinguished by LC-MS as the m/z 220.2 [M + 2H]2+,
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corresponds to the loss of the octyl moiety from the OCT structure. The amount of this transformation
product clearly increased within incubation time (Figure 5). Notably, detectable amounts were also
recorded in the HKC and AC samples but their abundancies remained constant. This phenomenon
can be explained as a physicochemical degradation of OCT that might be accelerated in the presence
of ligninolytic enzymes. The peaks with the Rt = 6.9 min and Rt = 7.1 min occurred only in trace
amounts and their baseline resolution was not achieved. Interestingly, one of these metabolites
(Rt = 6.9 min) started to disappear after several hours, while the amount of the second compound
(Rt = 7.1 min) increased after 24 h of incubation, indicating a less stable intermediate. A hydroxylated
and hydroxylated/dehydrogenated structure was proposed for major ions 284.2 [M + 2H]2+ and
283.2 [M + 2H]2+ assessed by LC-MS, respectively (see Table 1 for details). Product ion spectra of
all the transformation products and the description of their fragmentation products are displayed in
Figures S2–S5.

The specific example of QAC degradation by ligninolytic fungi is lacking in the literature.
On the other hand, the potential of the monooxygenases and dioxygenases of Rhodobacter spp. to
biotransform HDP, a structurally similar compound, via dealkylation and/or benzene ring oxidation
was hypothesized in the study of Nguyen et. al. [14]. Three main mechanisms of hydroxylation
were described for the biotransformation of QACs in aerobic conditions [4], but the fate of these
compounds under anaerobic conditions (e.g., aquatic sediments where they are usually adsorbed)
remains unknown.

3. Materials and Methods

3.1. Chemicals

CHX (99.5%) was obtained from Merck (Darmstadt, Germany). OCT dihydrochloride (98%) was
obtained from Alfa Aesar (Ward Hill, MA, USA). The tested compounds were diluted in DMSO (99.9%,
Merck). Malt extract broth (Oxoid, Basingstoke, UK) and glucose (Penta, Prague, Czech Republic)
were used for the MEG medium for fungal cultivation. ACN (HPLC grade and LC-MS grade, VWR,
Prague, Czech Republic), milli-Q water prepared by the Direct-Q® water purification system (18.2
MΩ·cm, Merck), FA (98%, Penta, Czech Republic), FA (LC-MS grade, Honeywell, Charlotte, NC, USA),
and trifluoroacetic acid (TFA ≥ 99%, Merck) were used for quantitative analyses.

3.2. Cultivation of Organisms and Degradation Tests

3.2.1. Fungal Cultivation

Ligninolytic fungal strains P. ostreatus 3004 CCBAS 278 and I. lacteus 617/93 were obtained from
the Culture Collection of Basidiomycetes of the Czech Academy of Sciences (Prague, Czech Republic).
One week-grown fungi were maintained on MEG (0.5% malt extract broth, 1% glucose) agar plate
and stored at 4 ◦C. One week before the degradation tests, fungal inocula containing 3 mycelial plugs
(0.7 mm Ø) of I. lacteus and P. ostreatus were grown in 20 mL of the MEG medium in 250 mL Erlenmeyer
flasks (ErF) under static conditions for 5 and 7 days, respectively. The inocula were homogenized by
Ultra-Turrax T 25 (IKA, Staufen, Germany).

3.2.2. In Vivo Transformation

Aliquots (1 mL) of the homogenized fungal suspension from Section 3.2.1. were used to inoculate
static cultures (20 mL of the MEG medium, 250 mL ErF). In vivo cultures were contaminated with the
highest nontoxic concentration of CHX (3 µg/mL in 0.5% DMSO) or OCT (2 µg/mL in 0.5% DMSO)
three days after inoculation, all in triplicate. Biotic controls (BC, fungal culture with 0.5% DMSO) and
HKCs were prepared in parallel. HKCs were grown for the same amount of time as the respective
fungal cultures and subsequently inactivated by sterilization (121 ◦C, 30 min). After that, they were
contaminated and incubated for the same amount of time as the active cultures. The samples and
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corresponding controls were harvested after 0, 3, 7, 14, and 21 days of cultivation (static conditions, at
28 ◦C in the dark) and then a quantitative analysis was performed (see Section 3.4.1).

