
RESEARCH ARTICLE

Mathematical basis for the assessment of

antibiotic resistance and administrative

counter-strategies

Hans H. DiebnerID
1¤*, Anna Kather2, Ingo Roeder1*, Katja de With2

1 Carl Gustav Carus Faculty of Medicine, Institute for Medical Informatics and Biometry, Technische

Universität Dresden, Dresden, Germany, 2 University Hospital Carl Gustav Carus Dresden at the TU

Dresden, Division of Infectious Diseases, Dresden, Germany

¤ Current address: Department of Medical Informatics, Biometry and Epidemiology, Ruhr-Universität

Bochum, Bochum, Germany

* hans.diebner@tu-dresden.de (HHD); ingo.roeder@tu-dresden.de (IR)

Abstract

Diversity as well as temporal and spatial changes of the proportional abundances of different

antibiotics (cycling, mixing or combinations thereof) have been hypothesised to be an effec-

tive administrative control strategy in hospitals to reduce the prevalence of antibiotic-resis-

tant pathogens in nosocomial or community-acquired infections. However, a rigorous

assessment of the efficacy of these control strategies is lacking. The main purpose here is

to present a mathematical framework for the assessment of control stategies from a proces-

sual stance. To this end, we adopt diverse measures of heterogeneity and diversity of pro-

portional abundances based on the concept of entropy from other fields and adapt them to

the needs in assessing the impact of variations in antibiotic consumption on antibiotic resis-

tance. Thereby, we derive a family of diversity measures whose members exhibit different

degrees of complexity. Most important, we extent these measures such that they account

for the assessment of temporal changes in heterogeneity including otherwise undetected

diversity-invariant permutations of antibiotics consumption and prevalence of resistant

pathogens. We apply a correlation analysis for the assessment of associations between

changes of heterogeneities on the antibiotics and on the pathogen side. As a showcase,

which serves as a proof-of-principle, we apply the derived methods to records of antibiotic

consumption and prevalence of antibiotic-resistant germs from University Hospital Dresden

(cf. supplement “DiebnerEtAl_Data-Supplement”). Besides the quantification of heteroge-

neities of antibiotics consumption and antibiotic resistance, we show that a reduction of

prevalence of antibiotic-resistant germs correlates with a temporal change of similarity with

respect to the first observation of antibiotics consumption, although heterogeneity remains

approximately constant. Although an interventional study is pending, our mathematical

framework turns out to be a viable concept for the assessment and optimisation of control

strategies intended to reduce antibiotic resistance.
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Introduction

The drastic increase of antimicrobial resistance worldwide resulting in an alarming increase

in morbidity and mortality from clinical infections urges scientists and clinicians to develop

counter-strategies [1]. Designing new antiinfective agents is an option. However, the creation

of new drugs is time-consuming and success is not guaranteed. Therefore, the control of con-

sumption of available antibiotics or, more general, of antiinfectives, is obligatory.

Since a quick replacement of existing antibiotics is not feasible, antibiotic strategies as

“antibiotic mixing”, “antibiotic cycling”, “antibiotic switching”, and “rotation protocols”

gained evermore attention in the recent decades [2–6] (for a review cf. [7]). All these con-

cepts refer to heterogeneity of antibiotic usage and non-constant prescription rates. For

example, antibiotic cycling means to extract one or a subset of classes of antibiotics from

administration in a temporarily alternating way whereas other strategies refer to a scheduled

change of the dominantly used class of antibiotics. Frequently, mixing refers to a strategy

where a group of patients receives drug (class) A and another group receives drug (class) B

in an alternating way. Hereby, the permutation usually takes place between wards leading

to a spatial heterogeneity of antibiotic consumption. In clinical reality, empirical antibiotic

therapy rarely follows strictly defined control schemes but rather adjusted forms of cycling

and mixing in consequence of clinical requirements, thus “clinical cycling” (notion adopted

from [4]).

Although there is some evidence that the temporal and spatial permutations of rates of con-

sumption of different antiinfectives are able to reduce prevalence of resistant pathogens [2–4,

8], there is a lack of rigorous evaluations of the ongoing processes, which prevents optimisa-

tion. The nonlinear time series analysis presented by Lopez-Lozano et al. 2019 is indicative

for an approach from a processual stance, but needs to be generalised. Usually, the impact of

cycling and mixing strategies (for a review and meta analysis cf. [7]) is investigated by means

of prospective (randomized clinical trials (RCTs), controlled clinical trials (CCT), controlled

before-after, cross-over) based on well-defined rotation/switch protocols, thereby neglecting

(continuous real-world) processes. Interrupted time series analyses with at least three observa-

tions before and after intervention exist, but once more, a precise time point of intervention is

preconditioned, thereby excluding adjusted strategies of cycling and mixing. Of note, other

researchers as e.g. Karam et al. [5] could not confirm a significant reduction of antimicrobial

resistance through cycling or mixing protocols.

The main purpose of this work is to present an analytical framework to quantify heteroge-

neity of both, antibiotic consumption as well as prevalence of antibiotic-resistant pathogens as

a function of observation time. This enables the assessment of associations between consump-

tion and resistance and, potentially, to optimise control strategies based on diversity, mixing

and cycling either in their adjusted versions, i.e. “semi-controlled” field-like or observational

studies, or in their extremes. The analytic framework consists of adapted methods known in

other areas like ecosystems [9, 10]. For the purpose of illustrating the mathematical frame-

work, the method is applied to real observational data, i.e., to records of antibiotic consump-

tion and prevalences of antibiotic-resistant pathogens of University Hospital Dresden in

Germany (cf. supplement “S1 File”). Although these data have been recorded in the absence of

a clearcut study design and without genuine applications of common cycling or mixing strate-

gies, we nevertheless opted to use these data instead of simulated data for illustration purpose

and to preserve a “real world” character of our methodological approach. Thus, the application

of the proposed mathematical framework has to be understood as a proof-of-principle. Rigor-

ous controlled interventional studies are planned, however, we regard the immediate provision

of the analytical framework to have utmost priority.
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Materials and methods

Records of antibiotic consumption

The available data set (cf. supplement “S1 File”) contains 25 consecutive quarterly records of

antibiotic consumption starting from the first quarter 2012. Consumption has been recorded

per administrative units (cost centres, typically wards). However, for the elementary stage of

illustrating the proposed method, a grouping of these small subunits into functional units is

considered to be sufficient. Therefore, the departments are grouped into the three top-level

units: surgical/OP units, intensive care units, and medical/normal care units. Consumption

has also been recorded per active agent, which is nested within antibiotic class. In total, 49

active agents have been observed, which are pooled to 12 antibiotic classes.

