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Abstract

Abnormal NKG2D ligand expression has been implicated in the initiation and maintenance of 

various auto-inflammatory disorders including systemic lupus erythematosus (SLE). This study’s 

goal was to identify the cellular contexts providing NKG2D ligands for stimulation of the 

immunosuppressive NKG2D+CD4 T cell subset that has been implicated in modulating juvenile-

onset SLE disease activity. Although previous observations with NKG2D+CD4 T cells in healthy 

individuals pointed towards peripheral B cell and myeloid cell compartments as possible sites of 

enhanced NKG2DL presence, we found no evidence for a disease-associated increase of 

NKG2DL-positivity among juvenile-onset SLE B cells and monocytes. However, juvenile-onset 

SLE patient plasma and matched urine samples were positive by ELISA for the soluble form of 

the NKG2D ligands MICA and MICB, suggesting that kidney and/or peripheral blood may 

constitute the NKG2DL positive microenvironments driving NKG2D+CD4 T cell population 

expansions in this disease.

Keywords

NKG2D Ligands; NKG2D+ CD4 T Cells; Juvenile-Onset Systemic Lupus Erythematosus; B 
Cells; Monocytes

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/
licenses/by/4.0/
# vgroh@fredhutch.org.
*Authors contributed equally.

HHS Public Access
Author manuscript
Open J Immunol. Author manuscript; available in PMC 2018 March 01.

Published in final edited form as:
Open J Immunol. 2017 March ; 7(1): 1–17. doi:10.4236/oji.2017.71001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1. Introduction

The NKG2D lymphocyte receptor and its cell stress-induced ligands have been implicated in 

the initiation and amplification of several autoimmune and inflammatory disorders [1]. In 

humans, NKG2D is expressed by most natural killer (NK) cells and CD8 T cells, and some 

CD4 T cells [2] [3]. NKG2D signal via association with the tyrosinemotive-containing 

DAP10 adapter and, upon ligand binding, stimulates effector functions or proliferation and 

survival [2] [4] [5]. NKG2D ligands (NKG2DL) include the MHC class I-related chains A 

and B (MICA, MICB) and six members of the UL-16 binding protein family (ULBP1-6) [6]. 

Central to the immunobiology of these ligands and, by inference of NKG2D, is the fact that 

functionally relevant amounts are absent from the surface of most normal cells but induced 

by mechanisms associated with cellular stress responses and thus frequently present on 

transformed or infected cells, and at sites of tissue inflammation [7].

Aberrant NKG2DL presence occurs in autoimmune and inflammatory diseases such as 

rheumatoid arthritis [8], alopecia areata [9], and celiac and Crohn’s disease [10] [11]. In all 

these conditions, ligand engagement of NKG2D on tissue-resident effector lymphocytes 

promotes cell damage and inflammation. Abnormalities in NKG2D-mediated immune 

responses have also been implicated in the pathophysiology of systemic lupus erythematosus 

(SLE), although with immune-modulatory rather than tissue damage-promoting 

consequences [3]. Juvenile-onset SLE (jSLE) disease activity negatively correlates with 

population expansions of a normally rare CD4 T cell subset that expresses NKG2D, is auto-

reactive, and has immunosuppressive functions [3]. Large numbers of such NKG2D+CD4 T 

cells also occur within cancer tissues where autoantigens and NKG2DL on tumor cells 

enable NKG2D-costimulated T cell proliferation [12]. With lupus, the ligand-positive 

cellular contexts providing for NKG2D engagement remain largely unknown. This study 

aims at addressing this knowledge gap.

2. Materials and Methods

2.1. Subjects and Blood Samples

19 patients diagnosed before age 18 who fulfilled the American College of Rheumatology 

criteria for the classification of SLE [13] and age-matched healthy volunteers were included 

into the study. Patients and healthy volunteers were recruited locally by word of mouth. 