3.2.3. In Vitro Transformation with Concentrated Extracellular Liquids

Extracellular enzymes produced by the studied fungal strains were used for in vitro transformation
tests. I. lacteus and P. ostreatus were grown in the MEG medium (20 mL in 250 mL ErF) for 8 days.
The cultures were filtered through a 0.22 µm cellulose membrane (Whatman, Little Chalfont, UK).
The targeted enzymes were concentrated 100-fold using 10 kDa cut-off membrane (Whatman) at 4 ◦C.
The crude concentrated extracellular liquids were used for in vitro transformation experiments. The
experiment with MnP from the I. lacteus strain was performed in 2 mL reaction mixtures containing
MnP at initial activity of 60 U/L, 50 mM malonate buffer (pH 4.5), 1 mM MnSO4, H2O2-generating
system (30 mM glucose, 60 U/L of glucose oxidase), and 5 µg/mL of CHX or OCT, respectively. In the
case of the experiment with Lac from the P. ostreatus strain, the reaction mixtures contained Lac with
initial activity of 120 U/L, 60 mM acetate buffer (pH 5.0), and 5 µg/mL of either CHX or OCT. All
samples were prepared in triplicate. ACs were prepared with distilled water instead of the enzyme.
The enzyme was inactivated (100 ◦C, 30 min) to prepare corresponding HKCs; BCs contained 5%
DMSO instead of the analytes. The samples and the respective controls were incubated for 0, 2, 4, 8,
24, 48, 96, and 192 h at 28 ◦C in the dark, shaken at 80 rpm on a rotary shaker. All samples were then
extracted and the residual concentration of the analytes was determined (Section 3.4.1).

3.3. Enzyme Activities

Extracellular ligninolytic enzymes were measured during the cultivation, enzyme preparations for
the in vitro experiments, and all degradation experiments. Lac was determined by the 2,2′-azino-di-[3-
ethylbenzthiazoline sulfonate (6)] (Merck) oxidation test [47]. MnP and manganese-independent
peroxidase were assessed with 2,6-dimethoxyphenol (Merck) as the substrate [48]. One enzyme unit
produced 1 µmol of the reaction product per minute under the reaction conditions.

3.4. Chemical Analyses

3.4.1. Quantitative Analyses

In vivo transformation samples as well as the controls were homogenized by the Ultra-Turrax T
25 and the fungal suspension was sonicated with 20 mL of an extraction solution containing 0.8% FA
in 20% ACN (v/v) at 70 ◦C for 45 min. The extracted suspension was centrifuged (4136× g, 15 min) and
the supernatant was measured by LC-UV.

In vitro transformation samples were added with 2 mL of the extraction solution and sonicated at
70 ◦C for 45 min. The extracts were centrifuged (6000× g, 10 min) and the supernatant was analyzed
by LC-UV.

The Waters Alliance 2695 LC system (Waters, Milford, MA, USA) equipped with a diode-array
detector (Waters 2996) was used for the analysis. The analytes were separated on the XBridge C18
(4.6 × 150 mm, 3.5 µm) column (Waters). The mobile phase consisted of 100% ACN (A) and 10% ACN
with 0.1% TFA (v/v) (B), the flow rate was 0.8 mL/min, and gradient elution was applied (min/% of
A): 0/20, 8–10/95, 15/20. Column temperature was set at 35 ◦C, sample injection was 10 µL. Detection
wavelengths for CHX and OCT were 260 nm and 280 nm, respectively.

3.4.2. Identification of Metabolites

The metabolites in all transformation samples were investigated by LC-MS analysis using the
NexeraXR ultra-high performance liquid chromatograph (Shimadzu, Kyoto, Japan) coupled via
electrospray ionization (ESI) to the QTrap 4500 mass spectrometer (Sciex, Framingham, MA, USA).
The Analyst 1.6.3. software was used for data evaluation. Separation was achieved on the Cortecs T3
C18 column (150 mm × 3 mm, 2.7 µm) at 0.4 mL/min using a mobile phase composed of 0.1% FA in
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water (A) and ACN (B). The linear gradient was as follows (min/% of A): 0/10, 8/70, 9–12/100, 12–15/20.
The mass spectrometer operated in the positive mode. Curtain gas, ion spray voltage, vaporizer
temperature, ion source gas 1, and ion source gas 2 were set at 30 psi, 5.5 kV, 450 ◦C, 40 psi, and 50 psi,
respectively. Full scan analysis in the mass range of 100–600 m/z was used for metabolite identification.
Enhanced product ion, tandem mass spectrometry, and enhanced resolution scans with alternated
collision energies and mass ranges were used to study the metabolites in more detail.

3.5. Statistical Analysis

The one-way analyses of variance (ANOVA) and subsequent Dunnett’s tests were run to identify
the pairs with significant differences. The differences were considered significant at p < 0.05. Microsoft
excel 2016 (Redmond, WA, USA) was used for data handling.