The consumption of an antibiotic is measured in standardised units according to the ATC/

WHO definition of defined daily doses, DDD, in order to allow for comparisons of different

active agents. In addition, the number of cases as well as patient days have been recorded on a

quarterly basis. This allows to compute the consumption density DDD per 100 patient days in

hospitals:

DDDdensity ¼
DDD

100 patient days
: ð1Þ

Please note, for the sake of completeness, consumption density sometimes refers to DDD per

100 or per 1000 cases, respectively. In the following, we use DDD only since DDDdensity gives

virtually the same results (data not shown). Moreover, some measures of diversity are func-

tions of proportions of “species” within an “ecosystem”, which is why we make use of propor-

tions of consumption. If DDDi(t) denotes the consumption of antibiotics within the antibiotic

class i 2 {1, . . ., n} at time t, the proportion is given by

dddiðtÞ ¼
DDDiðtÞ
Pn

i¼1

DDDiðtÞ
ð2Þ

Depending on the context, index i may also refer to the active agent.

Coefficient of variation

The coefficient of variation,

VðtÞ ¼
SDðDDDðtÞÞ

MeanðDDDðtÞÞ
; ð3Þ

where the mean is taken over the antibiotic classes and SD(DDD(t)) denotes the corresponding

standard deviation, can be used as a rough estimate of “homogeneity” in a properly defined

sense. Unfortunately, analogous to the notion of “dispersion,” “homogeneity” is an ambiguous

term which deserves clarification. In ecological analyses, the concept of “maximisation of sta-

tistical heterogeneity” refers to an approach by means of an entropy or a related diversity mea-

sure as discussed in the following section (cf. [11]). In this context, an ecosystem is maximally

heterogeneous, thus has maximum entropy, if all species are equally abundant, at least in the

absence of specific weights of the species abundances [9]. In the latter case, V would be zero,

i.e., the system has no variability and is thus without (statistical) dispersion. In contrast, physi-

cists prefer to speak of a perfect dispersion, aka a perfect mixture, in such a situation. Thus, an

ecosystem or a society close to a monoculture is “homogeneous” whereas a multi-cultural soci-

ety/ecosystem is called “heterogeneous” which is used synonymously to “diversity.”
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In economics, to the contrary, the distribution of incomes is called homogeneous in the

case of equal incomes of all individuals in accordance with the idea of a dispersion-free perfect

mixture [12]. Due to compatibility, we stick with the ecological approach in the sequel. In this

regard, the coefficient of variation is an inverse measure of ecological heterogeneity. Arguably,

heterogeneity in the ecological sense is better captured using the concept of diversity, as intro-

duced in the following section. In order to provide compatibility with the terminology based

on the notion of “heterogeneity” suggested in relevant publications on antibiotics resistance [2,

13], we cannot completely drop this term.

Heterogeneity and entropy

Although the coefficient of variation can be interpreted as a rough measure of (inverse) hetero-

geneity, it has several inadequacies including the lack of uniquely capturing temporal changes.

In the sequel, we harness methods known in ecological population modelling and other fields

of research for an adequate quantification and assessment of antibiotic mixing behaviour and

strategies as well as temporal patterns of prevalence of antibiotic resistance.

Let ai and bi with i = 1, . . ., n be the proportions of species of two n-species populations

composed of the same set of species with
Pn

i¼1
ai ¼

Pn
i¼1

bi ¼ 1. Similarity of these two popu-

lations in terms of species’ abundances can be quantified by the similarity index

SI ¼ 1 � 0:5
Xn

i¼1

jai � bij: ð4Þ

If ai = bi, 8i = 1, . . ., n, then SI = 1, i.e., the populations are identical in terms of their species

distributions. If, on the contrary, the populations consist of disjoint sets of species, then

SI = 0. Similarity index SI scales between 0 and 1. If we now fix say the first population to

ai ¼ 1

n ; 8i ¼ 1; . . . ; n, which means maximum heterogeneity for this reference population,

then, for the other population a heterogeneity index can be defined by

HI ¼ 1 �
n

2ðn � 1Þ

Xn

i¼1

�
�
�
1

n
� bi

�
�
�: ð5Þ

Hereby, the slightly adapted factor n
2ðn� 1Þ

compared to 0.5 in SI (Eq 4) ensures HI 2 [0, 1] inde-

pendent from the concrete value of n. As far as we know, HI defined by Eq 5 has been used by

Sandiumenge et al. [2] for the first time in the context of assessing antibiotic resistance and

reapplied by Plüss-Suard et al. [13]. Please note that the typesettings of the formulas for HI in

refs. [2, 13] are incorrect. Abel zur Wiesch and collaborators [4] explicitly call this measure

“antibiotic heterogeneity index (AHI)”, although it originated in other fields of research.

Diversity, a notion frequently used in ecology, is a more general concept than heterogeneity

[9, 14]. However, diversity is not uniquely defined. Thus, it depends on the specific context to

which particular definition of diversity should be drawn on. Even within the field of antibiotic

consumption and related antibiotic resistance, the concrete context can vary considerably.

Since we here aim at presenting a general mathematical framework, a family of measures

whose members are characterised by exhibiting different levels of complexity is presented.

To start with, an obvious somewhat simplistic way to quantify diversity is given by the so

called richness, which is merely the number of species in a multi-species population (e.g. eco-

system). In terms of richness, a heterogeneous n-species population with equally frequent spe-

cies has the same diversity as an n-species population with a minority of dominating and a

majority of very rare species, that is to say n. It follows that an expedient diversity measure

should be based on the distribution of species’ abundances in some way.