Demographic characteristics, disease activity and renal disease status, and 

immunomodulatory medications of all patients are listed in Table 1. Control group 

demographic data other than age (range 11.8 – 18) was not available. Peripheral blood, and 

clinical and laboratory data were collected for each patient and disease activity determined 

according to the modified SLEDAI Index 2000 [14]. Disease activity scores of five or 

greater were considered representing active, scores of less than five inactive disease [15] 

[16]. Sample procurement from jSLE033-122 was between 042006 and 062012; from 

CIIT-1001-20 between 082015 and 012016. Serial samples obtained at times of high or low 

disease activity were available from three patients. PBMC were isolated as described [3]. 

Paired urine and plasma samples were collected from an additional 5 jSLE patients (Table 

1). All activities were carried out in accordance with the Declaration of Helsinki and 
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approved by local Institutional Review Boards. All subjects provided informed written 

consent.

2.2. Polychromatic Flow Cytometry

PBMC staining and analysis were as described [3]. Unless otherwise specified, mAbs were 

from BD Pharmingen and included anti-CD3-Alexa Fluor 700 (UC-HT1), anti-CD4-APC 

(RPA-T4), anti-CD8-PacificBlue (RPA-T8), anti-CD11c-FITC (BU15, Thermo Scientific), 

anti-CD14-APC (RMO52, Beckman Coulter), anti-CD16-PacificBlue (3G8), anti-CD19-

APC (HIB19) and anti-CD20-FITC (L27), anti-CD56-APC (N901, Beckman Coulter), and 

anti-NKG2D-PE (1D11; [2]). Anti-NKG2DL mAb were anti-MICA/B-PE (6D4), anti-

ULBP1-PE (170818, R & D Systems), anti-ULBP2/5/6-PE (165903; R & D Systems), anti-

ULBP3-PE (166510; R & D Systems), and anti-ULBP4-PE (1H1; [12]). In some cases, 

viable cell numbers were limiting resulting in partial data sets.

2.3. Monocyte Stimulation

Monocytes, enriched from either patient or healthy donor PBMC using classic plastic 

adherence, were incubated with RMPI-1640/10% FBS supplemented with LPS (10 μg/ml; 

Sigma) or GM-CFS (20 ng/ml; R & D Systems), or with medium alone, for 24 hours and 

examined for NKG2DL expression by flow cytometry.

2.4. ELISA for Soluble NKG2D Ligand Detection

Soluble MICA (sMICA), soluble MICB (sMICB), and soluble ULBP1 (sULBP1) in jSLE 

patient plasma were determined using ELISA kits (Human MICA and Human MICB; 

Abcam; Human ULBP-1, R & D Systems) according to manufacturers’ instructions.

2.5. Statistical Analysis

Populations were compared using the two-sample t-test and significance assigned where p < 

0.05. Contribution of more than one sample by some subjects was accounted for using 

multivariate logistic generalized estimating equations (GEE). The correlation between 

NKG2D+CD4 T cell frequencies and soluble NKG2DL was estimated from linear 

regression.

3. Results

3.1. Juvenile-Onset SLE B Cells Express Normal NKG2D Ligand Profiles

Our previous observation of lupus-associated NKG2D+CD4 T cell population expansions 

was made in patients with the juvenile-onset form of this disease [3]. For consistency, we 

maintained this disease focus enrolling 19 jSLE patients and 20 healthy age-matched control 

(HC) donors. Flow cytometry of PBMC samples (altogether 22, since each two serial 

samples were available from three patients; Table 1) confirmed increased frequencies of 

