High density oligonucleotide array analysis of interferon-α2a sensitivity and transcriptional response in melanoma cells

U Certa¹, M Seiler¹, E Padovan² and GC Spagnoli²

¹Roche Genetics, Bau 93/610, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland; ²Department of Surgery, Division of Research, University of Basel, Basel, Switzerland

Summary Interferon alpha (IFN- α) represents an adjuvant therapy of proven effectiveness in increasing disease-free interval and survival in subgroups of melanoma patients. Since high doses of cytokine are required, the treatment is often accompanied by toxic side effects. Furthermore, naturally occurring insensitivity to IFN- α may hamper its therapeutic efficacy. Clinical, molecular or immunological markers enabling the selection of potential responders have not been identified so far. To explore the molecular basis of IFN- α responsiveness, we analysed the expression pattern of about 7000 genes in IFN- α sensitive and resistant cell lines and we compared the transcription profiles of cells cultured in the presence or absence of the cytokine using high-density oligonucleotide arrays. Melanoma cell lines were screened for their sensitivity to proliferation inhibition and HLA class I induction upon IFN- α treatment by standard 3H-thymidine incorporation and flow-cytometry. The study of 4 sensitive and 2 resistant cell lines allowed the identification of 4 genes (RCC1, IFI16, hox2 and h19) preferentially transcribed in sensitive cells and 2 (SHB and PKC- ζ) preferentially expressed in resistant cells. IFN- α stimulation resulted in the expression of a panel of 19 known inducible genes in sensitive but not in resistant cells. Moreover a group of 30 novel IFN- α inducible genes was identified. These data may provide a useful basis to develop diagnostic tools to select potential IFN- α responders eligible for treatment, while avoiding unnecessary toxicity to non-responders. Furthermore, by extending the knowledge of the polymorphic effects of IFN- α on gene expression, they offer novel clues to the study of its pleiotropic toxicity. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: IFN-a sensitivity; melanoma; DNA microarrays; gene expression; pharmacogenomics

IFN- α is widely used in the therapy of melanoma (Agarwala and Kirkwood, 1997; Grob et al, 1998). Although in subgroups of patients this treatment is of clear clinical efficacy, in others no obvious beneficial effects are observed. No clinical, immunological or molecular features predicting treatment's outcomes have been identified so far (Kirkwood, 1998).

IFN- α administration can be associated with severe toxicity, including gastrointestinal disorders, hypo- or hypertension, tachycardia, fatigue/asthenia or headache, limiting clinical applications (Vial and Descotes, 1994; Kirkwood, 1998). This wide spectrum of effects suggests pleiotropic functions of IFN- α , consistent with an extended number of target genes.

Clearly, these side effects represent a major limitation to the application of IFN- α therapy, particularly in the light of its unpredictable results.

A central element of modern pharmacogenomics is the identification of surrogate markers for drug efficacy using multiparallel approaches. The availability of tumour cell lines sensitive or resistant to well defined effects of IFN- α provides tools to search for genes whose expression is restricted to either cell type in the absence of cytokine exposure possibly leading to the development of diagnostic reagents such as antibodies or enzyme assays.

Received 27 November 2000 Revised 26 March 2001 Accepted 29 March 2001 Correspondence to: GC Spagnoli In this work we have used high-density oligonucleotide arrays (Lipshutz et al, 1999; Rogge et al, 2000) to analyse the expression pattern of about 7000 genes in RNA samples from melanoma cell lines sensitive or resistant to IFN- α induced inhibition of proliferation and HLA class I induction. Furthermore, by applying the same technology, we have evaluated the gene expression profiles induced by IFN- α in cells sensitive or resistant to these discrete effects.

We report here on the identification of peculiar patterns of genes, of potential diagnostic relevance, preferentially expressed in either IFN- α -sensitive or -resistant melanoma cell lines. In addition, we have characterized clusters of genes whose expression can be significantly modulated by IFN- α treatment of cells, irrespective of their sensitivity to IFN- α induced inhibition of proliferation and HLA class I upregulation.

MATERIALS AND METHODS

Cell lines and culture conditions

ME15, ME51, ME59 and ME67 cell lines were generated in our laboratory upon culture of cell suspensions derived from surgically excised melanoma metastases (Lüscher et al, 1994). A375 cell line was a gift from Dr Eberle (Basel, Switzerland) where as D10 cell line was provided by Dr Rimoldi (Lausanne, Switzerland). All cell lines were cultured in RPMI medium supplemented with 10% FCS, glutamine (2 mM), sodium pyruvate (1 mM), non-essential aminoacids, antibiotics and HEPES buffer

(10 mM) (all from GIBCO Life Sciences, Paisley, UK). When confluent, the cells were passaged by trypsinization.

Proliferation assays

Cell proliferation was evaluated upon culture of 5000 cells per well in flat bottom 96 wells plates (Becton Dickinson Labware, Franklin Lakes, NJ, USA) in the presence or absence of the indicated concentrations of IFN- α 2a (Hoffmann-LaRoche, Basel, Switzerland) over a 5 day period. De novo DNA synthesis was measured by 3H-thymidine incorporation following overnight incubation in the presence of the tracer, according to standard methods.

HLA class I expression

Surface expression of HLA class I was monitored by flowcytometry, using a FITC-labelled mAb specific for a monomorphic determinant of HLA-A-B-C heavy chain or control, isotype matched reagents (Pharmingen, San Diego, CA, USA), in cells cultured for 48 hours in the presence or absence of IFN- α . Mean fluorescence intensity (MFI) of stained cells was quantitatively analysed.

Detection of IFN- α receptor mRNA by RT-PCR

Double stranded cDNA used for the microarray experiments (lines ME15, A375, ME51, ME59, ME67 and D10, see below) was used as template for the amplification of a 370 base pair fragment of the IFNAR2 receptor (Genbank: L42243) (Lutfalla et al, 1995). Amplification was carried out using a commercial kit (Roche Molecular Biochemicals; Cat-Nr.1 939 823) and the oligonucleotides 5'-TCA TAA GGA TGA GGC TGT GAG GAG-3' (NT 10–34) and 5'-TGT CCA GTG TCT TGG GTA ATG CAC-3' (NT 380–366) following the manufacturers' instructions. Samples from 25 cycles PCR were subjected to agarose electrophoresis and photographed under UV transillumination.

Oligonucleotide array analysis

Cultured melanoma cells were harvested by scraping and total cellular RNA was extracted (Mahadevappa and Warrington, 1999; Rogge et al, 2000). 10 µg from each sample were reverse transcribed, labelled and processed by using a commercial kit (Affymetrix, Santa Clara, CA) according to the supplier's instructions (Fambrough et al, 1999). Upon alkaline heat fragmentation, cDNA were hybridized to the arrays following standard procedures as supplied with the microchips (Affymetrix, Santa Clara, CA). Raw data were collected with a confocal laser scanner (Hewlett Packard, Palo Alto, CA) and pixel levels were analysed using a commercial software (GeneChip v3.1, Affymetrix, Santa Clara, CA). Expression levels for each gene were calculated as normalized average difference (nAD) of fluorescence intensity as compared to hybridization to mismatched oligonucleotides, expressed in arbitrary units. Figure 1 shows examples of genes scoring positive or negative in different cell lines as detectable on the chip unit. On average, >25% of the genes under investigation were positive in the cell lines tested.