PLOS ONE Assessment of antibiotic resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0238692 September 3, 2020 4 / 22

https://doi.org/10.1371/journal.pone.0238692


A meaningful definition of diversity Da is based on an “effective number of species” (cf. [9,

14]) given by the species’ proportions pi and a weight parameter a by means of:

Da ¼
Xn

pai

� � 1
1� a

: ð6Þ

Setting a = 0 yields D0 = n independently from pi, i.e. richness. Other special cases are:

D1 ¼ eR1

D2 ¼
1

Pn
i¼1

p2
i

D1 ¼
1

maxðpiÞ

ð7Þ

with R1 ¼ �
Pn

i¼1
pi lnðpiÞ being the so called “Shannon entropy”, sometimes also called

“Shannon index.” A unique name for D1 itself, i.e. the exponential of the Shannon entropy,

does not exist, however, in information science it is sometimes called “perplexity.” Diversity

measure D2 is called “inverse Simpson index.” The frequently used Gini-Simpson-Index

derived from D2 is given by: GS ¼ 1 � 1

D2
. The inverse of D1 is found in the literature named

“Berger–Parker index,” which is simply the proportional abundance of the most abundant

type.

The Shannon entropy is a special case of a Renyi entropy defined by

Ra ¼
1

1 � a
ln

Xn

i¼1

pi

 !

; ð8Þ

thus we have Da ¼ eRa . In other words, Ra is a monotonous function of Da, thus, the two mea-

sures can be used interchangeably without loss of information since diversity has only a rela-

tive meaning, anyway. The same holds for GS and other possible monotonous functions of Da.

Entropy Ra, thus Da, independently of a reach their maximum for the fully heterogeneous situ-

ation pi ¼ 1

n ð8i ¼ 1; . . . ; nÞ and it then follows that Da = n. From the latter result we conclude

that richness might be a sufficient diversity measure for populations close to full heterogeneity.

Having said that, heterogeneity HI itself, although it cannot be derived as a special case of a

Renyi entropy, shares features of an entropy and is thus a legitimate measure of diversity.

Finally, the frequently used Gini coefficient deserves to be mentioned:

G ¼ 1 �
1

2ðn � 1Þ

Xn

i¼1

Xn

j¼1

jpi � pjj: ð9Þ

The Gini coefficient in this form (for this and other variants see [14]) is an interesting variant

of the similarity index SI insofar as it can be interpreted as kind of a self-similarity. Once more,

full heterogeneity (equal proportions) pi ¼ 1

n ; 8i ¼ 1; . . . ; n, implies G = 1, and maximally

unequal proportions (e.g. pi = 1, pj 6¼ i = 0) implies G = 0.

For what follows, it is important to bring to mind that both heterogeneity, HI, as well as

measures of diversity, Da, GS, and G, are invariant under permutations of indices. In other

words, if the proportions of two species are exchanged, diversity (heterogeneity) does not
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change. However, similarity index SI is capable to account for such a change after some adap-

tations, as shown in the Results section. In order to assess both (temporal) cycling as well as

(spatial) mixing behaviour of antibiotic administration or consumption, respectively, the

proper similarity index extends to

SI ¼ 1 � 0:25
Xn

i¼1

Xm

j¼1

jaij � bijj ð10Þ

where
Pn

i¼1
jaijj ¼

Pn
i¼1
jbijj ¼ 1 8 j ¼ 1 . . .m. Hereby, the inner sum is taken over the m

wards or groups of patients between which antibiotic mixing takes place. In this case, aij and

bij refer to the relative abundances before and after the swap of antibiotics administrations

between the wards, respectively. In practice, i.e. in the absence of a properly defined study pro-

tocol, an allocation of both antibiotic consumption as well as the prevalence of resistant patho-

gens to precisely defined wards or groups of patients is hampered by the reality of adjusted

clinical cycling/mixing. In the following, due to lack of appropriate information on mixing

strategies, we present definitions of similarity tailored to our needs without taking strict mix-

ing into account.

Statistical analysis

Main purpose of this article is to apply a diversity analysis to records of both clinical consump-

tion of antibiotics as well as prevalence of pathogens exhibiting antimicrobial resistance. We

refer to the previous section for a detailed introduction of the applied diversity measures. It

remains to mention that the expected impact of diversity of antimicrobial consumption on the

prevalence of resistant pathogens is analysed by means of Pearson’s correlations of the corre-

sponding time series.

Specifically, slopes along with their significance of differing from zero taken from linear

regression quantify the temporal changes of both diversity as well as differential diversity. Of

particular interest is the comparison between the time courses of differential diversities of anti-

biotic consumption and prevalence of resistant pathogens. Such a comparison can be achieved

by testing of whether the two corresponding slopes differ significantly or not, or, equivalently,

by calculating Pearson’s correlation coefficient along with the corresponding significance test.

In the same line, the time series of the relative abundance of resistant pathogens is tested for

correlations with the time course of the differential diversity of antibiotic consumption using,

as before, Pearson’s product moment correlation analysis.

Of note, each of the three time series, i.e. differential diversity of consumption, differential

diversity of prevalence, and relative abundance of resistant pathogens, are expected to exhibit

autocorrelations. This is a common feature of time series analyses. Nevertheless, Pearson’s cor-

relation is commonly used as a standard technique to quantify the co-variation of two corre-

lated time series and we here regard it to be sufficient for raising hypotheses based on the

available preliminary dataset. A more appropriate application of a cross-correlation function

with one of two time series being subject to a time lag is not applicable in our case due to the

insufficient lengths (and low sampling frequencies) of the time series.

Numerical calculations, statistics, and graphics have been performed with R [15].

Results

Preliminary note

Before presenting the results of applying the derived diversity measures to observational

clinical data, we reemphasise that this work mainly aims in presenting the mathematical
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framework. The following application to real data has an illustrative purpose and outlines

future applications to adequately collected data from a controlled trial. Therefore, in terms of

clinically relevant results, the following explanations remain provisional.

