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A substantial number of “retrogenes” that are derived from the mRNA of various intron-containing genes have been reported. A
class ofmammalian retroposons, long interspersed element-1 (LINE1, L1), has been shown to be involved in the reverse transcription
of retrogenes (or processed pseudogenes) and non-autonomous short interspersed elements (SINEs). The 3-end sequences of
various SINEs originated froma corresponding LINE.As the 3-untranslated regions of several LINEs are essential for retroposition,
these LINEs presumably require “stringent” recognition of the 3-end sequence of the RNA template. However, the 3-ends of
mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 3-poly(A) repeats. Since the 3-poly(A) repeats
of L1 and Alu SINE are critical for their retroposition, L1 probably recognizes the poly(A) repeats, thereby mobilizing not only Alu
SINE but also cytosolic mRNA.Many flowering plants only harbor L1-clade LINEs and a significant number of SINEs with poly(A)
repeats, but no homology to the LINEs. Moreover, processed pseudogenes have also been found in flowering plants. I propose that
the ancestral L1-clade LINE in the common ancestor of green plants may have recognized a specific RNA template, with stringent
recognition then becoming relaxed during the course of plant evolution.

1. RNA-Mediated Gene Duplication
and Retroposons

1.1. Retrogenes and Processed Pseudogenes. Gene duplication
is a fundamental process of gene evolution [1]. There are two
types of gene duplication: direct duplication of genomicDNA
and retropositional events [2–4]. Processed pseudogenes
(PPs) are reverse-transcribed intronless cDNA copies of
mRNA that have been reinserted into the genome (Figure 1)
[5, 6]; they are especially abundant in mammalian genomes
[7, 8]. PPs are not usually transcribed because they lack an
external promoter; therefore, they have long been viewed
as evolutionary dead ends with little biological relevance.
However, recent studies have unveiled a substantial number
of “processed genes” or “retrogenes” with novel functions that
are derived from the mRNA of various intron-containing
genes [9–12]. Molecular biological studies showed that a
class of mammalian retroposons, long interspersed element-
1 (LINE1, L1), has been involved in the reverse transcription
of nonautonomous retroposons, such as PPs (retrogenes) and
short interspersed elements (SINEs) [13].

1.2. Retroposons. Eukaryotic genomes generally contain an
extraordinary number of retroposons such as long ter-
minal repeat (LTR) retrotransposons, LINEs or non-LTR
retrotransposons, and SINEs [6, 14, 15]. LINEs have been
characterized as autonomous retroposons bearing either one
or two open reading frames (ORFs); all LINEs encode a
reverse transcriptase (RT), and some, but not all, encode
an apurinic/apyrimidinic endonuclease, a ribonuclease H,
and/or putative nucleic-acid-binding motifs (Figure 2). Most
members of a LINE family are truncated at various positions
in their 5 regions, constituting defective members of the
family, the lengths of which range from 100 to 1,000 bp [13].

The Bombyx R2 LINE protein, which has sequence-
specific endonucleolytic and RT activity, makes a specific
nick in one of the DNA strands at the insertion site and
uses the 3 hydroxyl group that is exposed by this nick
to prime the reverse transcription of its RNA transcript
[16]. This mechanism is referred to as target DNA-primed
reverse transcription (TPRT). The last 250 nucleotides that
correspond to the 3-untranslated region (UTR) of the R2
transcript are critical for this reaction [17]. Other LINEs, such
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Figure 1: Schematic representation of the formation of a processed
pseudogene.
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Figure 2: Schematic representation of a SINE and a LINE that have
the same 3-end sequence. Three-dimensional protein structures
are taken from the L1-encoded ORF1 protein [94] and the reverse
transcriptase of human immunodeficiency virus type 1 [95].

as L1, are also believed to retrotranspose by TPRT [18]. The
human L1 TPRT machinery has been reconstructed in vitro
[19].

SINEs are non-autonomous retroposons, the 5-end
sequences of which are derived from tRNA, 5S rRNA, or
7SL RNA with promoter activity for RNA polymerase III
(Figure 2) [20–22]. On the other hand, the 3-end sequences
of SINEs generally originated from a corresponding LINE
[23]. A small nucleolar RNA-derived short retroposon, which
lacks internal promoters for RNA polymerase III and has
therefore not been subject to multiple rounds of retroposi-
tion, was recently discovered in the platypus [24].

1.3. Evolutionary Relationships of Various LINEs. Eickbush’s
group conducted comprehensive phylogenetic analysis of
LINEs using extended sequence alignment of their RT
domains [25]. All identified LINEs were grouped into 11
distinct clades. Assuming vertical descent, the phylogeny
suggests that LINEs are as old as eukaryotes, with each
of the 11 clades dating back approximately 2 billion years
[25]. Currently, almost 30 clades have been recognized [26].
Mammalian L1s belong to the L1 clade, which includes
numerous LINEs from vertebrates, slime mold, plants, and
algae [25, 27, 28]. Analyses of L1-encoded endonucleases from
zebrafish and mammals revealed that they are divided into
3 groups: M, F, and Tx1 [29]. Kordiš et al. showed that the
genomes of deuterostomes possess three highly divergent
groups of L1-clade LINEs, which are distinct from Tx group
[28]. The Tx group, with a target-specific insertion, consists
of 2 branches, one of which includes frog Tx1 [30].