NKG2D+CD4 T cells among the jSLE cohort compared to HC (10.82% ± 8.72% versus 

3.64% ± 2.34; p ≤ 0.00001) with larger proportions of these cells in inactive compared to 

active disease (15.99% ± 10.48% versus 6.12% ± 3.47; p = 0.0007).
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In healthy individuals, peripheral blood B cells provide the autoantigens and NKG2DL 

necessary for NKG2D+CD4 T cell proliferation [3]. Screening for NKG2DL expression in 

jSLE thus first focused on the peripheral B cell compartment. Lupus patients, adult and 

juvenile-onset alike, are lymphopenic and, compared to healthy individuals, have reduced 

absolute B cell counts [17]. Accommodating these contractions and the typically small 

volumes of pediatric blood draws we started out with an exploratory flow cytometry analysis 

that defined B cells based only on CD19 and CD20 coexpression without consideration of 

additional functionally relevant markers. NKG2DL were tested as a third parameter using 

mAbs to MICA/B, ULBP1, ULBP2/5/6, ULBP3, and ULBP4 (Supplementary Figure S1 

displays examples of gating strategy and primary data). CD19+CD20+ B cells were present 

in all but one (jSLE114) of the 22 jSLEPBMC samples with absolute counts lower than 

those described for healthy children (219.8 ± 282.4 cells/μl; [17] [18]). Relative proportions 

of CD19+CD20+ cells were larger than those of the control donors (mean 13.6% ± 11.3 

versus 7.6% ± 4.7; p = 0.0187) but independent of disease activity (Figure 1(a)).

NKG2DL expression profiles of jSLE B cells displayed pronounced individual variability 

and, overall, were similar to those recorded with HC (Figure 1(b) and Figure 1(c); [19] [20]). 

In both cohorts, ULBP ligands (except ULBP4) were more prevalent than MICA/B. B cells 

expressing at least one, and most of the time two or more NKG2DL were present in all 

samples, albeit in ~50% of jSLE and HC samples their frequencies were low (<10% of total 

CD19+CD20+ cells). 10% or more NKG2DL-positive B cells were detected in 11 jSLE 

patients and 7 HC. In most samples, two or more NKG2DL were expressed at similar 

frequencies suggesting coordinate expression of more than one ligand by a given cell (Figure 

1(b)). Indeed, co-staining for ULBP1 and ULBP2/5/6 confirmed co-expression of these 

ligands on CD19+CD20+ B cells in three additional healthy donor PBMC samples (data not 

shown). There were no correlations between frequencies of NKG2DL-positive B cells and 

frequencies of NKG2D+CD4 T cells (data not shown). Thus although, as with normal B 

cells, jSLE B cells, if NKG2DL-positive, may well contribute to NKG2D+CD4 T cell 

proliferation, it seems unlikely that the jSLEB cell compartment alone provides the 

NKG2DL abundance presumed necessary for the extensive proliferative expansions of 

NKG2D+CD4 T cell populations that occur in jSLE [3].

3.2. Reduced Frequencies of NKG2D Ligand-Positive Cells among Juvenile-Onset SLE 
Monocyte Populations

NKG2DL are present on normal monocytes presumably contributing to regulatory crosstalk 

with NKG2D+ lymphocytes [19] [20] [21] [22]. With no evidence for aberrant NKG2DL 

presence among lupus B cells we thus considered myelomonocytic cells as possible 

NKG2DL source for NKG2D+CD4 T cell activation and expanded the flow cytometry-based 

screen to lupus monocytes. All but one (jSLE044; excluded due to limiting cell numbers) 

patient and control PBMC samples were tested. Monocytes were classified as classical, 

intermediate, and non-classical subsets based on expression of CD14 and CD16 

(Supplementary Figure S2; [23]). Proportions of classical (CD14brightCD16−) monocytes 

were decreased, and those of intermediate (CD14brightCD16+) increased in jSLE compared 

to control samples; non-classical (CD14dimCD16+) monocytes were similar in both groups 
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(Figures 2(a)–(c); [24]). None of these changes correlated with disease activity scores 

(Figures 2(a)–(c)).