Descriptive analysis

Fig 1a shows the 12 time courses of antibiotic consumption per antibiotic class, DDDi(t). The

consumptions of 9 classes largely remain constant on a moderate level. One class, that is to say

“second-generation cephalosporins”, is characterised by a high consumption at the outset but

declines approximately monotonously by more than half towards the end of the observation

period. The consumptions of two other classes, in contrast, i.e. “aminopenicillin/beta-lacta-

mase inhibitors” and “narrow-spectrum penicillins” increase approximately monotonously

and roughly compensate for the aforementioned decline.

Calculations based on DDD are hardly distinguishable from calculations based on the cor-

responding densities, 100 × DDDi/patient days. Henceforth, due to these minor differences,

Fig 1. Time course of antibiotic consumption by antibiotic class. Time courses of a) consumption DDD per antibiotic class, b) proportions of

consumption ddd per antibiotic class, c) mean consumption averaged over the antibiotic class, d) coefficient of variation with respect to the antibiotic

classes.

https://doi.org/10.1371/journal.pone.0238692.g001
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we skip to report our results with respect to consumption densities since we here primarily

deal with an introduction of a methodological concept. The distinction between DDD and the

corresponding densities might become important in other contexts, though. The proportions,

dddi(t), however, depicted in Fig 1b, will be used in later sections where we calculate measures

of diversity.

Fig 1c shows the time course of the quarterly sampled mean antibiotic consumption, Mean
(DDD(t)), averaged over the 12 observed antibiotic classes (cf. Fig 1a). The corresponding

coefficient of variation, Eq 3, is depicted in Fig 1d.

In the present case, variability thus homogeneity in the ecological sense is rather high dur-

ing the first 4 to 6 quarters compared with the remaining time course. After an approximately

monotonous decline until 2016, V(t) slightly increases again during the final quarters. These

results are consistent with the visual impressions from Fig 1a. Starting with a rather homoge-

neous distribution at the outset with an outstandingly large proportion of a single antibiotic

class, we observe a trend towards a narrow distribution around the mean that starts to weakly

widen towards the end. Equal proportions, thus V(t) = 0, means perfect heterogeneity, there-

fore, V(t) can be interpreted as an inverse measure of heterogeneity.

In the same line, the descriptive analysis can be applied to consumption with respect to

active agents. Fig 2a shows the 49 time courses of consumption per active agent. We observe

that a single active agent, viz. “cefuroxime”, dominates consumption at the outset but declines

approximately monotonously towards the end to a level still significantly above the bulk. This

decline is compensated by an increase in consumption mainly of “amoxicillin + clavulanic

acid” but also some other agents. The time courses of mean DDD and the coefficient of varia-

tion with respect to the active agents shown in Fig 2b and 2c reveal that variability remains on

a high level during the time course. Thus, it turns out that pooling agents into antibiotic classes

has a damping effect with respect to variability or homogeneity, respectively.

Next step is to account for the Hospital’s functional units. The three panels of Fig 3 show

the time courses of antibiotic consumption per antibiotic class stratified by the three functional

units: unit 1 = intensive care units, unit 2 = medical/normal care units, unit 3 = surgical/OP

units. Unit 1 consumed antibiotics out of 11 classes, whereas unit 3 consumed antibiotics out

of only 8 different classes in at least one quarter during the whole observation period. Only

unit 2 has non-zero consumption of antibiotics out of all 12 classes in at least one quarter.

Fig 4 shows the time courses of mean consumption averaged over the antibiotic classes per

functional unit (Fig 4a) as well as the three corresponding coefficients of variation (Fig 4b).

Unit 3 (the surgical/OP units) exhibits the lowest mean consumption but by far the highest

coefficient of variation, both of which remain approximately constant over the time course.

The explanation follows by throwing a glance on Fig 3c: Unit 3 has one absolutely dominating

consumption of antibiotics out of the class “second-generation cephalosporins.” Units 1 and 2

both exhibit approximately temporarily constant mean consumption, however, unit 2 on a

roughly 5-fold higher magnitude. Noteworthy, the variation of consumption of unit 2 approxi-

mately follows the variation for the whole clinic with a more or less monotonous decline dur-

ing the first half of the observation period, whereas the coefficient of variation for unit 1 is

approximately constant over the time course, with the exception of a marked rise at the final

observation (first quarter of 2018), which can be explained by the sudden rise of consumption

of “narrow-spectrum penicillins” antibiotics (cf. Fig 3a).

Heterogeneity of antibiotic consumption

The diversity measures introduced in the “Materials and methods” section are now calculated

using the observed proportions pi of antibiotic consumption with respect to antibiotic classes,
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thus i = 1, . . ., 12 refers to the 12 antibiotic classes. Fig 5 shows time courses of a) Renyi entro-

pies, Ra, for 7 different values of weight parameter a (cf. figure legend), b) the corresponding

diversities, Da ¼ eRa for the same set of parameters a, c) the Gini-Simpson diversity, GS, and d)

the Gini coefficient, G. Specifically, a = 0 yields D0 = n = 12 (Fig 5b) in agreement with what

we expected from theory.

Apparently, for all a> 0 the curves exhibit the same shape, i.e., they differ at each time

point by a factor that seems to be a monotonous function of the values of a reference curve at

these time points. A unique rule which specifies the best value of a does not exist. However,

some researchers invoke a rule of thumb (e.g. [10]) which states that if one exactly observes

such a monotonous relation between the different curves as we did, then the Renyi entropy is a

robust measure and a> 0 can be chosen arbitrarily but consistently, since entropy does not

have an absolute meaning, anyway. Apparently, the rule also holds for the Gini-Simpson diver-

sity, GS, and the Gini coefficient G.

Fig 5 reveals that all diversity measures increase from 2012 until approximately 2016.

Thereafter, this tendency is stopped and the data even suggest the initiation of a decrease in

diversity. This behaviour coincides with the time course of the coefficient of variation (Fig 1).