1.4. SINEs and LINEs. The3-end sequences of various SINEs
originated from a corresponding LINE (Figure 2) [31]; for
reviews, see also [23, 32, 33]. A systematic database and liter-
ature survey identified 58 SINEs, each possessing a common
3-end sequence with its partner LINE (Table 1) [34]. For
example, Figure 3 shows the alignment of tobacco TS SINE
[35] with its partner LINE. This LINE, which was recently
identified in the potato genome, amember of the same family
as tobacco, belongs to the RTE clade. The 3-end sequence
of the SINE, approximately 100 bases, is nearly identical to
that of the LINE, and they both end in TTG repeats [34].
SINE/LINE pairs have been observed in a wide variety of
species, from eumetazoans to green plants, confirming the
generality of this phenomenon (Table 1). Although various
LINEs appear in the list, those from clades CR1 and RTEwere
particularly predominant.

Since the R2 LINE protein specifically recognizes the
sequence near the 3-end of the RNA transcript for the initi-
ation of first-strand synthesis [16, 17], the homology between
the 3-ends of SINEs and LINEs suggests that each SINE
family recruits the enzymatic machinery for retroposition
from the corresponding LINE through this common “tail”
sequence [31]. This hypothesis was strongly supported by
experiments with SINE sequences in the eel [36]. As the 3-
UTRs of several LINEs have been shown to be essential for
retroposition [17, 36–39], these LINEs presumably require
“stringent” recognition of the 3-end sequence of the RNA
template [32, 36].

Figure 4 illustrates the relationship between the number
of SINE/LINE pairs and the number of LINEs in each clade
[34]. Although Spearman’s rank correlation is not significant
(𝜌 = 0.25), the number of SINEs with a LINE tail is positively
correlated with the number of LINEs belonging to each clade
(𝑅2 = 0.83); that is, more LINEs tend to lead to more
SINE/LINE pairs. Therefore, although a few LINE clades are
the predominant source of SINE/LINE pairs, it is plausible
that this simply reflects the large number of LINEs in these
clades. However, L1-clade LINEs are the only prominent
exception to this. Although over 800 L1-clade LINEs appeared
in the database, only 3 SINEs with L1 tails were found [34],
suggesting that, in general, L1-clade LINEs are different from
other LINEs with regard to 3-end recognition.

1.5. Mechanism of RNA-Mediated Gene Duplication in Mam-
mals. Mammalian PPs and retrogenes were probably mobi-
lized by L1s because they end in poly(A), and have L1-type
target site duplications; they are inserted in L1-type endonu-
clease cleavage sites [40–42]. Molecular biological studies
have shown that mammalian L1-encoded proteins have been
involved in the reverse transcription of PPs [43, 44]. In the
same assay, another class of autonomous retroposons, LTR
retrotransposons (retroviral-like elements), were unable to
produce similar PP-like structures [43].

The 3-end sequences of mammalian L1 LINEs do not
exhibit any similarity to SINEs, except for the presence of
3-poly(A) repeats, although these L1s are thought to have
mediated the retroposition of mammalian SINEs such as pri-
mateAlu and rodent B1 families [45–47]. Since the 3-poly(A)
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Figure 3: Sequence comparison of tobacco TS SINE with its partner LINE. The entire sequence of the TS SINE was aligned with the 3-
end sequence (∼200 nucleotides) of a potato RTE-clade LINE. Dots and hyphens represent identical nucleotides and gaps, respectively. The
tRNA-related region of the SINE is underlined, with the promoter sequences for RNA pol III (A & B boxes) highlighted in red. Nucleotide
positions are shown on the right.
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Figure 4: Relationship between the number of SINE/LINE pairs
and the number of LINEs in each clade. The vertical axis shows the
number of SINEs with a LINE tail [34]. The horizontal axis shows
the number of LINEs belonging to each clade. The linear regression
line, determined by the least squares approach, is shown, except for
L1. 𝑅2 indicates the coefficient of determination. CR1-clade LINEs
(580 families) and L2-clade LINEs (10 families) were summed due
to their confusing nomenclature.

repeats of L1 and Alu are critical for their retroposition in
the HeLa cell line [46, 48, 49], L1 probably recognizes the
3-poly(A) repeats. Therefore, while mammalian L1s do not
require stringent recognition of the 3-end sequence of the
RNA templates, they are able to initiate reverse transcription
in a more “relaxed” manner [32].

L1-encoded proteins are cis-acting; that is, L1 proteins
preferentially mobilize or interact with the RNA molecule
that encoded them [43, 44]. However, L1 is also thought to
mobilize SINE RNAs and cytosolic mRNAs by recognizing
the 3-poly(A) tail of the template RNAs in trans, resulting

in enormous SINE amplification and PP formation [43,
50]. Given that the L1 retropositional machinery acts in a
cis-manner, Boeke [51] proposed the poly(A) connection
hypothesis to explain whyAlu RNA ismobilized by L1 at such
a high frequency.

Schmitz et al. discovered a novel class of retroposons that
lack poly(A) repeats in mammals. Termed tailless retropseu-
dogenes, they are derived from truncated tRNAs and tRNA-
related SINE RNAs [52]. To explain this phenomenon, they
proposed a novel variant mechanism, probably guided by the
L1 RT, in which neither the presence of a poly(A) tail on the
RNA template nor its length is important for retroposition.