A threshold of 20 nAD units was assigned to any gene with a calculated expression level lower than 20, since mRNA levels in this low range could not be reliably assessed. Array to array

Figure 1 Detection of gene expression by high density oligonucleotide arrays. ME15 and D10 cells were cultured for 48 hours in the presence of IFN- α (100 U m⁻¹). RNA was then extracted, reverse transcribed and hybridized to high-density oligonucleotide arrays as described in the text. Positive gene expression is detectable as fluorescent signal upon cDNA hybridization on series of overlapping oligonucleotides aligned in adjacent areas. The figure reports the detection of the expression of genes encoding 15/17 kDa (upper panels) and 6–16 jun (lower panels) in ME15 but not in D10 cells (white frames). In contrast, house-keeping genes encoding ribosomal protein L39 (upper panels, Genbank no. D79205) and lactate dehydrogenase (lower panels, Genbank no. X02152) appear to be expressed in both samples (black frames)

variations did not exceed 2% based on the hybridization of one sample to 5 arrays from the same batch in a pilot study (Certa and Neeb unpublished). In specific experiments (see below), change factors (CF) of fluorescence levels, expressed as nAD units, related to IFN- α exposure were also calculated. In order to exclude artifacts, only genes with robust change factors, greater than 3-fold, were included in the analysis. By applying these criteria, about 50–70 genes were found to be modulated depending on the cell lines under investigation. Genes were clustered according to their mode of regulation (up = upregulated; dn = downregulated; ~ = unmodulated).

Table 1 Effects of IFN-a on established melanoma cell lines

Cell line	Proliferation inhibition (IC ₅₀) ^a	HLA class I induction ^b
A375	+ (100 U ml⁻¹)	(442 vs. 305)
D10	_	(184 vs. 196)
ME15	+ (100 U ml⁻¹)	(521 vs. 257)
ME51	+ (10 U ml ⁻¹)	(980 vs. 135)
ME59	+ (10 U ml ⁻¹)	(559 vs. 380)
ME67		(175 vs. 203)

^aMelanoma cell lines were cultured in the presence of IFN-α concentrations ranging between 1 and 1000 U ml⁻¹. 3H-thymidine incorporation was measured daily over a 5 day culture period following an 18 hour pulsing time. IC₅₀ is the IFN-α concentration inducing at least a 50% inhibition of the maximal proliferative activity detectable in individual experiments. ^bMelanoma cells were stained with HLA class I specific monomorphic mAbs following a 2 day culture in the presence (left digits) or absence (right digits) of IFN-α (100 U ml⁻¹) and tested by flow-cytometry. Data are expressed as mean fluorescence intensity of labelled cells.

Figure 2 IFN- α induced inhibition of proliferation and HLA class I upregulation in melanoma cell lines. ME15 (panels **A** and **B**) and D10 (panels **C** and **D**) melanoma cell lines were cultured in the presence (empty histograms) or in the absence (shaded histograms) of IFN- α (100 U m⁻¹) for 48 hours. Cells were then stained with a mAb recognizing a monomorphic HLA-A-B-C determinant (panels **B** and **D**) or an isotype matched control reagent (panels **A** and **C**). The proliferative capacity of the 2 cell lines (ME15, panel **E** and D10, panel **F**) was also studied by 3H-thymidine incorporation over a 5 days culture period in the absence of IFN- α or in the presence of the indicated concentrations of the cytokine. Data are reported as cpm. Standard deviations, never exceeding 10% of the reported values were omitted

RESULTS

Identification of IFN- α sensitive and insensitive melanoma cell lines

A number of established melanoma cell lines were assayed for their sensitivity to IFN- α by testing the capacity of this cytokine to inhibit their proliferation and to increase their surface expression of HLA class I determinants. 2 cell lines (D10 and ME67) were found to be insensitive to the antiproliferative effects of IFN- α . Proliferation of ME 51 and ME59 could be at least 50% inhibited by IFN- α concentrations as low as 10 U ml⁻¹, whereas A375 and ME15 required a 10 times higher dose for the elicitations of similar effects (Table 1). The upregulation of HLA class I expression

Figure 3 Panel **A**: Expression of genes encoding tumour-associated antigens in melanoma cell lines. ME15, A375, ME51, ME59, ME67 and D10 cell lines were cultured for 48 hours in the presence (+) or absence (–) of 100 U ml⁻¹ IFN- α . The expression patterns of genes encoding tyrosinase, tyrosinase related protein-2, pmel-17 and mart-1 HLA restricted, tumour-associated antigens are reported. Grey bars refer to IFN- α sensitive cell lines and black bars refer to IFN- α resistant lines (see Table 1). Data are presented as normalized average difference (nAD) of fluorescence intensity between matched and mismatched oligonucleotide probe sets, expressed in arbitrary units. Panel **B**: Detection of IFN- α receptor gene transcripts in sensitive and resistant lines by 25 cycles RT-PCR. For any other detail see 'Materials and methods'

by IFN- α closely matched its antiproliferative effects and in no case a dissociation of the 2 activities could be observed (Table 1). Figure 2 reports representative results related to D10 and ME15 cell lines.

Experimental set up and detection of genes encoding tumour-associated antigens in melanoma cell lines

Total cellular RNA was extracted from the sensitive and resistant melanoma cell lines characterized above, reverse transcribed and processed for hybridization to an oligonucleotide array (Hu6800FL, PN 900183, Affymetrix, Santa Clara, CA) containing probe sets from full length human genes.