Fig 2. Time course of antibiotic consumption by active agent. Time courses of a) consumption DDD per active agent, b) mean consumption averaged

over the active agents, c) coefficient of variation with respect to the active agents.

https://doi.org/10.1371/journal.pone.0238692.g002
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Compared to the Renyi entropy, heterogeneity HI, defined in Eq 5, is easier to comprehend,

which might explain that its application in the context of antibiotic resistance is unparalleled

up to date [2, 4, 13]. However, the invariance under species permutations has not been taken

into account thus far. A cycling strategy that dictates an occasional temporal swap of consump-

tion of two antibiotics with respect to the hospital unit under consideration leads to a tempo-

rarily constant heterogeneity and, therefore, to wrong conclusions if the assessment is merely

based on HI. Likewise, a mixing strategy, i.e. switching the consumption of two antibiotics

between two units would remain unnoticed unless the diversity of the two units are not sepa-

rately calculated (cf. Eq 10). Since heterogeneity is nothing but a special case of similarity SI,
we can now make use of SI to introduce a differential measure. Similarity with respect to the

initial observation at the outset of a study

SI0ðtÞ ¼ 1 �
n

2ðn � 1Þ

Xn

i¼1

�
�
�piðt ¼ 0Þ � piðtÞ

�
�
�; ð11Þ

with t = 0, 1, . . ., 24 being the number of elapsed quarters, captures changes with respect to the

Fig 3. Time courses of antibiotic consumption by antibiotic class separated by functional units. Time courses of antibiotic consumption per antibiotic

class shown separately for the functional units a) unit 1 = intensive care units, b) unit 2 = medical/normal care units, c) unit 3 = surgical/OP units. Please

note, the different scales of the y-axes reflect the different total amounts of consumption within each unit due to their different sizes. Important are the

relative abundances within each unit.

https://doi.org/10.1371/journal.pone.0238692.g003

PLOS ONE Assessment of antibiotic resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0238692 September 3, 2020 10 / 22

https://doi.org/10.1371/journal.pone.0238692.g003
https://doi.org/10.1371/journal.pone.0238692


first observation. In the same line,

SIDðtÞ ¼ 1 �
n

2ðn � 1Þ

Xn

i¼1

�
�
�piðt � 1Þ � piðtÞ

�
�
�; for t > 0: ð12Þ

defines changes with respect to consecutive quarters, thus defines an approximation to a differ-

ential measure of similarity. The time courses of HI, SI0, and SIΔ are depicted in Fig 6a–6c.

Heterogeneity HI varies only within a small range from 0.63 to 0.69 (Fig 6a). However, we

observe a monotonous, almost linearly increasing displacement from the first observation (Fig

6b). Due to this linear increase, the magnitude of the differential displacement SIΔ(t) is more

or less constant and is approximately one minus the slope of SI0(t) (Fig 6c). Obviously, the dif-

ference of the distribution of antibiotic abundances accumulates over the time course, where

SIΔ(t) measures the intensity of the change as a function of time. Thus, we now have a sound

basis for the evaluation of changing abundances and possibly related switching strategies.

Within the scope of physics and information sciences, it is common to base measures of

heterogeneity and diversity, respectively, on the Shannon entropy because it can be interpreted

as the negative mean information that arises from averaging over the individual contributions

ln(pi) to information. In this context, the similarity index between two distributions given by

ai and bi corresponds to the Kullback-Leibler divergence [11]

KLDðai; biÞ ¼
Xn

i¼1

ai log
ai
bi

� �

: ð13Þ

However, KLD is asymmetric, which is why the symmetric variant KLD(ai, bi) + KLD(bi, ai),
known as Kullback-Leibler difference, has been introduced. KLD is the mean information dif-

ference taken over the individual information differences log(ai) − log(bi).
In order to harness KLD for our needs, we define the Kullback-Leibler heterogeneity

KLðtÞ ¼ 1 �
1

2 lnð2Þ

Xn

i¼1

aiðtÞ log
aiðtÞ þ 1

1

nþ 1

� �

þ
Xn

i¼1

1

n
log

1

nþ 1

aiðtÞ þ 1

� � !

: ð14Þ

Fig 4. Mean antibiotic consumptions and coefficient of variation by functional unit. Time courses per functional unit of a) mean antibiotic

consumption averaged over antibiotic classes, b) corresponding coefficient of variation, with unit 1 = intensive care units, unit 2 = medical/normal care

units, unit 3 = surgical/OP units.

https://doi.org/10.1371/journal.pone.0238692.g004
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Furthermore, the Kullback-Leibler similarity KL0(t) of distribution ai(t) at time t with the dis-

tribution at t = 0 (first observation) can be defined by

KL0ðtÞ ¼
Xn

i¼1

aiðtÞ log
aiðtÞ þ 1

aiðt ¼ 0Þ þ 1

� �

þ
Xn

i¼1

aiðt ¼ 0Þ log
aiðt ¼ 0Þ þ 1

aiðtÞ þ 1

� �

: ð15Þ

Finally, the Kullback-Leibler similarity KLΔ(t) between two distributions observed at subse-

quent time points (here quarters) is given by

KLDðtÞ ¼
Xn

i¼1

aiðtÞ log
aiðtÞ þ 1

aiðt � 1Þ þ 1

� �

þ
Xn

i¼1

aiðt � 1Þ log
aiðt � 1Þ þ 1

aiðtÞ þ 1

� �

: ð16Þ

Hereby, the + 1 terms within the arguments of the logarithms ensure that situations with pi = 0

remain well-defined.

Fig 6d–6f show time courses of KL, KL0 and KLΔ, respectively. A comparison with the ordi-

nary heterogeneity and similarity measures of Fig 6a–6c reveals that the values of KL, KL0 and

KLΔ are located within narrower intervals. In addition, KL appears to be smoother than HI
and, noteworthy, the decreasing curve of KL0(t) has a concave shape. From these differences

Fig 5. Measures of diversity with respect to antibiotic classes. a) Renyi entropies Ra for a = 0, 0.5, 0.99, 1.5, 2, 3, 100, b) Diversities Da for a = 0, 0.5, 0.99,

1.5, 2, 3, 100, c) Gini-Simpson index GS, d) Gini coefficient G.

https://doi.org/10.1371/journal.pone.0238692.g005
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we conclude that measures based on information differences, due to their logarithmic depen-

dence, weight larger differences in proportions stronger than small differences, whereas the

ordinary measures exhibit a proportional weight.

