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ABSTRACT: There has been a recent interest in quantum algorithms for the modeling and
prediction of nonunitary quantum dynamics using current quantum computers. The field of
quantum biology is one area where these algorithms could prove to be useful as biological systems
are generally intractable to treat in their complete form but amenable to an open quantum systems
approach. Here, we present the application of a recently developed singular value decomposition
(SVD) algorithm to two systems in quantum biology: excitonic energy transport through the
Fenna−Matthews−Olson complex and the radical pair mechanism for avian navigation. We
demonstrate that the SVD algorithm is capable of capturing accurate short- and long-time dynamics
for these systems through implementation on a quantum simulator and conclude that while the
implementation of this algorithm is beyond the reach of current quantum computers, it has the
potential to be an effective tool for the future study of systems relevant to quantum biology.

KEYWORDS: quantum algorithms, singular value decomposition, quantum biology, open quantum systems, radical pair mechanism,
photosynthetic light-harvesting

■ INTRODUCTION
The majority of real physical systems interact with their
environments in a nontrivial way. This is especially true for
systems of biological relevance, where there is often a large and
complex environment surrounding any energy or information
transport process. Modeling these processes exactly is
frequently computationally intractable; however, they are
amenable to an open quantum system treatment.1 Standard
methods in open quantum systems, such as the Lindblad
equation,2−4 are capable of accurately describing a variety of
biologically relevant dynamical processes, including excitonic
energy transport in photosynthetic light-harvesting anten-
nae,1,5−10 radical pair mechanisms (RPMs) for avian
navigation11−13 and other physiological functions,14 and
transport through ion channels.15−18 An important aspect of
recent quantum algorithm development has focused on the
modeling of open quantum systems,19 which are systems that
are not isolated but instead interact with their surroundings
and are generally characterized by nonunitary dynamics. The
challenge in developing gate-based quantum algorithms to
capture these dynamical processes is that only unitary gates can
be implemented on current quantum computers, but open
quantum systems exhibit nonunitary time dynamics. A variety
of algorithms have been developed to overcome this
obstacle,20−22 often using block encoding techniques.23−29

Recently, two of the authors used classical computation of the
singular value decomposition (SVD) of the time propagating
operator, followed by an implementation of the dynamics with
the singular value matrix on a quantum device.27 While this

algorithm requires a non-negligible classical cost, the
nonunitary component is mapped entirely to the diagonal
singular-value matrix, and this sparsity can be leveraged when
encoding the dynamics in a quantum circuit. The SVD has
effectively been used to consider open quantum system
evolution and general non-normalized state preparation.27

Here, we will use this algorithm on an IBM QASM simulator30

to model the nonunitary dynamics of two systems in quantum
biology: excitonic energy transport through a photosynthetic
light-harvesting antenna and the RPM for avian navigation.

First, we will consider the Fenna−Matthews−Olson (FMO)
complex, which is a well-studied biological complex vital to
photosynthetic light harvesting in green sulfur bacteria.31 It
exists as a trimer in the bacteria between the light-harvesting
antenna and the photosynthetic reaction center, where it
facilitates efficient exciton transfer. This is shown schematically
in Figure 1a, where an exciton is transferred into the complex
on site 1, transported among the other sites, and eventually
passes from site 3 to the reaction center, where it can be
converted into usable energy for the bacterium. While there
have been extensive theoretical and experimental studies on
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this complex,32−37 few have utilized quantum algorithms, and
both the full 7-site system and the long-time dynamics have
remained challenging to simulate.26

The second system that we will study is the RPM proposed
for avian navigation.11 The RPM is theorized to explain how
migratory birds can sense and navigate along the earth’s
magnetic field.38−42 The basic scheme is represented in Figure
1b. First, a donor molecule is excited by incoming light,
causing the transfer of an electron from the donor to an
acceptor molecule, creating a pair of coupled radicals. The
radical pair is initially in the singlet state but can interconvert
between three triplet states as well. This conversion is partly
determined by a coupled nuclear spin and the direction and
strength of an external magnetic field. Depending on the spin
state of the pair when they recombine, different chemical
signals result. The yields of singlet and triplet products can
therefore signal information about the orientation of the
electron spin with respect to the external field. This particular
application has also been extensively investigated theoret-
ically,11−13,38,41−43 including a quantum algorithm investiga-
tion,44 making it a good benchmark for the ability of a
quantum algorithm to effectively capture a RPM, which is
prevalent in many other physiological processes.14