genes
modulated
IFN-α
Table 2

Mister i Interferon regulatory factor 5 282 91 20 116 65722 ring fereon regulatory factor 5 223 29 20 20 20 20 20 20 20 20 206 20 206 20 206 20 206 20 206 20 206 20 206 20 206 206 206 20 206	00000000000000000000000000000000000000		5.8 6.6 6.6 103.3 3.55 3.55 3.55 4.21 10.85 4.21 5.43 5.53 5.53 7.05 7.05	
J51127 interferon regulatory factor 5 262 91 20 116 S52831 interferon regulatory factor 5 223 85 20 123 S52831 interferon-inducble protein X=5 31 20 136 S52831 interferon-inducble protein X=5 33 20 20 716 J61441 interferon-inducble protein X=5 33 20 20 716 J66635 major histocompatility complex, class ic 113 455 166 716 J66635 major histocompatility complex, class ic 113 455 165 165 J66636 interferon-inducble peptde (e-16) 20 20 20 20 J66041 totella 20 21 45 16 16 J66041 totella 21 24 20 20 20 J66041 totella 20 21 20 20 20 J66041 totella 20 21 20 20 2	0 1 1 1 1 1 1 1 1 1 1 1 1 1	-2.88 -2.75 -2.75 -2.92 -2.6 -2.3 -2.6 -2.3 -2.6 -2.3 -2.6 -2.3 -2.6 -2.3 -2.6 -2.3 -2.75 -2.3 -2.75 -2.15 -	5.8 6.6 4.85 6.8 7.03.3 3.55 3.55 3.55 4.29 4.29 5.42 5.53 5.53 7.05 7.05	
Constrain Description Description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.75 -2.92 -2.92 -2.65 -2.33 -2.65 -2.33 -2.65 -2.33 -2.65 -2.33 -2.15	6.6 4.85 6.8 10.33 35.5 20.5 20.5 5.4.2 24.3 5.4.3 6.42 6.42 7.05	
S5722 ingle cdna 133 43 20 97 UB0648 interferon-inductolle protein X ¹ sep 23 23 20 136 UB0648 interferon-inductolle protein X ¹ sep 20 20 20 20 UB0648 interferon-inductolle protein X ¹ sep 20 20 20 20 UB0648 interferon-inductolle protein X ¹ sep 20 20 20 20 UB0648 interferon-inductolle protein X ¹ sep 20 20 20 20 MB0850 Z ³ 37 88 23 24 143 MB0850 Z ³ 37 88 28 265 266 MB0850 Z ³ 37 88 28 28 236 MB0850 Z ³ 37 88 28 28 236 MB0850 Z ³ 37 88 28 246 26 MB0850 Z ³ 37 88 28 236 <td< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td>4.85 6.8 6.8 3.55 3.55 3.55 10.89 4.21 12.38 5.42 5.63 6.42 6.42 7.05</td><td></td></td<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0		4.85 6.8 6.8 3.55 3.55 3.55 10.89 4.21 12.38 5.42 5.63 6.42 6.42 7.05	
Zászal 1064 Iniérteon regulatory fractor 3 03 31 20 136 JUSHA 105048 Interferon-inducible protein interferon-inducible protein 27 20 20 20 71 X67235 mor 27 mor interferon-inducible protein interferon-inducible protein 27 20 20 20 716 X67355 mor materferon-inducible protein interferon-inducible protein 27 27 20 21 716 X67357 2.5 5.5 188 28 28 26 266 X65051 2.5 5.5 188 28 26 266 X65051 2.5 5.4 26 27 26 26 X65051 2.5 5.5 188 28 26 266 X65051 7.6 26 28 26 266 26 266 X65051 7.6 26 26 28 24 23 26 266 X65051 7.6 26 26 26 26 2	00000000000000000000000000000000000000	- 3 - 2.3 - 3.3 - 2.3 -	6.8 103.3 3.55 20.5 10.85 35.8 4.21 12.38 5.42 5.63 6.42 6.42 7.05	
Outled Interferon-inducble protein 27-sep 20	2066 2066 2066 2066 20716 2055 2055 2055 2055 2055 2055 2055 205	0 - 2.3 - 2.6 - 2.3 - 2.5 - 2.3 - 2.6 - 2.3 - 2.5 - 2.3 - 2.5 - 2.5 - 2.3 - 2.5 - 2.3 - 2.5 - 2.3 - 2.5 - 2.3 - 2.5 - 2.3 - 2.5 - 2.	103.3 3.55 20.5 10.85 35.8 3.58 4.21 5.4.95 5.4.95 5.53 6.42 6.42 7.05	
US0048 interferon-inducible fra-dependent protein kinase (pk) 106 46 20 71 X67325 p27 x6732 p27 x67 x66 x66 x67 x66 x66 x46 x67 x66 x67 x66 x67 x66 x66 x46 x66 x66 x66 x46 x66 x66 x46 x66	0 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	-2.3 -2.5 -2.6 -2.6 -2.6 -2.76 -1.1.3 -1.26 -1.1.2 -1.3 -1.26 -1.33 -1.33 -1.26 -1.33 -1.26 -1.33 -1.33 -1.26 -1.33 -1.26 -1.38 -1.37 -1.38 -1.37 -1.3	3.55 20.5 30.8 35.8 35.8 4.21 5.4.3 5.53 6.42 6.42 7.05	
X67225 p27 20 20 410 M6668 mistrocompatibility complex, class (c 183 455 156 1692 D28137 bst-2, bst-2, x57-sytic nucleotide 3prime-phosphodesterase 137 99 55 269 D28137 cx, 37-sytic nucleotide 3prime-phosphodesterase 137 99 55 269 D28137 cx, 37-sytic nucleotide 3prime-phosphodesterase 137 99 55 286 289 D28137 cx, 37-sytic nucleotide 3prime-phosphodesterase 137 99 55 287 287 D28270 1-8d grave from interforon-inducible gend 6(-16) 2465 248 287 237 237 D00105 brien 2 microgravity class i, e 551 2417 20 29 332 D00105 brien 2 microgravity complex, class i, e 551 2417 297 297 D00105 brien 2 microgravity complex, class i, e 553 321 141 925 D38024 brien 2 microgravity complex, class i, e 557 20 <t< td=""><td>66 67 68 68 64 64 60 64 60 64 60 64 60 60 64 60 60 60 60 60 60 60 60 60 60</td><td>0 -2.6 1.55 2.76 2.85 1.11 1.11 1.12 1.12 1.13 1.12 1.13 1.13</td><td>20.5 35.8 35.8 4.21 5.4.95 5.53 6.42 6.42 7.05</td><td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td></t<>	66 67 68 68 64 64 60 64 60 64 60 64 60 60 64 60 60 60 60 60 60 60 60 60 60	0 -2.6 1.55 2.76 2.85 1.11 1.11 1.12 1.12 1.13 1.12 1.13 1.13	20.5 35.8 35.8 4.21 5.4.95 5.53 6.42 6.42 7.05	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HG668 major histocompatibility complex, class ic 1183 455 156 168 1682 DX31755 interferon-induced 17-tda/15-kda protein 2 3 2 716 716 DX31755 interferon-induced 17-tda/15-kda protein 2 3 3 143 DX3175 bist-2. 2-5-cyclic nucleotide 3prime-phosphodiesterase 127 99 55 228 X375351 1-64 gene from interferon-inducible peptide (F-16) 2 2 2 2 2 X375351 1-64 gene from interferon-inducible peptide (F-16) 2	6 7 7 7 7 7 7 7 7 7 7 7 7 7	-2.6 1.55 1.55 1.28 1.38 1.26 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	10.85 35.8 10.89 4.21 5.4.95 5.53 6.42 6.42 7.05	,,,,,,,,,,,,,,, g
M1375 Interferon-Induced 17-kda/15-kda protein 20 31 20 716 M19560 2/:3'-cyclic nucleotide Sprime-phosphodestense 37 98 28 36 205 M19550 2/:3'-cyclic nucleotide Sprime-phosphodestense 137 99 55 288 23 34 143 X67801 16-Jung sene, interferon-inducible peptide (6-16) 246	716 88 44 88 813 88 88 813 813 813 813 813 813 813 813 813 813 813 814 814 <td< td=""><td>1.55 2.38 1.38 1.31 1.12 1.31 1.31 1.31 1.31 1.31 1.32 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38</td><td>35.8 10.89 4.89 5.4.21 5.4.3 5.63 6.42 6.42 7.05</td><td></td></td<>	1.55 2.38 1.38 1.31 1.12 1.31 1.31 1.31 1.31 1.31 1.32 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38	35.8 10.89 4.89 5.4.21 5.4.3 5.63 6.42 6.42 7.05	