In the same line, the time courses of measures of diversity and heterogeneity, respectively,

with respect to active agents are depicted in Figs 7 and 8. Qualitatively, similar results as for

the antibiotic classes are obtained. Once more, as already observed for the coefficient of varia-

tion, we see a damping effect of pooling the active agents into antibiotic classes. The variations

of temporal changes of heterogeneity and related measures are larger for the active agents than

for the more coarse grained antibiotic classes. No need to mention, the question of which strat-

ification level should be prioritised is a matter of the concrete studies’ objectives and the avail-

ability of adequate data. The usage of the more fine-grained level of active agents is advisable if

records of prevalence of antibiotic resistance are available at the same fine-grained level.

Finally, we briefly report on the results obtained when the hospital’s functional units are

included as a second factor in addition to the antibiotic classes. Firstly, Fig 9 shows time courses

of diversity measures stratified by the three functional units as previously defined. Secondly, het-

erogeneity HI and the similarity indexes SI0 and SIΔ are shown in Fig 10. Strikingly, diversities

Da and GS as well as heterogeneity HI remain approximately constant in the course of time for

functional unit 3 and varies only very slightly for unit 1. To the contrary, the diversities for func-

tional unit 2 resemble the corresponding curves for the whole hospital as shown in Figs 5 and 6,

i.e., they exhibit an increase in the course of time. Apparently, the functional units have different

policies of antibiotic administration. This becomes even more obvious when throwing a glance

Fig 6. Measures of heterogeneity and similarity with respect to antibiotic classes. a) Heterogeneity index HI, b) Similarity index SI0 with respect to

proportions of the first observation, c) Similarity index SIΔ with respect to proportions of the preceding observation, d) Kullback-Leibler heterogeneity KL
e) Kullback-Leibler difference KL0 with respect to proportions of the first observation, f) Kullback-Leibler difference KLΔ with respect to proportions of the

preceding observation. Confer text for definitions of these measures.

https://doi.org/10.1371/journal.pone.0238692.g006
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onto the curve SI0(t) shown in Fig 10b. The administration in unit 3 essentially remains constant

with respect to the first observed administration in 2012. The administrations in unit 1 and unit

2, in contrast, show a cumulative difference with respect to the first observation.

So far, we conclude that neither of the diversity or heterogeneity measures Da, GS, G, HI,
and KL are capable to catch suspected policies of clinical cycling without a concomitant assess-

ment based on the newly introduced similarity indexes SI0 and SIΔ or, alternatively, KL0 and

KLΔ. A very weak long-term clinical cycling, as actually observed for the data under investiga-

tion, can leave diversity more or less invariant. To be specific, the constant non-vanishing

slope of SI0(t), thus the constant SIΔ(t)< 1 reflects a long-term “cycling-like” change of antibi-

otic abundances. Assuming a full cycle in case of a rigorously applied cycling protocol, SI0(t)
would also exhibit a full cycle in the course of time.

Correlation of antibiotic administration and prevalence of antibiotic

resistance

The most important and at the same time most challenging question, in the given context, is

whether the clinical cycling of antibiotic administrations correlates or even causally relates to

Fig 7. Diversity measures with respect to active agents. a) Renyi entropies Ra for a = 0, 0.5, 0.99, 1.5, 2, 3, 100, b) Diversities Da for a = 0, 0.5, 0.99, 1.5, 2,

3, 100, c) Gini-Simpson index GS, d) Gini coefficient G.

https://doi.org/10.1371/journal.pone.0238692.g007
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the prevalence of antibiotic resistances. Only sufficient knowledge about existence and struc-

ture of such an association renders the design of administration policies that aim in minimis-

ing resistances meaningful. Unfortunately, recorded data on prevalence of antibiotic resistance

are rare and often collected in a non-systematic way. Therefore, the following analysis should

be viewed as paradigmatic rather than taking the results as credible.

Infections have been recorded on a yearly basis within intensive care units and medical/

normal care units, however, not in a controlled and regular way as may be required by a con-

trolled study design. Fig 11 shows the time courses of the number of registered cases per patho-

gen stratified by resistance. Resistance, hereby, has been dichotomised in a yes/no-variable

although for some cases a more detailed information on the type of resistance (the correspond-

ing antibiotic agent, multiresistance, etc.) is available. The time courses of infection frequencies

suggest a rising prevalence. However, the awareness of the problem of antibiotic resistance and

the adherence to diagnostic and therapeutic guidelines increased over time. We suspect that

the rigorous diagnostic of pathogens is responsible for the added detection of more (resistant)

pathogens. The proportions of infections with resistant infectious agents per type of pathogen

is perhaps more reliable than the total number of infections. Fig 12 shows the time courses of

these proportions and it no longer appears as drastic as before. It appears natural to apply the

measures of heterogeneity and similarity introduced above to the proportions of resistant

pathogens with respect to the total population of resistant pathogens.

Fig 13 depicts the time courses of HI, SI0, and SIΔ both for the proportions of antibiotic con-

sumption and for the proportions of resistant pathogens in order to allow for a direct compari-

son. Heterogeneity hardly changes in the time’s course both for antibiotic consumption and

resistant pathogens (Fig 13, left panel). The slopes of heterogeneity HI(t) (denoted by mean

(2.5%CI; 97.5%CI) in the following) resulting from linear regression are essentially zero

(which is the null hypothesis of the linear model) with − 0.004 (− 0.012; 0.004) and p = 0.300

(antibiotics, unit 1), with 0.001 (− 0.003; 0.005) and p = 0.705 (pathogens, unit 1), with − 0.003

(− 0.021; 0.016) and p = 0.629 (antibiotics, unit 2), and with − 0.006 (− 0.019; 0.008) and

p = 0.300 (pathogens, unit 2), respectively. However, heterogeneity of the population of resis-

tant pathogens is slightly lower compared to antibiotic consumption. Thus, we have constant

Fig 8. Measures of heterogeneity and similarity with respect to active agents. a) Heterogeneity index HI, b) Similarity index SI0 with respect to

proportions of the first observation, c) Similarity index SIΔ with respect to proportions of the preceding observation. Confer text for the definitions of these

measures.

https://doi.org/10.1371/journal.pone.0238692.g008
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heterogeneity but pathogens may, as observed for antibiotics, exhibit a “cycling-like” charac-

teristic in form of exchanges of prevalences of pathogens which leave heterogeneity invariant.