As with jSLEB cells, NKG2DL profiles of patient monocytes resembled the normal 

expression pattern with substantial variability among individuals and at least one, and 

frequently two or more ligands expressed (Figure 3(a) and Figure 3(b)). Unlike with B cells, 

however, all patient monocyte populations differed from controls in the extent to which 

NKG2DL, and in particular MICA/B and ULBP1, were expressed (Figures 3(a)–(e)). jSLE 

monocyte populations contained, in part significantly, lower frequencies of ULBP1 positive 

cells than their corresponding controls. MICA/B positive cells were less frequent among the 

classical CD14brightCD16− and intermediate CD14brightCD16+ monocyte subsets compared 

to controls. Cells expressing ULB2/5/6 or ULBP3 were generally rare but slightly more 

frequent among jSLE CD14dimCD16+ monocytes. Thus, unlike with B cells, jSLE 

monocytes displayed disease-associated NKG2DL phenotypes although none correlated 

with disease activity or kidney involvement (data not shown). Due to limiting sample sizes 

testing of ULBP4 expression was sporadic.

Lupus antigen presenting cells have functional impairments such as an inability to induce 

the immuneregulatory ligands PD-L1 and CD80 [25] [26]. The apparent lack of ULBP1 

and/or MICA/B expression on most jSLE monocytes cells may reflect a similar defect. 

Hence, adherence-enriched jSLE and control monocytes were cultured in the presence of 

stimuli known to induce NKG2DL in normal myeloid cells and monitored for surface 

NKG2DL expression over time [19] [20] [21]. GM-CSF or LPS treatment resulted in 

induction of MICA/B and ULBP1 in normal controls but had no effect with jSLE monocytes 

(Supplementary Figure S3; [19] [20] [21]). ELISA of culture supernatants for soluble 

NKG2DL (sMICA, sMICB, sULBP1) was negative suggesting that the lack of surface 

NKG2DL on the jSLE monocytes was not due to enhanced ligand shedding [27]. Thus 

altogether, as with lupus B cells, lupus monocytes unlikely provide NKG2DL driving 

NKG2D+CD4 T cell proliferation. To ensure comprehensiveness, we also examined patient 

and control T cell and NK cell compartments for NKG2DL expression. Rare (<5%) 

NKG2DL-positive CD4 and CD8 T cells were detected in both cohorts with no prevalence 

for one or the other. NK cells (defined based on expression of CD56 and/or CD16) were 

NKG2DL-negative (data not shown).

3.3. Soluble MICB in Juvenile-Onset SLE Plasma and Urine Aligns with Frequencies of 
NKG2D+CD4 T Cells

Continuing the search for NKG2DL positive environments we resorted to screening for 

presence of soluble NKG2DL in matched jSLE patient plasma as surrogate readout for 

NKG2DL expression elsewhere [3] [12]. Although our earlier study found no significant 

association between frequencies of NKG2D+CD4 T cells and soluble MICA (sMICA) 

plasma concentrations we revisited this issue and extended the analysis to other soluble 

NKG2DL. Plasma samples matching all 22 patient PBMC specimens were screened by 

ELISA for sMICA, sMICB, and sULBP1. 14 of these samples were positive for sMICA yet 

concentrations generally low (picogram range) and unaligned with NKG2D+CD4 T cell 

frequencies (data not shown). sMICB was detectable in all 22 plasma samples at 
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concentrations that varied widely (range: 199 pg/ml – 30.3 ng/ml) among samples and 

displayed a significant positive trend relationship with NKG2D+CD4 T cell proportions 

(Figure 4(a)). sMICB plasma values also correlated negatively with disease activity scores 

suggesting clinical relevance (Figure 4(b)). ELISA for sULBP1 was negative throughout. 