D28137 bst-2. 37 88 28 305 M19650 2.4"-cyclic nucleotide 3prime-phosphodiesterase 137 99 55 269 M19650 12.4"-cyclic nucleotide 3prime-phosphodiesterase 137 99 55 289 M19650 15.4">vyclic nucleotide 3prime-phosphodiesterase 137 99 55 286 M23074 2.5-54 synthesen 1-8d gene from interferon-inducible gene family 2469 286 24 297 M24880 1-8d gene from interferon-inducible gene family 2469 286 24 43 2365 M24880 menc dass (fila-a* 8001) 66 27 20 248 207 248 207 246 2365 244 43 2365 326 443 2365 326 443 2365 326 448 209 208 443 209 208 441 205 208 441 205 326 441 326 441 305 326 441 452	8 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	2.38 1.38 1.38 1.12 1.11 1.31 1.31 1.31 1.31 1.31 1.31	10.89 4.89 5.4.21 12.38 5.95 5.53 6.42 6.42 7.05	
Mi 9650 2°, 3°-cyclic nucleotide 3prime-phosphodiesterase 137 90 55 269 X86401 vs protien 220 83 34 143 X86401 16-jun gene interferon-inductible gene family 229 83 34 143 X57351 1-8d gene from interferon-inductible gene family 2469 2866 24 33 297 X67351 1-8d gene from interferon-inductible gene family 2469 2866 24 33 297 X67351 1-8d gene from interferon-inductible gene family 2469 2866 24 33 295 M03241 19-8d gene from interferon-inductible gene family 2465 267 421 202 995 M03242 major histocompatibility complex, class i, e 551 421 202 141 925 M03243 mpc atistocompatibility complex, class i, e 553 322 141 925 M03243 amplaxin (ems1) 20 61 421 202 93 M03243 amplaxin (ems1) <t< td=""><td>260 261 262 263 263 263 263 263 263 263</td><td>7.38 2.76 1.09 1.11 1.11 1.11 1.11 1.11 1.11</td><td>4.89 5.4.35 5.4.33 5.4.3 5.53 6.42 7.05</td><td>· · · · · · · · · · · ·</td></t<>	260 261 262 263 263 263 263 263 263 263	7.38 2.76 1.09 1.11 1.11 1.11 1.11 1.11 1.11	4.89 5.4.35 5.4.33 5.4.3 5.53 6.42 7.05	· · · · · · · · · · · ·
X65400 Cx protein Z29 S3 Z4 Z45 Z263 Z4 Z45 Z263 Z45 Z45 Z263 Z45 Z45 Z263 Z45 Z45 Z263 Z45 Z45 Z263 Z46 Z263 Z46 Z263 Z46 Z463 Z47 Z463 Z463 Z47 Z463 Z463 Z47 Z463 Z463 Z463 Z463 Z464 Z463 Z464 Z463 Z464 Z463 Z464 Z463 Z464 Z463 Z464 Z464 <t< td=""><td>2 4 4 5 5 5 1 4 6 6 6 7 4 4 6 6 6 7 4 4 6 6 6 7 4 4 6 6 6 7 4 4 6 6 6 7 4 4 6 6 7 4 4 6 6 7 4 4 6 6 7 4 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 7 6 7 7 7 7</td><td>2.76 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1</td><td>7.05 6.42 6.42 5.53 6.42 7.05</td><td> <u>.</u></td></t<>	2 4 4 5 5 5 1 4 6 6 6 7 4 4 6 6 6 7 4 4 6 6 6 7 4 4 6 6 6 7 4 4 6 6 6 7 4 4 6 6 7 4 4 6 6 7 4 4 6 6 7 4 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 7 6 7 7 7 7	2.76 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	7.05 6.42 6.42 5.53 6.42 7.05	<u>.</u>
0.23970 16-jun gene, interferon-inducible peptide (6-16) 20 249 286 24 33 2363 0.02574 2.5 syntheseres (1.6 kb) 57 20 28 145 297 0.0105 beta-2 microglobulin gene 1.66 gene 249 286 24 43 2363 0.0105 beta-2 microglobulin gene 551 421 202 28 1453 0.0015 beta-2 microglobulin gene 551 421 202 28 1453 0.0015 beta-2 microglobulin gene 551 421 202 932 0.03804 major histocompatbility complex, class i, e 553 322 147 925 0.03804 amplaxin (ems 1) 20 63 142 202 932 0.03809 gamma-interferon-inducible protein (ip-30) 20 142 925 0.03809 gamma-interferon-inducible protein (ip-30) 20 142 20 20 0.03809 gamma-interferon-inducible protein (ip-30) 20 142 20 20 20 0.03809 gamma-interferon-induci	2363 88 88 297 2363 88 14 88 932 932 932 932 14 14 925 57 00 57	1.2 2.85 1.09 3.15 1.11 1.11 1.12 1.09	54.95 12.38 5.86 5.53 6.42 7.05	1 1 1 1 1 1 1 3
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 8 8 8 8 8 8 8 8 8 8 8 8 8	2.85 2.85 3.15 1.11 1.10 1.00	12.38 24.3 5.86 6.42 6.42 7.05	
Accound Constraint	60 4 4 4 4 4 5 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	2.265 1.1.26 3.1.1.1 1.1.1 1.26 1.26 1.26 1.26 1.26 1.	242.30 5.86 5.53 6.42 7.05	
Motor Construction	0 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	2.03 1.1 1.1 3.15 3.15 7 1	24.3 4.61 5.53 6.42 7.05	iiii g
Monton Detact indicating gene Monton	6 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.20 1.1 1.1 3.15 3.15	2.00 5.53 6.42 7.05	vvv g
Mareneou	22 4 4 232 925 925 925 925 57 00 57	1.51 1.1 3.15 7.1	4.51 5.53 6.42 7.05	111 S
HG22H /r major instrocompatibility complex, class i, e 353 322 147 813 D49824 hla-b null allele 527 267 144 925 D498243 amplaxin (ems1) 20 63 20 141 925 M98343 amplaxin (ems1) 20 115 20 141 925 M922642 alpha-1 type xvi collagen (col16a1) 20 115 20 20 141 925 M922642 alpha-1 type xvi collagen (col16a1) 20 115 20 20 57 J03309 gamma-interferon-inductible protein (ip-30) 20 142 142 20 57 J041515 dss1 ysosomal membrane glycoprotein-1 (lamp 1) 66 484 168 452 J04182 lysosomal membrane glycoprotein-1 (lamp 1) 66 484 168 452 J01864 dss1 interferon-induced leucine zipper protein (ifp35) 125 20 20 20 237 J02882 interferon regulatory factor 7a 331 92 20 20 206 206 237	60 0 4 4 6 8 4 3 3 8 4 3 3 8 4 3 3 8 4 3 3 8 4 3 3 8 4 3 3 8 4 3 4 4 4 4	1.1 3.15 7.7	5.53 6.42 7.05	۱ ، ۵
D49824 Inland Internation D27 267 144 925 Cluster 2 amplaxin (ems1) 20 63 20 141 M98343 amplaxin (ems1) 20 63 20 141 M92642 apha-1 type xvi collagen (col16a1) 20 115 20 141 M92642 apha-1 type xvi collagen (col16a1) 20 123 104 57 M92642 apha-1 type xvi collagen (col16a1) 20 142 20 57 M92642 apha-1 type xvi collagen (col16a1) 20 142 20 57 M92642 apha-1 type xvi collagen (col16a1) 20 142 20 57 U41515 dss1 20 142 20 51 J04182 tysosomal membrane glycoprotein-1 (tamp 1) 66 484 168 452 Lutstated thyroid receptor interactor (trip 14) 104 20 20 20 20 U12835 interferon-induced leucine zipper protein (flp35) 125 20	0 0 0 925 20 14 925 57 57	3.15 3.15	6.42 7.05	° d₁