The differential (quarter-by-quarter or year-by-year) changes of distributions with time

averages 1 − SIΔ of 0.1 (0.08, 0.11) (antibiotics, unit 1), 0.15 (0.12, 0.18) (pathogens, unit 1),

0.053(0.05, 0.06) (antibiotics, unit 2), and 0.11(0.07, 0.14) (pathogens, unit 2), are slightly

greater for the distribution of resistant pathogens compared to antibiotics consumption (Fig

13, right panel), however, both are constant in essence for both units with slopes (derived from

a linear model) 0.0002 (− 0.0078; 0.0081) and p = 0.968 (antibiotics, unit 1), with − 0.0091

(− 0.0460; 0.0279) and p = 0.492 (pathogens, unit 1), with − 0.0010 (− 0.0053; 0.0034) and

p = 0.653 (antibiotics, unit 2), and with 0.021 (− 0.002; 0.045) and p = 0.0637 (pathogens, unit

2). Therefore, we expect that SI0(t) exhibits a linear decline with constant slope approximately

given by SIΔ − 1, as shown in the following.

Most strikingly, the time series of the accumulated similarity index SI0 for the resistant

pathogens strongly correlates with the corresponding time series of antibiotic consumption,

in fact in both units. A Pearson product moment correlation analysis gives correlation

Fig 9. Measures of diversity with respect to antibiotic classes stratified by functional units. a) Diversities Da for unit 1 with a = 0, 0.5, 0.99, 1.5, 2, 3, 100,

b) Diversities Da for unit 2 with a = 0, 0.5, 0.99, 1.5, 2, 3, 100, c) Diversities Da for unit 3 with a = 0, 0.5, 0.99, 1.5, 2, 3, 100, d) Gini-Simpson Index GS. See

text for definitions.

https://doi.org/10.1371/journal.pone.0238692.g009
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Fig 10. Heterogeneity and similarities with respect to antibiotic classes stratified by functional units. a) Heterogeneity HI. b) Similarity index SI0 with

respect to proportions of the first observation, c) Similarity index SIΔ with respect to proportions of the preceding observation. Confer text for the

definitions of these measures.

https://doi.org/10.1371/journal.pone.0238692.g010

Fig 11. Pathogen prevalence. Sum of yearly registered number of cases of 9 observed pathogens stratified by resistance.

https://doi.org/10.1371/journal.pone.0238692.g011
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coefficients 0.92 with p = 0.009 (unit 1) and 0.89 with p = 0.02 (unit 2). The slopes significantly

differ from zero with the concrete values − 0.055 (− 0.062; − 0.047) per year (antibiotics,

unit 1, p< 10−3), − 0.049 (− 0.078; − 0.021) per year (pathogens, unit 1, p = 0.009), − 0.067

(− 0.072; − 0.063) per year (antibiotics, unit 2, p< 10−3), and − 0.044 (− 0.088; − 7.3e − 04) per

year (pathogens, unit 2, p = 0.048), respectively. It is appealing to speculate whether these coin-

ciding changes are a result of correlations or even causal relations. For the time being, this

speculation has to be treated with caution. However, this analysis gives directions to a proper

controlled observational or experimental study design.

A further observation underpins our speculation. The total percentage of resistant patho-

gens reduces significantly from roughly 20% to 10% in functional unit 1. A linear regression

gives a slope of − 0.017 (− 0.025; − 0.008) per year for the proportion (significantly different

from zero with p = 0.005). In functional unit 2 the proportion of resistant pathogens reduces

non-significantly by − 0.007 (− 0.015; 7.1e − 05) per year, however, at the edge of significance

(p = 0.051). An additional support for our hypothesis is given by explicitly calculating the

Fig 12. Fraction of antibiotic-resistant germs. Time courses of the fractions of resistance per pathogen plotted separately for units 1 (intensive care) and

unit 2 (normal care unit).

https://doi.org/10.1371/journal.pone.0238692.g012

Fig 13. Association of heterogeneities of antibiotic consumption and pathogen prevalence. Time courses of heterogeneity, HI and similarity indexes, SI0
and SIΔ for antibiotic consumption with respect to antibiotic classes and prevalence of resistant pathogens stratified by the hospital’s units 1 (intensive care)

and 2 (medical/normal care).

https://doi.org/10.1371/journal.pone.0238692.g013
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correlation coefficients between SI0 and the approximately linear decline of the ratio of resis-

tant pathogens: 0.92 (p = 0.009) for unit 1 and 0.86 (p = 0.03) for unit 2.

To conclude, although a genuine control strategy in the common sense of antimicrobial

cycling or mixing was not applied, we observe that a rather long-term temporal change (clini-

cal cycling) of consumption of different antibiotics (SI0 applied to antibiotics consumption)

correlates with a change of prevalence of antibiotic-resistant bacteria (SI0 applied to prevalence

of resistant pathogens). This correlation is expressed by means of almost equal slopes as well as

a corresponding large correlation coefficient, where the slopes are significantly different from

zero and approximately equal, of the two similarity indexes SI0 for antibiotics and pathogens,

respectively. Whether these temporal changes in antibiotic consumption have a direct causal

impact is still speculative but gains additional evidence through the observed reduction of

prevalent resistant bacteria. Controlled studies that allow comparisons with more or less static

“control strategies” and other types of switching behaviours (including mixing) are needed to

draw reliable inferences. It is the main intention of this work to supply an appropriate mathe-

matical framework for such studies.