First, we will review both the open quantum systems
framework and the SVD algorithm. We will then present
results using this algorithm for the two systems outlined above.
Finally, we will discuss these results in the context of the
potential for quantum algorithms to model and predict
quantum systems of biological relevance.

■ METHODS

Lindblad Approach to Dissipative Quantum Systems
A common model for the description of Markovian open quantum
system dynamics is the Gorini− Kossakowski−Sudarshan−Lindblad
master equation2−4
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where Ĥ is the system Hamiltonian, ρ is the density matrix, and γi are
the decay rates corresponding to the physically relevant Lindbladian
operators, Ci. The first term represents the coherent evolution, while
the summation over Lindbladians represents the lossy, environ-
mentally driven dynamics. This equation can be written in a
vectorized or unraveled master equation form, where eq 1 is rewritten

by reshaping the r by r density matrix into a vector of length r2.28,45

This can be done by stacking the columns of the original density
matrix to produce a column vector, |ρ⟩ = vec(ρ). In this framework,
the Lindbladian superoperator is written as
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where is the identity matrix and *, †, and T are the complex
conjugate, adjoint, and transpose operations, respectively. The density
matrix can then be propagated in time through

t e( ) (0)t= (3)

where the propagation now occurs in Liouville space.
SVD-Based Nonunitary Quantum Dynamics
The Lindblad equation models nonunitary evolution, so the

propagator M e t= needs to be mapped into a unitary form that
can be implemented on current quantum devices. We begin with the
SVD written as

M U V= † (4)

where U and V †
are unitary operators, and is a real nonunitary

diagonal operator. The diagonal operator can be dilated into a unitary
(and diagonal) operator
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where σi are the singular values of M .
Therefore, the nonunitary operator M can be implemented exactly

on a quantum circuit, as seen in Figure 2, where k denotes that the
system state spans multiple qubits. We compute the SVD of the
exponential operator which yields a unique, but related, circuit for
each time step. This circuit utilizes a linear combination of unitary
approaches46 and results in a nondeterministic state which depends
on the state of the ancilla qubit. When the ancilla is in state |0⟩, M is
applied to the system qubit, M U V( )1

2
= ++

†
. When the

ancilla qubit is in state |1⟩, then the procedure fails as

Figure 1. (a) Schematic depiction of one trimer of the FMO complex, showing sites 1−7. The colors represent Hamiltonian terms, which include
both on-site and between-site couplings. The gray arrows represent dissipation and decoherence due to the environment, and the black arrow
represents the coupling of site 3 to the reaction center. (b) RPM: Excitation of the donor molecule, D, and the transfer of the electron to the
acceptor, A, are shown, along with the interconversion between singlet and triplet states and recombination. One of the electrons is coupled to a
nuclear spin, which is not shown in the above schematic.
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U V( )1
2 +

†
is applied to the system register. Notably, only one

ancilla qubit is required, and the success probability does not depend
on system size.

If a unitary matrix is size r2, then it can be mapped to k-qubit
unitary gates where k ≥ log2(r2). The dilation of a nonunitary matrix
adds an additional qubit, resulting in d = k + 1 qubits required to
simulate the SVD of the nonunitary operator. The dilated singular
value matrix can be implemented exactly with (2 )d 1+ gates, although
polynomially scaling approximations are also available.47 The unitaries
U and V †

each require d(( 1) 2 )d2 2 2 gates. The total gate
complexity of the SVD algorithm is therefore d( 2 )d2 2 1 .27 In the

limit of large system size, the application of U and V †
to the quantum

register generates the most overhead. In the asymptotic limit, given
access to the SVD, a d-qubit nonunitary operator can be applied to a
quantum register for approximately twice the cost of a d-qubit unitary
operator.

