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Abstract

Detecting regular patterns in the environment, a process known as statistical learning, is

essential for survival. Neuronal adaptation is a key mechanism in the detection of patterns

that are continuously repeated across short (seconds to minutes) temporal windows. Here,

we found in mice that a subcortical structure in the auditory midbrain was sensitive to pat-

terns that were repeated discontinuously, in a temporally sparse manner, across windows of

minutes to hours. Using a combination of behavioral, electrophysiological, and molecular

approaches, we found changes in neuronal response gain that varied in mechanism with

the degree of sound predictability and resulted in changes in frequency coding. Analysis of

population activity (structural tuning) revealed an increase in frequency classification accu-

racy in the context of increased overlap in responses across frequencies. The increase in

accuracy and overlap was paralleled at the behavioral level in an increase in generalization

in the absence of diminished discrimination. Gain modulation was accompanied by changes

in gene and protein expression, indicative of long-term plasticity. Physiological changes

were largely independent of corticofugal feedback, and no changes were seen in upstream

cochlear nucleus responses, suggesting a key role of the auditory midbrain in sensory gat-

ing. Subsequent behavior demonstrated learning of predictable and random patterns and

their importance in auditory conditioning. Using longer timescales than previously explored,

the combined data show that the auditory midbrain codes statistical learning of temporally

sparse patterns, a process that is critical for the detection of relevant stimuli in the constant

soundscape that the animal navigates through.

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005114 July 26, 2018 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Cruces-Solı́s H, Jing Z, Babaev O, Rubin

J, Gür B, Krueger-Burg D, et al. (2018) Auditory

midbrain coding of statistical learning that results

from discontinuous sensory stimulation. PLoS Biol

16(7): e2005114. https://doi.org/10.1371/journal.

pbio.2005114

Academic Editor: David Poeppel, New York

University, United States of America

Received: December 13, 2017

Accepted: June 21, 2018

Published: July 26, 2018

Copyright: © 2018 Cruces-Solı́s et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: Deutsche Forschungsgemeinschaft,

Collaborative Research Center (grant number 889).

The funder had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pbio.2005114
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2005114&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2005114&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2005114&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2005114&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2005114&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2005114&domain=pdf&date_stamp=2018-07-26
https://doi.org/10.1371/journal.pbio.2005114
https://doi.org/10.1371/journal.pbio.2005114
http://creativecommons.org/licenses/by/4.0/


Author summary

Some things are learned simply because they are there and not because they are relevant at

that moment in time. This is particularly true of surrounding sounds, which we process

automatically and continuously, detecting their repetitive patterns or singularities. Learn-

ing about rewards and punishment is typically attributed to cortical structures in the brain

and known to occur over long time windows. Learning of surrounding regularities, on the

other hand, is attributed to subcortical structures and has been shown to occur in seconds.

The brain can, however, also detect the regularity in sounds that are discontinuously

repeated across intervals of minutes and hours. For example, we learn to identify people

by the sound of their steps through an unconscious process involving repeated but iso-

lated exposures to the coappearance of sound and person. Here, we show that a subcorti-

cal structure, the auditory midbrain, can code such temporally spread regularities.

Neurons in the auditory midbrain changed their response pattern in mice that heard a

fixed tone whenever they went into one room in the environment they lived in. Learning

of temporally spread sound patterns can, therefore, occur in subcortical structures.

Introduction

As we interact with the environment, our brain is constantly detecting patterns—i.e., regulari-

ties—in the sensory world. This capacity allows us to recognize surrounding stimuli and make

predictions necessary for survival. Patterns in the sensory input are extracted through a pro-

cess known as statistical learning [1]. Regularities in the continuous sensory input that fit rela-

tively short windows, in the order of seconds to tens of seconds, can be encoded through

neuronal adaptation of response gain in both subcortical and cortical structures [2–4]. How-

ever, little is known about the circuits that code patterns that are temporally sparse, i.e., when

the regularity is repeated discontinuously across time windows of minutes and hours. Statisti-

cal learning of sparse patterns is important for grammatical learning or musical sensitivity in

humans [5,6], both of which are achieved through exposures that occur across days to years.

This type of learning is likely to involve long-term plasticity mechanisms, different from neu-

ronal adaptation.