Discussion

Applications of measures of heterogeneity and diversity are rare and unsatisfactory in the con-

text of assessing antibiotic resistance. This is somewhat surprising since antibiotic administra-

tion policies that rely on cycling or mixing strategies in order to reduce antibiotic resistances

have been promoted for quite some time [2, 4, 6, 7, 13] (for a counter example see [5]). Cycling

strategies, this is our claim, are best characterised by means of differential measures of hetero-

geneity and diversity, respectively. This approach can, in principle, be extended to capture

mixing by introducing a spatial stratification of the diversity measures. Although some

attempts to tackle antibiotic resistance by means of heterogeneity analyses exist [2, 4, 13], a sat-

isfactory mathematical framework is due.

We adopted diversity measures known in other fields of research [9, 11] and adapted them

to the needs within the scope of analysing antibiotic resistance. It is natural to seek for depen-

dencies between the heterogeneity of consumption of antibiotics and the heterogeneity of the

pattern of prevalence of antibiotic-resistant pathogens.

In order to provide a flexible methodological basis for the analysis of antibiotic resistance,

we introduced and discussed a simple measure of heterogeneity as well as a general family of

diversity measures, i.e., the so called family of Renyi diversities and derivatives thereof. It

should be noted that the notions of “heterogeneity” and “diversity” do not refer to conceptually

different measures, they merely reflect their emergence in different fields of application. As a

novel aspect within the given context, we derived differential measures of similarity which are

needed to capture temporal changes due to swapping proportions which leave moments like

heterogeneity and diversity invariant.

For many real-world applications, the simple heterogeneity measure HI and differential

measures of similarity SI0 and SIΔ will suffice. However, showing simultaneously that the

whole family of diversity measures leads to the same conclusions supplies additional evidence

(“We can regard a sample more diverse if all of its Renyi diversities are higher than in another

samples.”, [10]). Moreover, the smoothing and non-linear weighting effect of higher order

measures like Shannon entropy and derivatives (Kullback-Leibler heterogeneity, etc.) might

become important for damping spurious fluctuations by weighting larger deviations. A solid

reason for the choice of entropies is the straightforward application of a maximum entropy

method. Maximum entropy proved as the method of choice when it comes to learn dynamics

of biological systems (e.g. [16], see also [11]). With the aid of such an optimisation tool we
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expect that an optimal cycling and arguably also an optimal mixing schedule can be learned

from the observed correlation patterns between antibiotics consumption and prevalences of

antibiotic-resistance.

The presented inclusion of covariates and factors like clinical units and groupings of active

agents has exemplary character. The concrete choice of covariates depends on their availability

and, most important, on the specific questions that are raised. In the case of mixing with two

(or more) subpopulations of patients that receive different drugs in a temporarily alternating

way, it might be better to stratify for these subpopulations instead of functional units, unless

these strata coincide. Furthermore, since transmission occurs at the microlevel, it would cer-

tainly be of advantage to include individual-level administration data instead of aggregated

dispensing data. Such microlevel data have not been available for our elementary methodologi-

cal approach. However, our analytical framework is flexible enough to account for such pecu-

liarities. In addition, we point to the possibility to expand measures of heterogeneity and

similarity to be applicable to joint probabilities of antibiotic consumption and resistance. This

is beyond the scope of the present work, however, we paved the way for doing so.

It deserves to be mentioned, that some authors approached the problem by means of

extended SIR-like epidemiological models [4, 17]. From a theoretical point of view, these mod-

els have benchmark character. However, the validation of these models necessitates recording

of data on antibiotics consumption and pathogen load on an individual basis which is not fea-

sible for most hospitals. As opposed to this, so called composite indices as “summary measures

of the net impact of antibiotic resistance on empiric therapy” [18] are much more coarse-

grained epidemiological measures based on the cumulative antibiogram [19], which reside on

a higher population level. Our approach is compatible to both sides and bridges the gap.

In addition, our method complements time series analyses (e.g. [8]) that pointed to thresh-

olds in associations between population antibiotic use and prevalence of resistant pathogens.

Within the scope of the time series analyses as discussed by López-Lozano et al. [8], the corre-

lation of the time series of the prevalence of a specific pathogen with the time series of the

amount of corresponding administered antibiotics is calculated. Commonly, such a correla-

tion of two time series is given by a mutual entropy. Thus, our approach is a generalisation in

that it treats diversities of both antibiotic consumption as well as pathogen prevalence and cor-

relates these diversities.

The time series analyses [8] supplied evidence that prevalence rates increase in a nonlinear

fashion when exceeding a prevalence threshold after a sufficiently long duration of administra-

tion of certain antibiotics. The existence of such a threshold indicates that a switch to an alter-

native antibiotic agent is due. Our approach goes a step further by including the dynamics

of switching in the analysis to allow, eventually, for an optimised (temporal and/or spatial)

switching strategy. Results of stochastic simulations of microbial populations subjected to a

periodic presence of antimicrobials [20] boost our confidence.

Moreover, due to its intermediate complexity it is able to serve as a performative boundary

object [21], thence constituting a clinically relevant basis for a modelling for policy [22]. This

holds all the more if implemented on a boundary infrastructure [23] as, for example, the

modelling platform MAGPIE [24] that enables experts with different expertises to dock on. In

other words, the proposed method has the potentiality to be translated to the point of decision

making as a monitoring system.

Conclusion

To conclude, the presented analysis has paradigm character. We focused on setting up a meth-

odological framework because the available data do not allow to assess cycling or mixing
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strategies in a controlled way. To be exact, a control strategy in a genuinely defined sense of

cycling or mixing appears not to have been applied. In other words, we have a purely observa-

tional situation exhibiting a weak long-term “clinical cycling” but without ample background

information particularly on individual-level administration. However, the performed applica-

tions of the suggested analytic methods to records of antibiotic consumption and prevalence

of antibiotic-resistant bacteria definitely go beyond mere illustrations. That is to say, the results

allow to raise hypotheses or at least to formulate conjectures. Specifically, we observe a strong

positive correlation of time courses of similarity with respect to the initial observation of anti-

biotic consumption and prevalence of antibiotic-resistant pathogens. In addition, clinical

cycling correlates with a decreasing ratio of resistant pathogens. These correlations have to be

confirmed in an experimental/interventional study. We are convinced that the derived mathe-

matical framework provides a sound basis to substantially improve the determination of a via-

ble roll back administration policy to defeat antibiotic resistance.
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