4. Conclusions

Our results indicate that the metabolic transformation of CHX might be associated with the activity
of extracellular enzymes of ligninolytic fungi, MnP and Lac, but only slow removal of the pollutant
was observed under the model conditions. Moreover, the mechanism elucidating the metabolism of
OCT remains unexplained since the majority of the analyte was adsorbed to the mycelial matter. For
the first time, metabolites indicating enzymatic transformation of both CHX and OCT were detected
and their chemical structures were proposed. However, complete biodegradation by the ligninolytic
fungi was not achieved for any of the studied analytes, which emphasizes their recalcitrant character.
Taken together with the substantial increase in the production and their worldwide consumption
during everyday household activities, there is little prospect of CHX and OCT being removed from the
environment. Activated sludge and agricultural lands are expected to be the environments impacted
by these compounds in real circumstances. The conclusions of this study highlight that biodegradation
studies of newly developed and extensively consumed synthetic compounds are crucial to predict
their fate in the environment.

Supplementary Materials: The following are available online, Table S1: Activity of manganese-dependent
peroxidase (MnP) from I. lacteus and laccase (Lac) from P. ostreatus during in vivo degradation of octenidine
(OCT) and chlorhexidine (CHX); Table S2: Activity of manganese-dependent peroxidase (MnP) from I. lacteus
and laccase (Lac) from P. ostreatus during in vitro degradation of octenidine (OCT) and chlorhexidine (CHX);
Figure S1: Product ion spectra and suggested fragments of (a) m/z 515.2 [M + H]+ and (b) m/z 258.2 [M + 2H]2+;
Figure S2: (a) mass spectrum of the peak with Rt = 5.9 min, m/z 439.4 [M + H]+ (b) product ion spectra and
suggested fragments of m/z 439.4 [M + H] +; Figure S3: Product ion spectra and suggested fragments of (a) m/z
567.5 [M + H]+ and (b) m/z 284.3 [M + 2H]2+; Figure S4: (a) mass spectrum of the peak with Rt = 7.1 min, m/z 283.2
[M + H]+ (b) product ion spectra and suggested fragments of m/z 565.5 [M + H]+; Figure S5: Product ion spectra
and suggested fragments of (a) m/z 565.5 [M + H]+ and (b) m/z 283.3 [M + 2H]2+.
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20. Covino, S.; Svobodová, K.; Křesinová, Z.; Petruccioli, M.; Federici, F.; D’Annibale, A.; Čvančarová, M.;
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Biodegradation of chlorobenzoic acids by ligninolytic fungi. J. Hazard. Mater. 2011, 196, 386–394. [CrossRef]

23. Karakaya, P.; Christodoulatos, C.; Koutsospyros, A.; Balas, W.; Nicolich, S.; Sidhoum, M. Biodegradation
of the High Explosive Hexanitrohexaazaisowurtzitane (CL-20). Int. J. Environ. Res. Public Health 2009, 6,
1371–1392. [CrossRef]

http://dx.doi.org/10.1016/j.copbio.2015.03.018
http://www.ncbi.nlm.nih.gov/pubmed/25864173
http://dx.doi.org/10.1016/j.scitotenv.2015.03.007
http://dx.doi.org/10.1007/s11270-018-3780-7
http://dx.doi.org/10.1111/1462-2920.13942
http://dx.doi.org/10.1111/1462-2920.12154
http://dx.doi.org/10.1016/j.jenvman.2019.02.043
http://dx.doi.org/10.1111/j.1574-6968.2004.tb09603.x
http://dx.doi.org/10.1021/es401507k
http://dx.doi.org/10.1016/j.chemosphere.2018.11.006
http://dx.doi.org/10.1016/j.scitotenv.2018.05.304
http://dx.doi.org/10.1016/j.ibiod.2018.11.006
http://dx.doi.org/10.1248/jhs1956.34.97
http://dx.doi.org/10.1248/jhs1956.42.121
http://dx.doi.org/10.12968/jowc.2016.25.Sup3.S3
http://dx.doi.org/10.1016/j.chemosphere.2012.03.107
http://dx.doi.org/10.1016/j.watres.2019.115274
http://dx.doi.org/10.1016/j.biortech.2009.12.020
http://dx.doi.org/10.1007/s12223-008-0045-7
http://dx.doi.org/10.1016/j.jhazmat.2011.09.041
http://dx.doi.org/10.3390/ijerph6041371


Molecules 2020, 25, 400 14 of 15

24. Dao, A.T.N.; Vonck, J.; Janssens, T.K.S.; Dang, H.T.C.; Brouwer, A.; de Boer, T.E. Screening white-rot fungi
for bioremediation potential of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Ind. Crops Prod. 2019, 128, 153–161.
[CrossRef]

25. Cajthaml, T. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: Mechanisms involved
in the degradation. Environ. Microbiol. 2015, 17, 4822–4834. [CrossRef]
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