Changes in neuronal response gain that reflect fast adaptation are ubiquitous in the audi-

tory cortex (AC) [2,7,8] but can also be found in the inferior colliculus, a subcortical midbrain

structure that is the first convergence station in the auditory circuit [9]. For example, stimulus

probability selectivity [3,4,10,11], as well as some forms of response selectivity to natural

sounds [12–14], is observed in some divisions of the inferior colliculus [4]. Correlations

between inferior colliculus activity and temporal patterns, such as speech or rhythmic tapping,

have also been described in humans [11,12]. We hypothesized that neuronal correlates of sta-

tistical learning of temporally sparse patterns can also be found in the inferior colliculus.

The context can be a strong predictor of the soundscape. In real life, as animals move

through the environment, they can reencounter the same context and its characteristic sounds

in temporally spread bouts. Here, in order to understand the neuronal coding of temporally

sparse patterns in the sensory input, we used context–sound associations as stimuli. Thus, we

set out to specifically test (1) whether mice can detect temporally sparse context–sound associ-

ations and (2) whether this detection triggers changes in the response patterns of neurons in

the inferior colliculus.

To recreate a natural environment while maintaining control over the experimental vari-

ables, we used the Audiobox—a socially, acoustically, and behaviorally enriched environment
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in which mice lived in groups for up to 2 weeks [15]. Mice were exposed to sounds that were

associated with the context, with different degrees of predictability. The consequence of this

exposure was assessed at the behavioral, electrophysiological, and molecular levels. First, we

measured the effect that temporally sparse sound exposure had on the response gain of collicu-

lar neurons by simultaneously measuring evoked responses across different frequency bands.

We subsequently assessed the effect these changes had on frequency coding and discrimina-

tion before testing how physiological changes in sensory gating paralleled behavioral generali-

zation measures. We then confirmed that plasticity-associated changes in gene and protein

expression had taken place. Since conditioning-triggered midbrain plasticity can depend on

corticofugal input [16], we tested the dependence of the observed changes on cortical feedback.

Finally, to ascertain the origin of changes in the activity of inferior colliculus neurons, we

assessed the effect that sound exposure had on upstream and downstream structures.

Results

We first established a naturalistic behavioral setting to study the learning of sparse context–

sound associations. All mice used in these series of experiments were exposed to sounds in the

Audiobox (Fig 1A), where mice lived in groups of 8–10 individuals for 6–12 days. Food and

water could be found ad libitum at opposite ends of the apparatus. Water was available in a

specialized corner separated from the food area by a corridor. We designed an experimental

paradigm of auditory statistical learning with different degrees of predictability of sound expo-

sure. Three groups of mice were tested, a “predictable” group, a “random” group, and a control

group. The mice in the predictable group heard a fixed pure tone of 16 kHz every time they vis-

ited the water corner (Fig 1A, center). This sound was presented in pips for the duration of the

visit, independently of whether the mice nose-poked and drank or not (Fig 1B, top). The

sound was fully predictable, for it was triggered by the animal itself. In the random group,

mice heard the same pure tone randomly in the food area (Fig 1A, right). This tone was trig-

gered in a yoke control design by a mouse living in a different Audiobox whenever she entered

the water corner. Thus, sound presentation had the same temporal pattern as in the predictable

group, both in terms of time of appearance (mainly in the dark cycle) and typical duration

(corresponding to water corner visits’ length), but was not predictable (Fig 1B, bottom). A con-

trol group of mice lived in the Audiobox for the same length of time as mice in the two other

groups. They heard the background sounds intrinsic to the environment and their own move-

ments, such as opening of the sliding doors upon nose-poke; but, unlike mice in the predict-

able and random groups, they heard no sounds that came out of a speaker (Fig 1A, left). Sound

exposure was temporally sparse, with bouts of sound presentation typically separated by over 5

minutes (Fig 1C) and lasting less than 15 seconds (S1A Fig). These three different modes of

sound exposure had no effect on the animal’s behavior (Fig 1D and 1E), consistent with the

fact that the sounds did not trigger explicit reward or punishment. The daily time spent in the

water corner was comparable across groups (Fig 1D). In all groups, more than 60% of this

time was spent without nose-poking for water (Fig 1E), and over 25% of all visits to the corner

were not accompanied by a nose-poke (S1B Fig).