Cluster 2 20 63 20 141 M98343 amplaxin (ems1) 20 63 20 141 M982642 alpha-1 type xvi collagen (col16a1) 20 115 20 20 57 M92642 alpha-1 type xvi collagen (col16a1) 20 115 20 20 57 M92642 alpha-1 type xvi collagen (col16a1) 20 142 20 20 57 M92642 alpha-1 type xvi collagen (col16a1) 20 142 20 20 57 M92642 alpha-1 type xvi collagen (col16a1) 20 142 20 20 57 U41515 dss1 20 142 142 20 57 57 U4182 lysosomal membrane glycoprotein-1 (lamp 1) 66 484 168 452 U14387 interferon-induced leucine zipper protein (fip35) 104 20 20 237 U138330 interferon-induced leucine zipper protein (fip35) 125 20 20 206	0 0 57 57	3.15 3.15	7.05	dn
Cluster 3 M92642 alpha-1 type xvi collagen (col16a1) 20 115 20 20 M92642 alpha-1 type xvi collagen (col16a1) 115 20 115 20 57 M92642 alpha-1 type xvi collagen (col16a1) 20 115 20 57 U41515 dss1 20 112 1142 20 57 U41515 juscomal membrane glycoprotein-1 (lamp 1) 66 484 168 452 Uctaster 4 thyroid receptor interactor (trip 14) 104 20 20 20 237 U23882 interferon-induced leucine zipper protein (fip35) 125 27 20 237 20 237 U72883 interferon-induced leucine zipper protein (fip35) 125 27 20 237 U32835 interferon-induced leucine zipper protein (fip35) 125 20 20 237 U32838 unterferon-induced leucine zipper protein (fip35) 125 20 20 20 U32838 unterferon-induced leucine zipper protein (fip35) 125 20 20 205 U3389 35	0 57	L 		
M92242 alpha-1 type xvi collagen (col16a1) 20 115 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 57 20 37 20 37 20 37 20 37 30 37 30 37 30 37 31 36 37 31 36 37 31 36 37 37 36 37 37 36 37 <td>0 57</td> <td></td> <td></td> <td></td>	0 57			
J03309 gamma-interferon-inducible protein (ip-30) 42 142 20 57 U41515 dss1 20 123 104 51 U41515 lysosomal membrane glycoprotein-1 (lamp 1) 66 484 168 452 U41515 lysosomal membrane glycoprotein-1 (lamp 1) 66 484 168 452 U240387 thyroid receptor interactor (trip 14) 104 20 20 85 U240387 interferon-induced leucine zipper protein (ifp35) 125 27 20 85 U72835 interferon-induced leucine zipper protein (ifp35) 125 27 20 237 U33830 interferon-induced leucine 7a 331 92 20 236 W37935 transcription factor isgf-3 331 92 20 216 U01824 glutamate/aspartate transporter 339 35 20 20 U01824 glutamate/aspartate transporter 339 35 20 216 U001824 glutamate/aspartate transporter	0 57	C/.C	0	dn
U41515 dss1 20 123 104 51 U41515 dss1 20 123 104 51 J04182 lysosomal membrane glycoprotein-1 (lamp 1) 66 484 168 452 J04182 lysosomal membrane glycoprotein-1 (lamp 1) 66 484 168 452 L40387 thyroid receptor interactor (trip 14) 104 20 20 85 L40387 interferon-induced leucine zipper protein (ifp35) 125 27 20 237 U72882 interferon regulatory factor 7a 331 92 20 237 W37935 transcription factor isg1-3 333 331 92 20 296 U01824 glutamate/aspartate transporter 339 35 20 216 91 U01824 glutamate/aspartate transporter 339 35 20 216 91 U01824 glutamate/aspartate transporter 339 35 20 91 91 U01824 glutamate/aspartate transporter 339 35 20 91 91 <		3.38	2.85	dn
J04182 Iysosomal membrane glycoprotein-1 (lamp 1) 66 484 168 452 Cluster 4 thyroid receptor interactor (trip 14) 104 20 20 85 L40387 thyroid receptor interactor (trip 14) 104 20 20 85 U72882 interferon-induced leucine zipper protein (ifp35) 125 27 20 237 U72882 interferon regulatory factor 7a 331 92 20 296 M97935 transcription factor 7a 331 92 20 296 U01824 glutamate/aspartate transporter 333 333 35 20 91 U01824 glutamate/aspartate transporter 339 35 20 91 U01824 glutamate/aspartate transporter 339 35 20 91 U00212 leukocyte interferon (ifn-alpha) 106 20 138 49	4 51	6.15	-2.04	dn
Cluster 4 thyroid receptor interactor (trip 14) 104 20 20 85 L40387 interferon-induced leucine zipper protein (ifp35) 125 27 20 502 U72882 interferon-induced leucine zipper protein (ifp35) 125 27 20 502 U53830 interferon regulatory factor 7a 331 92 20 296 M97935 transcription factor isg1-3 331 92 20 296 001824 glutamate/aspartate transporter 333 339 35 20 91 000212 leukocyte interferon (ifn-alpha) 106 20 138 49	8 452	7.33	2.69	dn
U-2038/ Interfector interfactor (inp 14) 104 20 20 85 U-72882 Interferon-induced leucine zipper protein (ifp35) 125 27 20 502 U-53830 Interferon-induced leucine zipper protein (ifp35) 125 27 20 237 U53830 Interferon-induced leucine zipper protein (ifp35) 103 20 237 237 U53830 Interferon regulatory factor 7a 331 92 20 296 U01824 glutamate/aspartate transporter 333 335 20 91 U01824 glutamate/aspartate transporter 339 35 20 91 U00212 leukocyte interferon (ifn-alpha) 106 20 138 49	Ľ	0		ł
U72882 interferon-induced leucine zipper protein (ifp35) 125 27 20 502 U53830 interferon-induced leucine zipper protein (ifp35) 103 20 237 U53830 interferon regulatory factor 7a 333 20 237 M97935 transcription factor isgf-3 331 92 20 296 U01824 glutamate/aspartate transporter 339 35 20 91 U01824 leukocyte interferon (ifn-alpha) 106 20 138 49	0 85	-5.2	4.25	dn
U53830 interferon regulatory factor 7a 103 20 237 M97835 transcription factor isgt-3 331 92 296 U01824 glutamate/aspartate transporter 339 35 20 91	.0 502	-4.63	25.1	dn
M97935 transcription factor isgf-3 331 92 20 296 U01824 glutamate/aspartate transporter 339 35 20 91 U01824 glutamate/aspartate transporter 339 35 20 91 Cluster 5 leukocyte interferon ((fn-alpha) 106 20 138 49	0 237	-5.15	11.85	dn
U01824 glutamate/aspartate transporter 339 35 20 91 Cluster 5 leukocyte interferon (ifn-alpha) 106 20 138 49	296	-3.6	14.8	dn
Cluster 5 100212 leukocyte interferon (ifn-alpha) 106 20 138 49	.0 91	-9.69	4.55	dn
J00212 leukocyte interferon (ifn-alpha) 106 20 138 49				
	8 49	-5.3	-2.82	dn
- Dozol3 lig-g, 20 49 90	96 96	-14.45	1.96	dn
X90846 mixed lineage kinase 2 357 60 425 173	5 173	-5.95	-2.46	dn
L42243 ifrar2 gene (interferon receptor) 62 20 46 20	6 20	-3.1	-2.3	dn
M79462 pml-1 20 43 20	3 20	-10.05	-2.15	dn
K01900 lymphocyte interferon alpha type 201 156 20 55 85	5 85	-7.8	1.55	dn
cuuster o M30R3 8 interferon-induced callular resistance mediator protein 20 20 756 155	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C	-4 88	ĩ
X15599 interferon reculatory factor 2 (irf-2) 2 20 20 57 20		b	2 35	
	20 133 7 20	0	10.01	2