2. Retroposition Burst in Ancestral Primates

Abundant PPs are a feature of mammalian genomes [7,
8]. Previously, my collaborators and I performed the first
comprehensive analysis of human PPs using all known
human genes as queries [50]. We found the possibility of
a nearly simultaneous burst of PP and Alu formation in
the genomes of ancestral primates. The human genome
was queried and 3,664 candidate PPs were identified; the
most abundant of which were copies of genes encoding
keratin 18, glyceraldehyde-3-phosphate dehydrogenase, and
ribosomal protein L21. A simple method was developed to
estimate the level of nucleotide substitutions (and therefore
the age) of the PPs. A Poisson-like age distribution was
obtained with a mean age close to that of the Alu repeats.
These data suggested a nearly simultaneous burst of PP
and Alu formation in the genomes of ancestral primates.
Similar results have been reported by other groups [53–
55]. The peak period of amplification of these 2 distinct
retroposons was estimated to be 40–50 million years ago
(mya) [50]; moreover, concordant amplification of certain L1
subfamilies with PPs and Alus was observed. We proposed
a possible mechanism to explain these observations in which
the proteins encoded bymembers of particular L1 subfamilies
acquired an enhanced ability to recognize cytosolic RNAs in
trans.

Roy-Engel’s group recently recreated and evaluated the
retroposition capabilities of two ancestral L1 elements, L1PA4
and L1PA8, which were active ∼18 and ∼40 mya, respectively
[56]. Relative to the modern L1PA1 subfamily, they found
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Table 1: Identification of SINE/LINE pairs [34].

SINE Species Promoter LINE tail Description of
SINE/LINE pair

Mammals
MIR (CORE-SINEs:
Ther-1, Mon-1) [97–99] All mammals tRNA L2 [15] [100]

CORE-SINEs (MIR3/Ther-2) [15, 99] Mammals tRNA L3 [101] [15, 34, 102]
CORE-SINEs
(Mar-1/MAR1 MD) [15, 99] Marsupials tRNA RTE-3 MD [15] [15, 34, 102]

MAR4
(MAR4 MD, WALLSI3) [15]

Opossum and wallaby,
Monodelphis domestica,

Macropus eugenii
(5-end of RTE) RTE-2 (MD, ME) [15] [15, 34]

RTESINE1 [15] Opossum,
Monodelphis domestica (5-end of RTE) RTE-1 MD [15] [34]

Ped-1 [103] Springhare,
Pedetes capensis (Rodentia) 5S rRNA BovB Pca [103] [103]

Ped-2 [103] Springhare,
Pedetes capensis (Rodentia) tRNA (ID SINE) BovB Pca [103] [103]

Bov-tA [104, 105] Ruminants tRNAGlu Bov-B [105, 106] [100, 104]
Bov-A2 [104, 105] Ruminants (5-end of BovB) Bov-B [105, 106] [104]
SINE2-1 EC [15] Horse, Equus caballus tRNA RTE-1 EC [15] [15, 34]
Afro SINEs
(AFRO LA, PSINE1) [15, 107] All Afrotherians tRNA RTE1 (LA, Pca) [15] [34, 103, 108]

RTE1-N1 LA [15] Elephant,
Loxodonta africana (5-end of RTE) RTE1 LA [15] [15]

SINE2-1 Pca [15] Hyrax, Procavia capensis tRNA RTE1 Pca [15] [15]
Birds and Reptiles

TguSINE1 [15] Zebra finch,
Taeniopygia guttata tRNAIle CR1-X [15] [15]

Tortoise Pol III/SINE [31, 109–111] Tortoises and turtles,
Cryptodira tRNALys PsCR1 [112] [31, 113]

Sauria SINE [114, 115] Lizard, Anolis carolinensis tRNA Anolis Bov-B [114] [114]
Anolis SINE 2 [115] Lizard, Anolis carolinensis (Box A & B) Anolis LINE 2 [115] [115]
SINE2-1B Acar/
SINE2-1 Acar [15] Lizard, Anolis carolinensis tRNA Vingi-2 Acar [116] [15, 34]

Amphibians

V-SINEs (SINE2-1 XT) [15] Frog, Xenopus (Silurana)
tropicalis tRNA L2-4 XT

(L2-3, L2-6, L2-2) [15] [15, 34]

CORE-SINEs (MIR Xt) [15] Frog, Xenopus (Silurana)
tropicalis tRNA L2-5 XT [15] [34]

Fish

Sma I [117, 118] Chum and pink salmon,
Oncorhynchus tRNALys SalL2 [23] [23, 31, 32]

Fok I [118] Charr, Salvelinus tRNALys SalL2 [23] [23, 31, 32]
SlmI [119] All salmonids, Salmonidae tRNALeu RSg-1 [120] [119]
CORE-SINEs (Hpa I) [102, 118] All salmonids, Salmonidae tRNA RSg-1 [120] [31]
CORE-SINEs
(AFC, SINE2-1 AFC) [102, 121, 122] Cichlid fish, Cichlidae tRNA CiLINE2 [121] [121]

CORE-SINEs
(UnaSINE1, UnaSINE2) [123] Eel, Anguilla japonica tRNA UnaL2 [36, 123] [36, 123]

HAmo SINE [124] Carp, Cyprinidae tRNA HAmoL2 [124] [124]
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Table 1: Continued.