Although sMICB plasma values were independent of presence or absence of overt renal 

disease we considered kidney as the most likely site of aberrant NKG2DL expression and 

putative origin of NKG2DL shedding [28]. Because of lack of access to kidney biopsies we 

examined patient urine instead for the presence of soluble NKG2DL (sMICA, sMICB, and 

sULBP1). Urine specimens matching the 22 patient and 20 control PBMC and plasma were 

not available. We thus examined urine and paired plasma from an additional five jSLE 

patients (Table 1) and age-matched controls by sMICA and sMICB ELISA. All patient—but 

none of the HC—derived samples were positive for sMICB with concentrations in the two 

specimen types well aligned (Figure 4(c)). sMICA was detected in all jSLE urine samples 

and in three of the paired plasmas (Figure 4(c)). Extending these observations to adult lupus, 

paired urine and plasma specimens from three SLE patients also contained low 

concentrations of sMICA and abundant sMICB. ELISA for sULBP1 was negative 

throughout. Filtration of plasma sMICA/B in the kidney is unlikely as control urine samples 

from patients with MICA/B expressing tumors and abundant plasma sMICA/B were 

negative for sNKG2DL (data not shown). Altogether, these results point towards the kidney 

as the site of aberrant NKG2DL expression in jSLE with both cell surface and soluble 

ligands possibly driving the NKG2D+CD4 T cell population expansions typical for this 

disease.

4. Discussion

Aberrant NKG2DL presence is thought to be relevant in lupus disease regulation but the 

tissues and cell types involved have not been defined [3] [28] [29] [30]. This study’s goal 

was to identify the cellular contexts that might provide NKG2DL for stimulation of the 

immunosuppressive NKG2D+CD4 T cell subset that has been implicated in modulating 

jSLE disease activity [3]. Although earlier observations with NKG2D+CD4 T cells in 

healthy individuals pointed towards the B cell compartment as possible site of enhanced 

NKG2DL presence, there was no evidence for a disease-associated increase of NKG2DL-

positivity among jSLE B cells. This was somewhat unexpected, as NKG2DL induction 

among lupus B cells would be consistent with NKG2D-mediated co-stimulation driving 

proliferative expansions of autoreactive and B cell antigen-specific NKG2D+CD4 T cell 

populations [3]. jSLE monocytes, largely devoid of NKG2DL, also emerged as unlikely 

source of NKG2DL-mediated NKG2D+CD4 T cell stimulation. However, patient plasma 

and matched urine samples were positive by ELISA for the soluble form of MICA and 

MICB, suggesting that kidney and/or peripheral blood might constitute the NKG2DL 

positive microenvironment driving NKG2D+ CD4 T cell population expansions [3] [12]. 

Positive trend relationships between sMICB plasma concentrations and proportions of 

NKG2D+CD4 T cells support this notion [12]. Moreover, sMICB values were inversely 

correlated with disease activity. As with an earlier study, sMICA plasma concentrations were 

independent of NKG2D+CD4 T cell frequencies possibly due to masking of ELISA by anti-

MICA autoantibodies [3]. However, why such a mechanism would preferentially affect 
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MICA over MICB remains unexplained. Whether or not the apparent quantitative prevalence 

of sMICB compared to sMICA reflects a true biological phenomenon or simply differential 

sensitivities of the respective ELISA remains equally unknown [28]. NKG2DL expression 

in, and shedding from jSLE kidney in the absence of overt nephritis is not surprising as even 

subclinical alterations of tissue homeostasis can lead to induction of NKG2DL expression 

[7].

The lack of and/or failure to induce MICA/B and/or ULBP1 in jSLE monocytes is consistent 

with current concepts of lupus-related myeloid cell abnormalities [24] [25] [26]. However, 

enhanced cell segregation to inflammatory sites may also contribute to the reduced ULBP1- 

and/or MICA/B-positivity cells among jSLE monocytes, as sequestration of myeloid cells to 

renal tissue has been described for patients with active lupus nephritis [23] [31]. However, 

we found no correlation between frequencies of NKG2DL-positive monocytes and presence 

or absence of renal disease. Arguing against immune-mediated depletion via auto-anti-

antibody-mediated cytotoxicity, viability of peripheral blood cells from healthy donors was 

unaffected by incubation with active jSLE patient sera (data not shown). Medication effects 

on NKG2DL are unlikely as use of immunosuppressive drugs was comparable among all 

patients (Table 1; [25]).