Beyond the gate complexity of the circuit, there are other cost
factors to consider. First, the SVD is computed classically with a
complexity r( )3 , where r is the size of the decomposed operator.
When computed numerically, the SVD scaling is prohibitive for
arbitrarily large or complex matrices; however, operators used in the
context of noisy-intermediate-scale quantum (NISQ) devices are
modestly sized, and the SVD is easily computed classically. In
addition, physical processes may have SVDs which can be written
analytically.27 Looking forward to the fault-tolerant regime, this
classical cost could be avoided by utilizing a quantum algorithm to
calculate the SVD.29,48 Second, to obtain accurate long-time
dynamics, the unraveled or vectorized master equation must be
used. This involves transitioning from a Hilbert space of size r to the
Liouville space of size r2, which also spans a larger qubit space. This
mapping requires a larger number of qubits and therefore an increase
in complexity; however, it allows for simulating long-time dynamics

without approximating the solution to the differential Lindblad
equation.

■ RESULTS

Light-Harvesting Antennae

The exciton dynamics in the FMO complex have been
successfully modeled classically by the Lindblad equa-
tion,1,5−10,26 where the coherent or unitary components are
described by the Hamiltonian

H J ( )
i

i i i
j i

ij i j j iFMO
1

7

= + +
=

+ + +

(7)

where σi+ and σi− are the creation and annihilation operators,
respectively; ωi is the on-site coupling; and Jij is the coupling
between sites i and j. We use the coupling parameters from ref
1, and the full Hamiltonian in matrix form can be found in
Supporting Information eq S2.

In the schematic of the full system in Figure 1a, the
Hamiltonian terms accounting for the on-site chromophore
energies are depicted by circled numbers and their couplings
by lines. The Lindbladian terms account for the transfer of the
exciton from the third chromophore to the sink, which models
the reaction center, as well as dephasing and dissipation to the
ground state. Transfer to the sink is represented by black
arrows, and dephasing and dissipation are represented by gray
arrows in the schematic. These Lindbladians take the form

C i i i C i

i C

( ) , ( ) 0

, 8 3k k

deph deph diss diss

sin sin

= =

= (8)

where i is an integer in the range [1,7]; states |0⟩ and |8⟩ model
the ground and sink sites, respectively; and γdeph, γdiss, and γsink
represent the corresponding rates of dephasing, dissipation,
and transfer to the sink for the 7-site model, respectively.
Previous work has focused on the dynamics of a subsystem of
this complex,9,26 which includes only the first 3 chromophores.
For this 3-site model, i is an integer only in the range [1,3], and
the sink is given by state |4⟩ instead of |8⟩. For both models,
the system is initialized with the excitation on site 1. All

Figure 2. Quantum circuit for a nonunitary operator acting on a state,
|ρ⟩, by using the SVD and dilating the diagonal operator. The system
spans k qubits, and the single additional ancilla bit is initialized in the
ground state, |0⟩.

Figure 3. Modeling the time evolution of the FMO complex. In (a), the results from the 3-site model are shown, and (b) shows the 7-site model
results. For both plots, the lines indicate classical results and the dots indicate the IBM QASM quantum simulation. A time step of δt = 5 fs and an
end time of 2000 fs were used. For each quantum measurement, 219 samples were taken.
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relevant parameters can be found in Supporting Information
Table S1.

Utilizing the above parameters with the unraveled master
equation in eq 2 and performing the SVD on the resulting

operator, M e t= , we can obtain results for the 3-site model.
The classical baseline and IBM QASM quantum simulation for
the dynamics can be seen in Figure 3a, where the classical
results are shown as solid lines and the quantum simulation as
dots. A total duration of 2000 fs was used with a time step of 5
fs utilizing a total of 6 qubits for the quantum simulation. For
all simulation data collected, 219 samples were used for
consistency between trials and systems. These results show
agreement between the quantum simulation and classical
results for the entirety of the 2000 fs process, significantly
extending the previous simulation time range while still
maintaining accuracy.26

We also expand the focus to the entire 7-chromophore
system dynamics, which becomes a 9-level system when a sink
and a ground state are included. This is demonstrated in Figure
3b, where again the classical solution is shown by solid lines
and the results of the IBM QASM quantum simulation using 8
qubits and 219 shots are shown as dots. These quantum
simulation results are also in excellent agreement with the
classical solution.