SINE Species Promoter LINE tail Description of
SINE/LINE pair

DeuSINEs
(AmnSINE1, SINE3) [21, 125] Mammals, chicken,

zebrafish, catfish 5S rRNA CR1-4 DR (CR1-7,
CR1-9, CR1-13) [15] [21, 34, 125]

DeuSINEs
(LmeSINE1, SacSINE1) [125]

Coelacanth and dogfish
shark,

Latimeria menadoensis,
Squalus acanthias

tRNA CR1-4 DR-like [15] [125]

DeuSINEs (OS-SINE1) [119, 125] Salmon and trout,
Oncorhynchus, Salmo 5S rRNA RSg-1 [120] [125]

V-SINEs (HE1) [126, 127]
Sharks and rays,

M. manazo, S. torazame,
H. japonicus, T. californica

tRNA HER1 [126] [126]

V-SINEs (DANA) [127–129] Zebrafish, Danio rerio tRNA CR1-3DR/ZfL3 [15, 127] [127]

V-SINEs (Lun1) [127] Lungfish,
Lepidosiren paradoxa tRNA LfR1 [127] [127]

SINEX-1 CM/SINE2-1 CM [130] Elephant shark,
Callorhinchus milii tRNA CR1-2 CM DQ524334 [34, 130]

Chordates

DeuSINEs (BflSINE1) [125] Amphioxus,
Branchiostoma floridae tRNA Crack-16 BF [15] [34]

Deuterostomes

SURF1/SINE2-4c SP [15, 131]
Sea urchin,

Strongylocentrotus
purpuratus

tRNA CR1-4 SP [15] [34]

DeuSINEs (SINE2-3 SP) [15, 125]
Sea urchin,

Strongylocentrotus
purpuratus

tRNA CR1Y SP
(CR1X SP) [15] [15, 34]

SINE2-8 SP
(SINE2-6, SINE2-4b) [15]

Sea urchin,
Strongylocentrotus

purpuratus
tRNA L2-1 SP/CR1-3 SP [15] [34]

Protostomes

Gecko [132] Mosquito, Aedes aegypti tRNA

I-74 AAe (MosquI,
I-58, I-59, I-62,

I-64,
I Ele10, 14, 35, 37)

[15, 133] [34, 132]

Eumetazoans

Nve-Nin-DC-SINE-1 (∗1) [134] Sea anemone,
Nematostella vectensis tRNA L2-22 NV [15] [134]

Nve-Nin-DC-SINE-2 (∗1) [134] Sea anemone,
Nematostella vectensis tRNA CR1-5 NV [15] [134]

Nve-Nin-DC-SINE-3 (∗1) [134] Sea anemone,
Nematostella vectensis tRNA CR1-15 NV [15] [134]

SINE2-1 NV [15] Sea anemone,
Nematostella vectensis tRNA CR1-16 NV [15] [34]

SINE2-5 NV [15] Sea anemone,
Nematostella vectensis tRNA Rex1-24 NV [15] [34]

Fungi

Mg-SINE [135] Rice blast fungus,
Magnaporthe grisea tRNA MgL/MGR583 AF018033 [32, 34]

SINE2-1 BG [15] Powdery mildew fungus,
Blumeria graminis tRNA Tad1-24 BG

(HaTad1-3, 1-5) [15] [34]
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Table 1: Continued.

SINE Species Promoter LINE tail Description of
SINE/LINE pair

Amoebozoa
EdSINE1 (SINE-lile) [136] Amoeba, Entamoeba dispar Unknown R4-1 ED [15] [34]
R4-N1 ED (SINE-lile) [15] Amoeba, Entamoeba dispar Unknown R4-1 ED [15] [34]

EhLSINE1/ehapt2 (SINE-lile) [137, 138] Amoeba,
Entamoeba histolytica Unknown EhLINE1/EhRLE1 [30, 137] [137]

EhLSINE2 (SINE-like) [137] Amoeba,
Entamoeba histolytica Unknown EhLINE2/EhRLE3 [30, 137] [137]

Land plants

TS [35] Tobacco,
Nicotiana tabacum tRNA RTE-1 Stu [15] [34]

ZmSINE2/SINE2 SBi [66] Maize, Zea mays;
Sorghum, Sorghum bicolor tRNA LINE1-1 ZM [15] [34, 66]

ZmSINE3 [66] Maize, Zea mays tRNA LINE1-1 ZM [15] [66]
Green algae

SINEX-1 CR [15, 83] Chlamydomonas reinhardtii Unknown RandI-2/
DualenCr3 [15, 139] [34, 83]

SINEX-2 CR [15, 83] Chlamydomonas reinhardtii Unknown RandI-2 (RandI-3) [15, 139] [83]
SINEX-3 CR [15, 83] Chlamydomonas reinhardtii tRNA L1-1 CR [15] [15, 83]
SINEX-4 CR [15, 83] Chlamydomonas reinhardtii Unknown RandI-2 (RandI-3) [15, 139] [34, 83]
SINEX-5 CR/SINEX-6 CR [83] Chlamydomonas reinhardtii tRNA RandI-5 [15] [83]
(∗1) Subfamilies.

that both elements were similarly active in a cell culture
retroposition assay in the HeLa cell line, and both were
able to efficiently trans-mobilize Alu elements from several
subfamilies. They found limited evidence of differential
associations between Alu and L1 subfamilies, suggesting
that other factors are likely the primary mediators of their
changing interactions over evolutionary time. Population
dynamics and stochastic variation in the number of active
source elements likely played an important role in individual
LINE or SINE subfamily amplification [56]. If coevolution
also contributed to changing retroposition rates and the
progression of subfamilies, cell factors were likely to play an
important mediating role in changing LINE-SINE interac-
tions over evolutionary time.