Cluster

CF ME15

CF D10

ME15+IFN

ME15

D10+IFN

D10

British Journal of Cancer (2001) 85(1), 107-114

upregulated; dn = downregulated; ~= unmodulated). This analysis yielded 6 dusters of genes. Cluster 1 contains genes only upregulated in the IFN-x sensitive ME15 line. Cluster 2 includes amplaxin, upregulated in both lines and cluster 3 comprises genes only upregulated in the D10 resistant line. Cluster 1 restant line. Cluster 4 refers to genes downregulated in D10 and upregulated in ME15 cells. Cluster 5 includes genes downregulated in D10 and cluster 6 refers to genes downregulated in D10 and upregulated in ME15 cells. Cluster 5 includes genes downregulated in D10 and cluster 6 refers to genes downregulated in ME15 cells.

		D10	D10+IFN	ME15	ME15+IFN	CF D10	CF ME15	Clus	ter
Cluster 1									
L37043	casein kinase i epsilon	218	221	20	441	2.01	22.05	ł	dn
D32050	alanyl-trna synthetase	1458	761	21	427	-1.92	20.33	ł	dn
D28137	bst-2	37	88	28	305	2.38	10.89	ł	dn
S81914	iex-1=radiation-inducible immediate-early gene	20	21	31	312	1.05	10.06	ł	dn
X95325	dna binding protein a variant	634	253	58	375	2.51	6.47	ł	dn
U91316	acyl-coa thioester hydrolase	253	428	141	706	1.69	5.01	ı	dn
U47025	fetal brain glycogen phosphorylase b	672	465	193	924	-1.45	4.79	ł	dn
Z26491	gene catechol o-methyltransferase	238	181	73	337	-1.31	4.62	ł	dn
L13210	mac-2 binding protein	2555	2092	444	2016	-1.22	4.54	ł	dn
K03515	neuroleukin	2998	2552	487	2126	-1.17	4.37	ł	dn
U09579	melanoma differentiation associated (mda-6)	20	20	83	361	0	4.35	ł	dn
J04444	cytochrome c-1 gene	886	2268	309	1286	2.56	4.16	ı	dn
U72206	guanine nucleotide regulatory factor (Ifp40)	238	162	113	459	-1.47	4.06	ł	dn
X76538	mpv17	132	101	77	313	-1.31	4.06	ı	dn
U18009	chromosome 17q21 clone lf113	674	423	187	735	-1.59	3.93	ı	dn
U69126	fuse binding protein 2 (fbp2)	114	159	77	302	1.39	3.92	ı	dn
U50327	protein kinase c substrate 80k-h gene (prkcsh)	401	236	80	312	-1.7	3.9	ı	dn
D21235	hhr23a protein	388	346	150	582	-1.12	3.88	ı	dn
HG1612	macmarcks	588	505	401	1440	-1.16	3.59	ı	dn
X04412	plasma gelsolin	220	220	107	372	0	3.48	ı	dn
U65579	mitochondrial nadh dehydrogenase-ubiquinone	630	621	110	377	-1.01	3.43	ı	dn
Y00264	amyloid a4 precursor	392	427	89	304	1.09	3.42	ı	dn
M31013	nonmuscle myosin heavy chain (nmhc)	377	263	132	441	-1.43	3.34	ı	dn
M34338	spermidine synthase	472	277	429	1413	-1.7	3.29	ł	dn
D50914	EST	234	78	110	359	-3	3.26	ł	dn
U18018	e1a enhancer binding protein (e1a-f)	20	23	107	340	1.15	3.18	ł	dn
U61263	acetolactate synthase homolog	410	301	150	464	-1.36	3.09	ł	dn
U65932	extracellular matrix protein 1 (ecm1)	2498	1066	300	907	-2.34	3.02	ł	dn
Cluster 2									
L35249	vaculolar h+-atpase mr 56 000 subunit (ho57)	20	357	92	227	17.85	2.47	dn	ł
U70063	human acid ceramidase	115	400	86	221	3.48	2.57	dn	ł
							-		
U10 and ME15 induced genes	cell lines cultured for 48 hours in the absence (D10 an whose expression was not found to be modulated in fit	id ME15, respe brosarcoma cell	atively) or in the pre s (Der et al, 1998).	esence of 100 U . Expression lev	m⊡ IFN-α (D10+IF els for each gene w	-N and ME15+IFN, ere calculated as n	respectively) were ormalized average	difference (nAD)	ovel cytokine of fluorescence
intensity as cor	npared to hybridization to mismatched oligonucleotides	s, expressed in	arbitrary units. A thi	reshold of 20 n/	AD units was assign	led to any gene wit	n a calculated expr	ession level lower	than 20, since
of requisition (11	i this low range could not be reliably assessed. Genes of the intradulated of a commendation of the commen	displaying mod	ulations (change fa	ctor = CF) great	ter than 3-fold were	Included in the and Dresistant call line	Ilysis and they were	e clustered accord	ling to their mode
resistant cells.	ר – עריפטממופט, מו – טטאוויפטממופט, א – מווויסטמומוס								

© 2001 Cancer Research Campaign

Table 3 Novel IFN-α inducible genes

Figure 4 Genes preferentially expressed in IFN- α sensitive (panel A) or resistant (panel B) melanoma cell lines. Oligonucleotide array expression data were collected from untreated cells. Data from the sensitive (ME15, A375, ME59, ME51, grey bars) or resistant lines (D10, ME67, black bars) were combined to identify genes preferentially expressed in either group. Data are presented as normalized average difference (nAD) of fluorescence intensity between matched and mismatched oligonucleotide probe sets, expressed in arbitrary units

We first analysed data sets for genes encoding MART-1/Melan-A, pmel-17 (gp100), TRP-2 and tyrosinase tumour-associated antigens (TAA). In agreement with concomitantly performed conventional and quantitative real time PCR assays (data not shown), the 4 genes were found to be expressed in ME15 and D10 cell lines whereas virtually no expression was detectable in A375, ME51, ME59 and ME67 cell lines (Figure 3A). These results were consistent with our previously published data, showing that D10, HLA-A2.1-positive, melanoma cells were effectively killed by HLA-A2. 1-restricted CTL lines recognizing epitopes derived from MART-1/Melan-A, pmel-17/gp 100, tyrosinase or TRP-2 proteins (Spagnoli et al, 1995; Noppen et al, 2000). In contrast, ME59 HLA-A2.1 positive cells, that did not express the genes under investigation failed to be killed by the specific CTL (Spagnoli et al, 1995). Remarkably, IFN-α treatment did not appear to influence the expression of the genes encoding these TAA.

Thus, the application of the microarray technology to the cellular system under investigation was validated by results obtained at functional and gene expression level.

Transcripts from the IFN- α receptor gene (IFNAR2) were detected at low levels (nAD \leq 60; see also Table 2, gene cluster 5) upon microarray hybridization of the cDNA from the cell lines under investigation. To confirm and reinforce these data, however, we evaluated IFN- α receptor gene expression by using a more sensitive RT-PCR assay (Figure 3B). Although to different extents, unrelated to the level of responsiveness to the cytokine, specific transcripts could indeed be amplified from all lines.

Detection of potential marker genes for IFN- α responsiveness

The availability of large mRNA expression data sets from 6 human melanoma cell lines well characterized for their responsiveness to IFN- α raised the possibility of identifying genes preferentially expressed in sensitive or resistant lines in the absence of cytokine treatment. Microarray data of all genes from the responder (ME15, ME51, ME59 and A375) and non-responder (D10, ME67) cells were combined and screened for genes preferentially expressed in either group.

This analysis resulted in the identification of a group of 4 genes prevailingly detectable in IFN- α sensitive cell lines (Figure 4, panel A). 2 of them, IFI16 and RCC1 encode nuclear proteins endowed with mitotic regulation and transcriptional activation capacities, respectively (Bischoff and Ponstingl, 1991; Trapani et al, 1994). A third is the hox2 homeobox gene (Acampora et al, 1989), whereas the fourth, h19 gene, encodes an untranslated RNA, involved in the DNA methylation and genetic imprinting processes (Brannan et al, 1990). Notably, however, RCC1 gene was not expressed in one IFN- α sensitive cell line (ME51).

On the other hand, 2 genes encoding likely components of signal transduction pathways, SHB and PKC- ζ (Barbee et al, 1993; Welsh et al, 1994) appeared to be preferentially expressed in IFN- α resistant D10 and ME67 cell lines (Figure 4, panel B).

Induction of gene expression by $\text{IFN-}\alpha$ in sensitive and resistant cell lines

We then investigated the pattern of genes expressed in IFN- α -sensitive and -insensitive melanoma cell lines upon culture in the presence of the cytokine. Since inhibitory effects on cell proliferation were first detectable after 72 hour cultures (see Figure 1) we chose to investigate gene expression in cells cultured for 48 hours in the presence or absence of the cytokine. ME15 and D10 cell lines were studied in detail. Our analysis focused on genes which were at least 3-fold up- or down-regulated as compared to untreated cells and displayed nAD values of at least 50 in 1 of the 4 experiments.

Table 2 reports data from 6 clusters of known IFN- α modulated genes, previously found to be regulated by cytokine treatment in one human fibrosarcoma cell line (Der et al, 1998). Indeed we found that the expression of a number of them can also be modulated by IFN- α in apparently resistant cells. Cluster 1 includes genes only inducible in the sensitive ME15 cell line. As expected the expression of these genes was not significantly affected by the treatment in D10, IFN- α -resistant, cells. This set of genes includes HLA class I genes, 2-5A synthetase, TAP-1, genes encoding a number of interferon-inducible proteins, but also p27 cyclindependent kinase inhibitor and ROX protein (Rasmussen et al, 1993; Nigro et al, 1998). A single gene, encoding amplaxin or ems-1, and derived from a locus, 11q13, frequently amplified in tumour cells (Shuurig, 1995) appears to be induced by IFN- α in both lines (cluster 2).