Both the 3-site and 7-site models of excitonic dynamics in
the FMO antenna demonstrate the capacity of the SVD
algorithm to capture accurate dynamics on an IBM QASM
quantum simulator, regardless of the length of time of the
simulation.
Avian Compass
The RPM in the avian compass relies on the interconversion
between singlet and triplet electronic states in an external
magnetic field coupled to a single nuclear spin. This can be
modeled with the Hamiltonian that takes the Zeeman and
hyperfine interactions into account11

H I A S B S S( )1 1 2= · · + · + (9)

where I ̂ is the single nuclear spin operator; A is the hyperfine
tensor describing the anisotropic coupling between the nucleus

and the first electron; Sj are the electron spin operators for
electrons j = 1, 2; γ is the gyromagnetic ratio; and B is the
applied magnetic field given by B = B0(cos ϕ sin θ, sin ϕ sin θ,
cos θ). The angles ϕ and θ describe the radical pair’s
orientation with respect to the external applied field, and based
on symmetry, ϕ can be set to zero. Due to the spatial
separation of the electrons, only one electron is coupled to the
nuclear spin in the Hamiltonian. The second electron is farther
from, and thus much more weakly coupled to, the nuclear
spin.11

The singlet and triplet states in the electronic system can be
written as

s

t

t

t

1
2

( )

1
2

( )

,

0

| = | | | |

| = | |

= | | + | |

| = | |+ (10)

where up and down arrows are used to represent α and β spin
states, respectively.

Coupling the electronic states with a single nuclear spin
produces an 8-site model. Shelving states |S⟩ and |T⟩ are added
to indicate the yields of recombination products from the given
radical pair conditions. They are only connected to the system
through the following Lindblad operators

C S s C T t C T t C T t

C S s C T t C T t C T t

, , , ,

, , , ,

1 2 0 3 4

5 6 0 7 8

= | | = | | = | | = | |

= | | = | | = | | = | |
+

+

(11)

where s, t0, t+, and t− indicate the spin configuration of the
radical pair of electrons, and the arrows signify the direction of
the nuclear spin. The decay rates for all the shelving
Lindbladians are, for the sake of simplicity, made equal and
given by γshelf. Operators Ĉ1 and Ĉ5 show recombination from
the singlet radical configuration, resulting in singlet products
regardless of nuclear spin. The other six operators populate the

Figure 4. Modeling the RPM for avian navigation. (a) Time evolution of singlet and triplet yields for the avian compass. Results are shown for an
end time of 1 ms and a time step of δt = 1.75 × 10−3 ms. The angle between the radical pair and the external field was fixed

2
= . (b) Angle

dependence of the avian compass singlet yields with and without noise from the environment. A theta jump of δθ = 0.9° was used. For both plots,
the smooth curves show classical results and the dots show IBM QASM quantum results. The rate of decay to the shelving states and quantum
sampling were also set to γshelf = 104 and 219, respectively.
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triplet yield from the three possible triplet configurations for
both nuclear spins.

This model was implemented through classical Lindbladian
evolution and simulated through the SVD algorithm to find the
time evolution of the singlet and triplet yields. An initial pure
singlet and mixed nuclear state was used. The populations
obtained from setting the external magnetic field to B0 = 47
μT, the decay constant to γshelf = 104, and the angle to

2
=

can be found in Figure 4a. An orientation angle of
2

=
indicates the external field is perpendicular to the radical pair.
For the IBM QASM quantum simulation results, 8 qubits were
required, and 219 samples were used. All relevant parameters
are also documented in Supporting Information Table S2.