We hypothesized that many human retrogenes were
created during this period and that such retrogenes were
involved in generating new characteristics specific to simian
primates [50]. Several intriguing examples of primate retro-
genes have been reported, for example, the human brain-
specific isotype of the glutamate dehydrogenase (GLUD2)
gene [57], the brain- and testis-specific CDC14Bretro gene,
which evolved from the CDC14B cell cycle gene [58], and
a novel chimeric retrogene (PIPSL) created by a unique
mechanism [59–61], emerged by retroposition in a hominoid
ancestor [54, 55, 62–65].

3. A Primate Retrogene That Was Created by
a Novel Mechanism

3.1. Gene Creation by the Coupling of Gene Duplication and
Domain Assembly. Most new genes arise by the duplication
of existing gene structures, after which, relaxed selection on
the new copy frequently leads to mutational inactivation of

the duplicate; only rarely will a new gene with a modified
function emerge. My collaborators and I described a unique
mechanism of gene creation, whereby new combinations of
functional domains are assembled at the RNA level from
distinct genes, and the resulting chimera is then reverse-
transcribed and integrated into the genome by the L1
retrotransposon [59]. We characterized a novel gene, which
we termed PIP5K1A and PSMD4-like (PIPSL), created by
this mechanism from an intergenic transcript between the
phosphatidylinositol-4-phosphate 5-kinase (PIP5K1A) and
the 26S proteasome subunit (PSMD4) genes in a homi-
noid ancestor. PIPSL is transcribed specifically in the testis
of humans and chimpanzees and is posttranscriptionally
repressed by independent mechanisms in these primate lin-
eages.The PIPSL gene encodes a chimeric protein combining
the lipid kinase domain of PIP5K1A and the ubiquitin-
bindingmotifs of PSMD4. Strong positive selection on PIPSL
led to its rapid divergence from the parental genes, forming
a chimeric protein with distinct cellular localization and
minimal lipid kinase activity, but significant affinity for cel-
lular ubiquitinated proteins [59]. PIPSL is a tightly regulated,
testis-specific novel ubiquitin-binding protein formed by an
unusual exon-shuffling mechanism in hominoid primates
and represents a key example of the rapid evolution of a testis-
specific gene.

3.2. Evolutionary Fate of Primate PIPSL. Domain shuffling
has provided extraordinarily diverse functions to proteins;
nevertheless, how newly combined domains are coordinated
to create novel functions remains a fundamental question of
genetic and phenotypic evolution. My group presented the
first evidence for the translation of PIPSL in humans [61].The
human PIPSL locus showed low nucleotide diversity within 11
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Table 2: 3-Repeats of plant SINE families [34].

SINE Species 3-Repeat LINE tail Reference for SINEs
Green algae

SINEX-1 CR Chlamydomonas reinhardtii (ATT)𝑛 RandI-2/DualenCr3 [83]
SINEX-2 CR Chlamydomonas reinhardtii (CTTT)𝑛 RandI-2 (RandI-3) [83]
SINEX-3 CR Chlamydomonas reinhardtii (A)𝑛 L1-1 CR [83]
SINEX-4 CR Chlamydomonas reinhardtii (ATT)𝑛 RandI-2 (RandI-3) [83]
SINEX-5 CR/SINEX-6 CR Chlamydomonas reinhardtii (ATT)𝑛 RandI-5 [83]

Seed plants
Au Angiosperms and a gymnosperm (T)2–5 Nd [76–79]
ZmSINE1 (Au-like) Zea mays (T)𝑛 Nd [66]
SINE2-1 ZM (Au-like) Zea mays (T)3 Nd [15]
SINE-5 Mad (Au-like) Malus x domestica (T)3 Nd [15]

Monocots
p-SINE1 Oryza sativa (T)𝑛 Nd [74]
p-SINE2 Oryza sativa (T)𝑛 Nd [75]
p-SINE3 Oryza sativa (T)𝑛 Nd [75]
ZmSINE2.1∗/SINE2-1a SBi Zea mays, Sorghum bicolor (T)𝑛 LINE1-1 ZM [15, 66]
ZmSINE2.2∗ Zea mays (T)𝑛 LINE1-1 ZM [66]
ZmSINE2.3∗ Zea mays (T)𝑛 LINE1-1 ZM [66]
SINE2-1 SBi (ZmSINE2-like) Sorghum bicolor (T)𝑛 LINE1-1 ZM [15]
SINE2-1c SBi (ZmSINE2-like) Sorghum bicolor (T)𝑛 LINE1-1 ZM [15]
ZmSINE3 Zea mays (A)𝑛 LINE1-1 ZM [66]
OsSN1/F524 Oryza sativa (A)𝑛 Nd [140]
OsSN2/SINE2-12 SBi Oryza sativa, Sorghum bicolor (A)𝑛 Nd [15, 140]
OsSN3 Oryza sativa (A)𝑛 Nd [140]
SINE9 OS/SINE2-11 SBi (OsSN-like) Oryza sativa, Sorghum bicolor (A)𝑛 Nd [15]