In addition to the disease-related changes, this study uncovered a previously 

underappreciated inter-individual variability in NKG2DL expression by peripheral blood B 

cells and monocytes [19] [20].

5. Conclusion

In summary, although our study does offer insights into the distribution of NKG2DL in 

juvenile-onset lupus patients, it fails to directly pinpoint the precise tissue source for the 

soluble NKG2DL present in patient plasma and urine. An additional limitation is the 

relatively small number of matched plasma and urine samples studied. Analysis of a larger 

patient cohort including more extensive serial sampling is thus desirable as it may lead to the 

identification of soluble NKG2DL in urine as a disease activity biomarker.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-Standard Abbreviations

NKG2DL NKG2D ligand
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MICA and MICB MHC class I-related chains A and B

ULBP UL-16 binding protein

SLE systemic lupus erythematosus

jSLE juvenile-onset SLE

HC healthy control
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Figure 1. 
Frequencies and NKG2DL phenotypes of peripheral blood B cells in juvenile-onset SLE 

patients and healthy controls (HC). (a) Comparisons of proportions (% of total lymphocytes) 

of B cells in HC to those in jSLE patients, and between active and inactive disease. 

Horizontal lines and error bars show median and interquartile range. (b) Heat map display of 

proportions (numbers in individual squares) of B cells expressing the indicated NKG2D 

ligands in each patient and control sample. Light grey indicates no data; bar displays color 

grading; (ID) identification. (c) Graphic display of proportions of B cells expressing the 

indicated ligands. (a)–(c) *p < 0.05; (ns) not significant.
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Figure 2. 
Frequencies of peripheral blood monocytes in juvenile-onset SLE patients and healthy 

controls (HC). (a)–(c) Comparisons of proportions (% of total CD14+ cells) of (a) 

CD14brightCD16−, (b) CD14brightCD16+, and (c) CD14dimCD16+ monocytes in HC to those 

in jSLE patients, and between active and inactive disease. Horizontal lines and error bars 

show median and interquartile range; *p < 0.05; ****p < 0.0001; (ns) not significant.
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Figure 3. 
NKG2DL phenotypes of peripheral blood monocytes in juvenile-onset SLE patients and 

healthy controls (HC). (a) (b) Heat map display of proportions (numbers in individual 

squares) of CD14/CD16-defined monocytes expressing the indicated ligands in each HC (a) 

or jSLE patient (b) sample. Bars display color grading. Light grey indicates no data; (ID) 

identification. (c)–(e) Graphic display of proportions (in %) of (c) CD14brightCD16−, (d) 

CD14brightCD16+, and (e) CD14dimCD16+ monocytes expressing the indicated ligands. 

Open and black bars represent data from HC and patients, respectively. *p < 0.05; **p < 

0.01; ****p < 0.0001; (ns) not significant.
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Figure 4. 
Presence of soluble MICB in plasma and urine from juvenile-onset SLE patients. (a) Overall 

data point distribution and statistical evaluation (y = 10 ^ [−1.9 + 1.2 * log(x)], R-squared = 

0.3; p = 0.009) of soluble MICB plasma concentrations (ng/ml; log scale) in relationship to 

frequencies of NKG2D+CD4 T cells in the 22 jSLE patient samples studied. (b) 

Comparisons of soluble MICB plasma concentrations (ng/ml; log scale) in jSLE patients 

with active disease to those of patients with inactive disease. Horizontal lines and error bars 

show median and interquartile range. (c) Tabulation of soluble MICA and soluble MICB 
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concentrations (pg/ml) in urine and paired plasma from five jSLE patients. Patient ID = 

jSLE patient identification.
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