This model so far assumes that there is no dissipation from
the singlet or triplet electronic states, when in reality, these
states will also be dephasing while the radical pair is converting
between them. This can be accounted for in the model with
the addition of the following Lindbladians

C C

C C

C C ,

x x

y y

z z

9 10

11 12

13 14

= =

= =

= = (12)

where σi are the Pauli operators and is the identity matrix.
The Lindbladians in eq 12 use the decay constant γdiss and are
padded with zeros to match the dimensionality of the shelving
states. Considering three different decay rates, the singlet yields
compared to the orientation angle between the radical pair and
external magnetic field are shown in Figure 4b, where the
classical solution is shown with solid lines and the IBM QASM
quantum simulation is shown as dots. Again, 8 qubits were
required, and 219 measurements were used for sampling, with
the relevant parameters listed in Supporting Information Table
S2.

The algorithm results are in good agreement with the
classical solution and demonstrate that greater dissipation rates
lead to less differentiation in singlet and triplet yields across a
range of orientation angles. Thus, the efficacy of the avian
compass is suppressed with increased dissipation. For both the
dissipation-free and dissipation models of the RPM, the SVD
algorithm accurately captures the dynamics in all tested
parameter regimes.

■ DISCUSSION AND CONCLUSIONS
Here, we demonstrate the success of the SVD-based algorithm
in capturing accurate long-time dynamics in two systems
pertinent to quantum biology. The two systems we consider
are the excitonic energy transport through 3- and 7-site models
of the FMO photosynthetic light-harvesting complex and the
RPM proposed for avian navigation under various rates of
dephasing. For both of these systems, we demonstrate the
ability to capture dynamics on a quantum simulator without
loss of accuracy in the long-time limits.

This approach involves the vectorization of the Lindblad
equation to retain the complete, and generally mixed, density
matrix at each step of the system’s evolution. This process has
a quadratic overhead in the system dimension, doubling the
size of the qubit space required for the simulation. While this is
costly, this approach is in contrast to utilizing the operator-sum
formulation, where knowledge of the time-dependent Kraus
maps is required or additional approximations are necessary.

The present approach does not rely on knowledge of the Kraus
maps, avoids solving the differential equation on the original
Hilbert space, and allows for direct simulation of the mixed-
state density matrix, albeit in unraveled form. When coupled
with this Liouville space representation, the SVD-based
algorithm allows for simulation of long-time dynamics in a
way that requires only sparse, diagonal operations over the
dilated (k + 1)-qubit space, along with unitary operations on
the original k-qubit space. While other methods to encode
nonunitary operators as unitary exist, such as the Sz.-Nagy
dilation, they generally produce operators which act on the
entirety of the dilated (k + 1)-qubit space without inherent
sparsity. In the present approach, after performing the classical
SVD, the dilated nonunitary component that spans the (k +
1)-qubit space is diagonal and can be implemented
efficiently.47

These results show progress toward using quantum
algorithms to predict and explore quantum phenomena in
biological processes; however, it should be noted that the
systems studied are beyond the scope of possible implementa-
tion on current NISQ computers, with resource estimates
discussed in the Supporting Information. The circuit complex-
ity is dominated by the implementation of the unitary
evolution components. While there are likely cases where the
SVD inherits exploitable symmetries from the original
operators, U and V †

may not retain this structure from
numerical calculation, resulting in dense operators in k-qubit
space. Along with using structured or analytically available
SVDs, techniques from unitary and Hamiltonian simulation
could broaden the scope of systems that can be practically
implemented on current NISQ hardware. Moreover, exploiting
symmetries and structure in the operators to minimize circuit
depth for this algorithm is an active area of ongoing research;
however, this challenge does not lessen the value of this
approach. Notably, the SVD-based algorithm introduces no
inherent limitation on the duration of a possible simulation,
which is a challenge for several quantum dynamics algorithms.
Here, we have demonstrated its success in capturing the
dynamics of an exciton in a light-harvesting antenna and spins
in a RPM, showing its promise for the accurate simulation of
long-time dynamics for quantum biological systems. The
efficacy of this algorithm could open up new pathways toward
the practical use of current quantum computers in predicting
biologically relevant quantum dynamics and steady states.
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