Eudicots
TS Nicotiana tabacum (TTG)𝑛 RTE-1 STu [35]
SB1-15 (S1/AtSN/RAthE/BoS) Arabidopsis thaliana, Brassicaceae (Cruciferae) (A)𝑛 Nd [68, 69, 141–144]
LJ SINE-1 Lotus japonicus (A)𝑛 Nd [145]
LJ SINE-2 Lotus japonicus (A)𝑛 Nd [145]
LJ SINE-3 Lotus japonicus (A)𝑛 Nd [145]
MT SINE-1 Medicago truncatula (A)𝑛 Nd [145]
MT SINE-2 Medicago truncatula (A)𝑛 Nd [145]
MT SINE-3 Medicago truncatula (A)𝑛 Nd [145]
SINE-1 Mad Malus x domestica (A)𝑛 Nd [15]
SINE-2 Mad Malus x domestica (A)𝑛 Nd [15]
SINE-4 Mad Malus x domestica (A)𝑛 Nd [15]
SINE2-1 PTr Populus trichocarpa (A)𝑛 Nd [15]
SINE2-2 PTr Populus trichocarpa (A)𝑛 Nd [15]
∗

subfamilies. Nd: no data.

populations (125 individuals) compared with other genomic
regions, such as introns and overall chromosomes. It was
equivalent to the average for the coding sequences or exons
from other genes, suggesting that human PIPSL has some
function and is conserved among modern populations. Two
linked amino acid-altering single-nucleotide polymorphisms
were found in the PIPSL kinase domain of non-African pop-
ulations. They are positioned in the vicinity of the substrate-
binding cavity of the parental PIP5K1A protein and change
the charge of both residues. The relatively rapid expansion of

this haplotype might indicate a selective advantage for it in
modern humans [61].

We determined the evolutionary fate of PIPSL domains
created by domain shuffling [61]. During hominoid diver-
sification, the S5a/PSMD4-derived domain was retained in
all lineages, whereas ubiquitin-interacting motif (UIM) 1 in
the domain experienced critical amino acid replacements
at an early stage, being conserved under subsequent high
levels of nonsynonymous substitutions to UIM2 and other
domains, suggesting that adaptive evolution diversified these
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Table 3: 3-Repeats of plant LINE families [34].

Species LINE clade Families 3-Repeat
(A)𝑛 Other repeats None

Flowering plants L1 233 224 0 9
RTE 7 0 7

∗b 0
L1 15 2

∗a
8
∗c 5

Green algae RandI 8 0 8
∗d 0

RTEX 6 0 6
∗e 0

∗aL1-1 CR (Chlamydomonas), Zepp (Chlorella).
∗b(TTG)𝑛, (TTGATG)𝑛.
∗c(CATA)𝑛, (CA)𝑛, (CAA)𝑛, (TAA)𝑛.
∗d(ATT)𝑛, (CTATTT)𝑛.
∗e(CA)𝑛, (CAA)𝑛, (CCAT)𝑛, (ACAATG)𝑛, (CTTGTAA)𝑛.

functional compartments (Figure 5) [61]. Conversely, the
PIP5K1A-derived domain is degenerated in gibbons and
gorillas. These observations provide a possible scheme of
domain shuffling in which the combined parental domains
are not tightly linked in the novel chimeric protein, allowing
for changes in their functional roles, leading to their fine-
tuning. Selective pressure toward a novel function initially
acted on one domain, whereas the other experienced a nearly
neutral state. Over time, the latter also gained a new function
or was degenerated.

4. RNA-Mediated Gene Duplication in
Land Plants

The SINE/LINE relationship in land plants is controversial.
The first SINE/LINE pair of land plants was reported recently
in maize [66]. However, the three tRNA-derived SINE fam-
ilies in Arabidopsis thaliana do not exhibit any similarity
to the only LINE family (ATLN) in its genome [67–69].
Deragon’s group proposed that the SINE-LINE relationship
in Arabidopsis is not based on primary sequence identity but
on the presence of a common poly(A) region [68].

I systematically analyzed the increasing wealth of
genomic data to elucidate the SINE/LINE relationships in
eukaryotic genomes, especially plants [34]. I proposed that
the ancestral L1-clade LINE in the common ancestor of green
plants may have used stringent RNA recognition to initiate
reverse transcription. During the course of plant evolution,
specific recognition of the RNA template may have been lost
in a plant L1 lineage, as in mammals.

4.1. L1-Clade LINEs Are Predominant in the Genomes of
Flowering Plants. Figure 6 represents the number of LINEs
belonging to each LINE clade according to biological taxa
[34]. The L1 clade is the largest of all the clades, with L1-
clade LINEs being predominant in mammals and land plants
(mainly flowering plants). The genomes of flowering plants
harbor almost exclusively L1-clade LINEs (RTE-clade LINEs
are also found in several species).