Cluster 3 genes, including ip-30, a known IFN- γ inducible gene, and dss 1 were induced in D10-resistant cell line but their expression was not significantly modified in ME15 sensitive cells. Cluster 4 includes additional genes inducible by IFN- α in ME15 which are, in contrast to cluster 1, downregulated in IFN- α resistant D10 cells. Remarkably, the transcription factor ISGF-3, of relevance for IFN- α signalling belongs to this cluster that includes other IFN-related genes. Cluster 5 comprises genes downregulated by IFN- α treatment in resistant D10 cells, but virtually unaffected in sensitive ME15 cells. Interestingly, this cluster comprises the gene encoding IFN- α receptor. Cluster 6 includes 2 genes (irf-2 and interferon-induced cellular resistance mediator) whose expression, basically undetectable in D10 resistant cell line, is downmodulated in ME15 IFN- α sensitive cells. Notably, the IRF-2 gene product is known to bind to the promoter region of IFN type Iinducible genes and to prevent transcription (Itoh et al, 1989). Downregulation could thus promote the activation of IFN inducible genes.

Detection of novel IFN- α inducible genes

Table 3 includes genes not previously described as IFN- α inducible, whose expression was found to be upregulated upon melanoma cells treatment. Cluster 1 comprises genes only induced in sensitive cells, whereas cluster 2 refers to genes upregulated upon IFN- α treatment of apparently insensitive melanoma cells. Some of these genes obviously belong to melanocytic (melanoma differentiation antigen, mda-6) or neuroectodermic (e.g., neuroleukin or catechol o-methyltransferase; Gurney et al, 1986; Tenhunen et al, 1994) cell lineages, while other clearly inducible genes such as those encoding, for instance, plasma gelsolin or spermidine synthase escape an evident, similar, tissue-specific classification.

DISCUSSION

IFN- α treatment is currently the only adjuvant therapy of proven effectiveness in increasing disease-free interval and overall survival in malignant melanoma, following potentially curative surgery (Kirkwood, 1998). However, the administration of relatively high doses of cytokine appears to be required (Agarwala and Kirkwood, 1996; Grob et al, 1998; Keilholz and Eggermont, 2000), frequently resulting in severe toxic side effects, ranging between flu-like symptoms, severe neuro-hepato-toxicity and myelosuppression (Vial and Descotes, 1994). Clinical, immunological or molecular features enabling a targeted selection of patients likely to take advantage of this therapy have not been identified so far (Kirkwood, 1998). Only recently, baseline white blood cell count has been suggested as a possible prognostic factor of potential clinical relevance (de La Salmonière et al, 2000). Clearly, the development of criteria predicting the potential effectiveness of IFN- α therapy would be of high clinical relevance since it would spare unnecessary toxicity to non-responders and it would contribute to the identification of responders' subgroups.

In this work we addressed the genetic profile of melanoma cell lines classified according to their sensitivity or insensitivity to critical direct effects of IFN- α , namely the inhibition of proliferation and the upregulation of HLA class I expression.

Oligonucleotide microarray technology allows us to investigate the expression of large panels of genes and appears to be ideally suited to the analysis of relatively simple cellular systems (Marton et al, 1998; Iyer et al, 1999). In our hands its sensitivity was confirmed by preliminary studies yielding results related to the expression of melanoma-associated antigens consistent with those obtained from functional assays or conventional PCR experiments.

Resistance to the antiproliferative and HLA class I-inducing effects of IFN- α does not appear to be related to major differences in the expression of genes encoding key players of the specific

signal transduction chain. STAT genes included in the array (2, 4, 5a and 5b) were found to be expressed at relatively low levels $(nAD \le 50)$ in all cell lines, irrespective of IFN- α responsiveness. These results are in agreement with data obtained by using different technologies, suggesting the presence of relatively functional signal transduction in IFN- α insensitive cells (Ralph et al, 1995; Wong et al, 1997). Interestingly, similar results were also obtained by testing some of the cell lines under investigation in the current work by conventional gene and protein expression techniques (Pansky et al, 2000).

A pattern of genes preferentially expressed according to typical profiles in sensitive and resistant cells clearly emerges. Genes involved in the regulation of cell proliferation, such as IFI16, h19 and RCC1, but also hox2 (Acampora et al, 1989; Brannan et al, 1990; Bischoff and Ponstingl 1991; Trapani et al, 1994), were found to be preferentially expressed in sensitive cell lines. Intriguingly, genes encoding SHB and PKC- ζ proteins, known components of defined signal transduction pathways (Barbee et al, 1993; Welsh et al, 1994), appear to be preferentially expressed in IFN- α resistant cells (Figure 4, panels A and B). These puzzling data suggest that IFN- α resistance could result from a series of active events as opposed to a merely defective activation.

IFN- α stimulation of sensitive melanoma cells resulted in the detectable upregulation of a number of known inducible genes (Table 2, cluster 1). For instance 6-16 and 27-sep genes, both more than 20-fold upregulated in human fibrosarcoma cells (Der et al, 1998) were found to be induced in ME 15 melanoma 54-and 102-fold respectively, while neither was detectable in the IFN- α resistant line D10. Another classical interferon inducible gene, 2'-5' oligosynthase, was upregulated in ME15 but not in D10 cells. These confirmatory results further validate the integrity of the microarray analysis in this specific experimental framework. Remarkably, the 27-sep gene product, the IFN inducible Leu-13 antigen, is implicated in growth control in several cell lines (Deblandre et al, 1995). On the other hand the genes encoding IFN-induced cellular resistance mediator protein (Aebi et al, 1989) and IFN regulatory factor-2 (Schuurig, 1995) were clearly downregulated in the sensitive ME15 cell line (Table 2, cluster 6).

Most interestingly, in cells apparently insensitive to the inhibition of proliferation and to the HLA class I induction determined by IFN- α , a significant modulation of the expression of discrete sets of genes could nevertheless be observed upon cytokine treatment. The downregulation of a set of known interferon-related genes, including those encoding the cytokine and its specific receptor was matched by the upregulation of ip-30 and dss1 genes (Luster et al, 1988; Crackower et al, 1996) (Table 2, cluster 3). Clearly, these results are compatible with the hypothesis of 'partial' effects of IFN- α , upstream of inhibition of proliferation and HLA class I induction. Importantly, these effects, on cells conventionally classified as resistant, might also offer novel insights into IFN- α related toxicity.

A further important result is represented by the identification of a group of 30 genes whose expression appears to be upregulated by IFN- α treatment in melanoma cells (Table 3), but was not reported in cells of different histological origin (Der et al, 1989). Some of these genes are typically transcribed in neuroectodermic tissues. It is tempting to speculate that their products might play a role in exogenous IFN- α induced neurotoxicity (Adams et al, 1988) or that their upregulation by endogenously produced IFN- α might be of relevance in defined neurological syndromes. Others, however, including cytochrome c-1 gene, do not obviously pertain to given tissue-specific transcription patterns. Further research is warranted to clarify the role eventually played by the products of these genes in discrete aspects of the polymorphic toxic effects of IFN- α .

Taken together our data provide an extended database of potential relevance in the investigation of the molecular background of IFN- α sensitivity of melanoma cells both, in clinical tumour samples and in basic cell biology studies. Ongoing studies addressing the validation of these data at the protein level might result in the characterization of reagents of clinical interest.

ACKNOWLEDGEMENTS

Thanks are due to Prof A Eberle (Basel, Switzerland) and Dr D Rimoldi (Lausanne, Switzerland) for providing cellular reagents. This work was partially funded by research grants from the Swiss National Fund for Scientific Research (no. 31-57'473.99 to GCS) and Krebsliga beider Basel (no. 6/00 to EP).