While a significant number of SINEs, more than half
of which end in poly(A) repeats, have been identified in
the genomes of flowering plants (Table 2) [34], only three

SINE/LINE pairs have been discovered in their genomes, that
is, maize ZmSINE2 and ZmSINE3 [66] and tobacco TS SINE
[34]. Interestingly, many PPs have been reported in flowering
plants [11, 70–73]. Since mammalian L1s are thought to
recognize the 3-poly(A) tail of RNA when forming PPs [43],
it is possible that the plant LINE machinery is similar to
that of mammalian L1s [68]; that is, plant L1-clade LINEs
presumably recognize the 3-poly(A) tail of RNA, thereby
mobilizing SINEs with a poly(A) tail and mRNA.

In accordance with this hypothesis, almost all L1-clade
LINEs in flowering plants end in poly(A) repeats, while all
RTE-clade LINEs end in (TTG)n or (TTGATG)n (Table 3)
[34]. As for the exceptional cases of p-SINEs [74, 75] and
Au-like SINEs [76–79], which end in poly(T) tracts (or a
short stretch of T), it is possible that they are mobilized by
unidentified partner LINEs that recognize a poly(U) repeat
of RNA at the 3-terminus.

4.2. Plant L1-Clade LINEs Consist of 3 Deeply Branching Lin-
eages That Have Descended from the Common Ancestor of
Monocots and Eudicots. Comprehensive phylogenetic analy-
sis of L1-clade LINEs revealed three important points [34].
First, L1-clade LINEs from distinct taxa (i.e., land plants,
green algae, and vertebrates) formed monophyletic groups.
Statistical support for the monophyly of land plants and
green algae was high, with bootstrap values of 100/82 and
97/83 (NJ/ML methods), respectively. The monophyly of
vertebrate F and M lineages was not supported by the
ML method. Second, the L1 lineages from these three taxa
formed a monophyletic group (55/45; NJ/ML methods)
among diverged LINE clades such as RTE and CR1. The Tx1
LINE, with a target-specific insertion, was also found in this
clade, as observed in previous studies [26, 29, 30]. The Tx1
and vertebrate F lineage formed a monophyletic group with
high confidence (94/85).Third, comparisonwith species phy-
logeny revealed that plant L1-clade LINEs consist of at least
three deeply branching lineages that have descended from
the common ancestor of monocots and eudicots (ME1–3).
These 3 lineages must have arisen more than 130 mya, which
is the approximate divergence ofmonocots and eudicots [80].
The history of plant L1 lineages is therefore reminiscent of
that of vertebrate L1-clade LINEs, which are divided into
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Figure 5: Molecular phylogeny and pattern of nucleotide substitutions of the S5a-derived region of PIPSL from all hominoid lineages [61].
The branches are drawn in proportion to the number of substitutions, with nonsynonymous (n) and synonymous (s) substitutions shown
above each branch (n : s). An ancestral PIPSL lineage (indicated by bold lines) gradually accumulated 19 nonsynonymous and 2 synonymous
substitutions. Since the split from the ancestral lineage, all the respective lineages have accumulated synonymous substitutions, except for
gibbons, which still have a high n : s ratio (17 : 2).
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Figure 6: The number of LINE families belonging to each LINE
clade according to biological taxa [34]. LINE clades in which the
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flowering plants.

several ancestral lineages (M and F/Tx1), one of which leads
to mammalian L1s [28, 29].

4.3. A Conserved 3-End Sequence with a Solid RNA Structure,
as in Maize and Sorghum SINEs, Observed in One Plant
L1 Lineage. One monocot L1 lineage (monocot 1a in ME1)
consisted of a large number of L1-clade LINEs that were
identified mainly in the recently released maize and sorghum

genomes. Moreover, one group of LINEs in this lineage
retained a conserved 3-end sequence [34]. The average
pairwise divergence of this region (the last 45 nucleotides)
among the LINEs was only 0.144 (standard error (SE), 0.043),
whereas that for the entire sequence was 0.570 (SE, 0.012).
Interestingly, maize SINEs (ZmSINE2 and ZmSINE3) with
3-end sequences very similar to that of a LINE belonging
to this group, LINE1-1 ZM, were reported recently [66]. I
further revealed that several sorghum SINEs also possess
similar 3-end sequences [34]. Comparisons of the 3-end
sequences from these SINEs and LINEs revealed that part
of the sequence (∼50 nucleotides) is apparently related;
presumably they were derived from a common ancestral L1
sequence (Figure 7) [34].

Furthermore, the putative transcript from this region
forms a putative hairpin structure (Figure 8) [34]. Com-
pensatory mutations were observed in the stem-forming
sequences, confirming a secondary structure. Several nucle-
otides were strongly conserved in the 3-flanking region of
the stem (5-CGAG-3) and in the loop (5-UCU-3), though
the stem-forming nucleotides were variable. This stem-loop
structure is commonly observed in the 3-end sequences of
LINEs and SINEs of the stringent type [38, 81, 82]. These
results strongly suggest that, at least in this lineage, plant
LINEs require a particular 3-end sequence of the stringent
type.

4.4. Origin of Stringent and Relaxed 3-End Recognition of
Plant L1-Clade LINEs. The last example of a SINE/LINE pair
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|||||||||||||| || ||| ||||| ||||||| |

| || || ||||| ||| || || | || || | |

| ||||| || |||||| |||||||||||||||

CTATTTTAGACCTTTTTTTCT-CTTCTYTTAATATAATG---ATACGCAG---CTCTCCTGCGTGTTCGAGAAAAAAAAA-3

CTATTTTAGACCTTATTATCTCCTTCT--TAATATATTT--AAGGCGCAG---TTCCCCTGCGCTTTCGAGAAAAAAAAAA-3
|||||| ||| |||||

GGCCTGGGTGAGAAGGTACCTTCTTCT--TAATAYAATRCCCGGGGGCNGTCTTWCCCCTCCSCGGTCGAGTTT-3

Monocot 1a

LINE1-1 ZM

SINE2 consensus

Figure 7: Sequence comparisons of the 3-end sequences of L1-clade LINEs andmonocot SINE families.The 3-end sequences of themonocot
1a (consensus), LINE1-1 ZM, and SINE2 (consensus) were aligned [34]. Vertical lines and hyphens represent identical nucleotides and gaps,
respectively. A conserved region between the LINEs and SINEs is boxed. R: A/G, Y: C/T, S: C/G, W:A/T, N: any nucleotide.
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Figure 8: Secondary structure models for the 3-end sequences of L1s and monocot SINEs. The putative transcripts form putative hairpin
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free energy levels were −10.8 or −12.6 (kcal/mol) for L1s (monocot 1a and LINE1-1, resp.) and (−12.5)–(−13.7) for SINEs (ZmSINE2.3: −15.4
and SINE2-1c: −17.7). The structures were deduced using mfold [96].

in the L1-cladewas found in a green alga.The 3-end sequence
(∼80 nucleotides) of Chlamydomonas SINEX-3 CR [83] was
very similar to that of L1-1 CR, both ending in poly(A) repeats
[34]. Since land plants emerged from green algae [84], the
following mechanism is proposed for the 3-end recognition
of plant L1-clade LINEs (Figure 9).

It is possible that the ancestral L1-clade LINE in the
genome of the common ancestor of green plants possessed
stringent, nonmammalian-type RNA recognition properties.
During the course of plant evolution, an L1 lineage then
lost the ability to recognize specifically the RNA template
for reverse transcription, thereby introducing relaxed 3-end
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Figure 9: Proposed model for the 3-end recognition of L1-
clade LINEs. The ancestral L1-clade LINE in the ancestral green
plant possessed a stringent, nonmammalian-type RNA recognition
property. During the course of plant evolution, an L1 lineage lost
the ability to recognize specifically the RNA template for reverse
transcription, thereby introducing relaxed 3-end recognition in
land plants. ME1–3: plant L1 lineages; M, F: vertebrate L1 lineages.

recognition in land (flowering) plants as well as in mammals.
This model assumes that rigid sequence specificity was an
ancestral state, although the timing of its loss might be
subject to debate. Since horizontal transfer of LINEs between
eukaryotes is rare [25, 85–87], the discontinuous distribution
of L1-clade LINEs with low specificity (i.e., mammalian L1s
and plant ME2/ME3) suggests a type of parallel evolution.

The ancestral L1-clade LINE might have required the 3-
end sequence and the terminal poly(A) repeats. A few L1
lineages might then have lost their specific interaction with
the 3-UTR of the template RNA, retaining some role for the
3-repeats. As shown in Table 3, most plant L1-clade LINEs,
as well as mammalian L1s, have poly(A) repeats at their
3-termini; however, 3-poly(A) repeats are not necessarily
a hallmark of relaxed 3-end recognition. For example,
although silkworm SART1, an R1-clade LINE, uses stringent-
type recognition (its 3-UTR is essential for retroposition)
it ends in poly(A) repeats [37, 38], which are necessary for
efficient and accurate retroposition [38]. Other LINEs end
in repeating units other than poly(A); for example, the I
element (I clade) ends in TAA repeats [88], while UnaL2 (L2)
ends in TGTAA repeats, which are likely involved in template
slippage during reverse transcription [36].

Alternatively, the ancestral L1-clade LINE may have pos-
sessed relaxed, mammalian-type RNA recognition proper-
ties. During the course of plant evolution, the L1 lineages
of land plants (ME1) and green algae might then have
gained specific stringent-type recognition of the RNA tem-
plate. However, it is difficult to imagine that the molecular
machinery for rigid sequence specificity, such as the partic-
ular conformation of the RNA-binding domain, has arisen
independently under reduced constraints.

In vivo retroposition assays have been developed for
several LINEs [36, 37, 39, 48]. Using such systems, it will
be possible to verify these 2 models by evaluating the

dispensability of the 3-end sequence or poly(A) repeats in
newly characterized L1 lineages such as plant ME1 and fish F.

5. Concluding Remarks

L1 LINEs have contributed significantly to the architecture
and evolution of mammalian genomes, whereas LTR retro-
transposons are overwhelmingly found in certain flowering
plants. Understanding the independent origins of flexible 3-
end recognition may help us to determine what distinguishes
the fate of a retroposon in the eukaryotic genome and why it
has succeeded so well in certain genomes [89–93].
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