REFERENCES

- Acampora D, D'Esposito M, Faiella A, Pannese M, Migliaccio E, Morelli F, Stornaiuolo A, Nigro V, Simeone A and Boncinelli E (1989) The human HOX gene family. *Nucleic Acids Res* 17: 10385–10402
- Adams F, Fernandez F and Mavligit G (1988) Interferon-induced organic mental disorders associated with unsuspected pre-existing neurologic abnormalities. *J Neurooncol* 6: 355–359
- Aebi M, Faeh J, Hurt N, Samuel CE, Thomis DC, Bazzogher L, Pavlovic J, Haller O and Staheli P (1989) cDNA structures and regulation of two interferon-induced human Mx proteins. *Mol Cell Biol* 9: 5062–5072
- Agarwala SS and Kirkwood JM (1996) Interferons in melanoma. *Curr Opin Oncol* 8: 167–174
- Barbee JL, Loomis CR, Deutscher SL and Burns DJ (1993) The cDNA sequence encoding human protein kinase C-zeta. Gene 132: 305–306
- Bischoff FR and Ponstingl H (1991) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. *Nature* **354**: 80–82
- Brannan CI, Dees EC, Ingram RS and Tilghman SM (1990) The product of the H19 gene may function as an RNA. *Mol Cell Biol* 19: 28–36
- Crackower MA, Scherer SW, Rommens JM, Hui CC, Poorkaj P, Soder S, Cobben JM, Hudgins L, Evans JP and Tsui LC (1996) Characterization of the split hand/split foot malformationlocus SHFM1 at 7q21.3–q22.1 and analysis of a candidate gene for its expression during limb development. *Hum Mol Gen* 5: 571–579
- Deblandre GA, Marinx OP, Evans SS, Majaj S, Leo O, Caput D, Huez GA and Wathelet MG (1995) Expression cloning of an interferon-inducible 17-kDa membrane protein implicate in the control of cell growth. *J Biol Chem* 270: 23860–23866
- De La Salmonière P, Grob J-J, Dreno B, Delaunay M and Chastang C (2000) White blood cell count: a prognostic factor and possible subset indicator of optimal treatment with low dose adjuvant interferon in primary melanoma. *Clin Cancer Res* 6: 4713–4718
- Der SD, Zhou A, Williams BR and Silverman RH (1998) Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. *Proc Natl Acad Sci USA* 95: 15623–15628
- Fambrough D, McClure K, Kazlauskas A and Lander ES (1999) Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. *Cell* 97: 727–741
- Grob JJ, Dreno B, de la Salmonière P, Delaunay M, Cupissol D, Guillot B, Souteyrand P, Sassolas B, Cesarini J-P, Lionnet S, Lok C, Chastang C and Bonerandi JJ (1998) Randomised trial of interferon α-2a as adjuvant therapy in resected primary melanoma thicker than 1.5 mm without clinically detectable node metastases. *Lancet* 351: 1905–1910
- Gurney ME, Heinrich SP, Lee MR and Yin HS (1986) Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. *Science* **234**: 566–574
- Itoh S, Harada H, Fujita T, Mimura T and Taniguchi T (1989) Sequence of a cDNA coding for human IRF-2. Nucleic Acids Res 17: 8372–8372
- Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JCF, Trent JM, Staudt LM, Hudson J, Boguski MS, Lashkari D, Shalon D, Botstein D and Brown PO

(1999) The transcriptional program in the response of human fibroblasts to serum. *Science* **283**: 83–87

- Keilholz U and Eggermont AMM (2000) The emerging role of cytokines in the treatment of advanced melanoma. Oncology 58: 89–95
- Kirkwood JM (1998) Adjuvant IFN alpha2 therapy of melanoma. Lancet 351: 1901–1903
- Lipshutz RJ, Fodor SPA, Gingeras TR and Lockhart DJ (1999) High density synthetic oligonucleotide arrays. *Nature Genet* 21: 20–24
- Lüscher U, Filgueira L, Juretic A, Zuber M, Lüscher NJ, Heberer M and Spagnoli GC (1994) The pattern of cytokine gene expression in freshly excised human metastatic melanoma suggests a state of reversible anergy of tumor-infiltrating lymphocytes. *Int J Cancer* 57: 612–619
- Luster AD, Weinshank RL, Feinman R and Ravetch JV (1988) Molecular and biochemical characterization of a novel gamma-interferon-inducible protein. *J Biol Chem* 263: 12036–12043
- Lutfalla G, Holland SJ, Cinato E, Monneron D, Reboul J, Rogers NC, Smith JM, Stark GR, Gardiner K, Mogensen KE, Kerr IM and Uze G (1995) Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster. *EMBO J* 14: 5100–5108
- Mahadevappa M and Warrington JA (1999) A high-density probe array sample preparation method using 10-to 100-fold fewer cells. Nat Biotechnol 17: 1134–1136
- Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, Stoughton R, Burchard J, Slade D, Dai H, Bassett DE, Hartwell LH, Brown PO and Friend SH (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. *Nature Med* 4: 1293–1301
- Nigro CL, Venesio T, Reymond A, Meroni G, Alberici P, Cainarca S, Enrico F, Stack M, Ledbetter DH, Liscia DS, Ballabio A and Carrozzo R (1998) The human ROX gene genomic structure and mutation analysis in human breast tumors. *Genomics* 49: 275–282
- Noppen C, Lévy F, Burri L, Zajac P, Remmel E, Schaefer C, Lüscher U, Heberer M and Spagnoli GC (2000) Naturally processed and concealed HLA-A2.1 restricted epitopes from tumor associated antigen tyrosinase-related protein-2. *Int J Cancer* 87: 241–246
- Pansky A, Hildebrand P, Fasler-Kann E, Baselgia L, Ketterer S, Beglinger C and Heim MH (2000) Defective Jak-STAT signal transduction pathway in melanoma cells resistant to growth inhibition by interferon-α. Int J Cancer 85: 720–725
- Ralph SJ, Wines BD, Payne MJ, Grubb D, Hatzinisiriou I, Linnane AW and Devenish RJ (1995) Resistance of melanoma cell lines to interferons correlates with reduction of IFN-induced tyrosine phosphorilation. Induction of the anti-viral state by IFN is prevented by tyrosine kinase inhibitors. *J Immunol* 154: 2248–2256
- Rasmussen UB, Wolf C, Mattei MG, Chenard MP, Bellocq JP, Chambon P, Rio MC and Basset P (1993) Identification of a new interferon-alpha-inducible gene (p27) on human chromosome 14q32 and its expression in breast carcinoma. *Cancer Res* 53: 4096–4101
- Rogge L, Bianchi E, Biffi M, Bono E, Chang S-YP, Alexander H, Santini C, Ferrari G, Sinigaglia L, Seiler M, Neeb M, Mous J, Sinigaglia F and Certa U (2000) Transcripts imaging of the development of human T helper cells using oligonucleotide arrays. *Nature Genet* 25: 96–101
- Schuurig E (1995) The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes a review. *Gene* **59**: 83–96
- Spagnoli GC, Schaefer C, Willimann TE, Kocher T, Amoroso A, Juretic A, Zuber M, Lüscher U, Harder F and Heberer M (1995) Peptide specific CTL in tumorinfiltrated lymphocytes from metastatic melanomas expressing MART-1/Melan-A, gp100 and tyrosinase genes: a study in an unselected group of HLA-A2.1-positive patients. *Int J Cancer* 64: 309–315
- Tenhunen J, Salminen M, Lundstrom K, Kiviluoto T, Savolainen R and Ulmanen I (1994) Genomic organization of the human cathecol Omethyltransferase gene and its expression from two distinct promoters. *Eur J Biochem* 223: 1049–1059

Trapani JA, Dawson M, Apostolidis VA and Browne KA (1994) Genomic organization of IF116, an interferon-inducible gene whose expression is associated with human myeloid cell differentiation: correlation of predicted protein domains with exon organization. *Immunogenetics* 40: 415–424

- Vial T and Descotes J (1994) Clinical toxicity of Interferons. Drug Safety 10: 115–150
- Welsh M, Mares J, Karlsson T, Lavergne C, Breant B and Claesson-Welsh L (1994) Shb is a ubiquitously expressed Src homology 2 protein. Oncogene 9: 19–27
- Wong LH, Krauer KG, Hatzinisiriou I, Estcourt MJ, Hersey P, Tam ND, Edmonson S, Devenish RJ and Ralph SJ (1997) Interferon-resistant human melanoma cells are deficient in ISGF3 components, STAT1, STAT2, and p48-ISGF3 gamma. J Biol Chem 272: 28779–28785