Predictable sound exposure generates sound–context associations

We did not find changes in the animal’s behavior during sound exposure that could indicate

learning of the context–sound association. In order to ascertain whether statistical learning

had occurred, we tested the effect that the different exposure patterns had on subsequent con-

ditioned frequency discrimination. For that purpose, we used latent inhibition (LI) [17,18]. LI

is the effect by which exposure to a neutral, nonreinforced stimulus delays learning of a

Auditory midbrain coding of statistical learning
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subsequent association between this stimulus and an aversive outcome. We have shown before

[15] that the mere exposure to a sound in the corner elicits LI in the Audiobox when the sound

is subsequently conditioned in the same place, indicating that the presence of the sound in the

corner was learned. We now probed the conditions under which LI is observed by comparing

the effect of predictable and random sound exposure. Following the predictable or random

sound exposure phases (16 kHz; S1C Fig and Methods), all mice were conditioned to 16 kHz

sound in some visits to the water corner, such that a nose-poke during conditioned visits

would trigger the delivery of an aversive air puff (S1D Fig). Mice needed to discriminate

Fig 1. Sound exposure does not affect ongoing behavior in the Audiobox. (A) Schematic representation of the Audiobox and exposure protocols.

Water was available in the water corner and food in the food area. Sound exposure took place in the water corner in every visit (predictable group,

center), at random times in the food area (random group, right), or not at all (control group, left). (B) Schematic representation of the temporal

association between visits to the water corner (“C”) and visits to the food area (“F-A”) and the sound in the predictable (top) and random (bottom)

groups. (C) Cumulative distribution of the intervisit time interval to the water corner area. The dotted lines indicate the fraction of visits within 1

minute of intervisit time. (D) Mean daily time spent in the water corner area was similar between groups (ANOVA, F2,60 = 0.24, p = 0.78). For B-D:

control n = 21; predictable n = 29; random n = 13. All animals used for electrophysiology were included here. (E) Mean daily percentage of time spent

in the water corner area without drinking was similar between groups (ANOVA, F2,60 = 0.98, p = 0.38). Error bars represent SEM. Numerical data for

this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.2005114.g001
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between safe visits and conditioned visits and refrain from nose-poking during the latter. On

the first day of conditioning, the control (never exposed to 16 kHz) and random (exposed to

16 kHz outside the corner) groups showed successful avoidance when 16 kHz was present in

the corner and good discrimination, as reflected in d0 values above 1 (S1E Fig). The predictable

group, on the other hand, had d0 values significantly below the other groups (S1E Fig), indicat-

ing the failure to avoid nose-poking when 16 kHz was present, i.e., the occurrence of LI. This

indicates that mice had learned the association between the safe 16 kHz tone and the corner

during the exposure phase. Note that random sound exposure in the food area had a mild

effect on the levels of avoidance in the corner during conditioning (S1E and S1F Fig, green tri-

angles), and mice never reached the level of performance of the control group, suggesting that

both forms of sound exposure influenced subsequent avoidance during conditioned visits,

albeit with weaker effects when random. In summary, all three groups behaved identically dur-

ing the exposure phase but showed three different patterns of behavior during subsequent con-

ditioning of the 16 kHz sound in the corner. Thus, learning of the association between the

predictable sound and the context where it was heard (the water corner) did occur even

though it had no effect on behavioral measures during the exposure itself. We conclude that

the exposure protocol constitutes a successful model of temporally sparse statistical learning.

Sound exposure increases evoked responses in the inferior colliculus

The inferior colliculus is an auditory subcortical station on which diverse sensory information

converges [9]. It has been shown to be sensitive to short-term statistical learning through neu-

ronal adaptation. We now investigated whether statistical learning of temporally sparse pat-

terns could affect the coding properties of the inferior colliculus. We acutely recorded from

the inferior colliculus of anesthetized animals exposed to predictable or random 16 kHz for

6–12 days (Fig 1A and 1B). We recorded multiunit activity from well-separated spikes (S2A

Fig) using linear multielectrode arrays (16 sites, 50 μm apart) inserted dorsoventrally along the

collicular tonotopic axis (Fig 2A and 2B). The first electrode was on the dura, and the second

electrode rarely gave reliable responses. We therefore characterized auditory-evoked responses

to different tone frequency–intensity combinations simultaneously in the remaining 14 depths

(100–750 μm, see Methods). Depths of 100 and 150 μm were considered to be putative dorsal

cortex based on different response patterns [19,20], and the remaining depths, the central

nucleus. All experimental groups showed a dorsoventral axis of tonotopic organization in the

inferior colliculus such that progressively higher frequencies elicited responses progressively

deeper (Fig 2C; representative example raster plots in S2B–S2D Fig), in agreement with previ-

ous studies [21,22]. Tuning was quantified using spikes evoked at 70 dB SPL (behavioral mean

exposure intensity was 68 dB) by stimuli of 30 ms length (see Methods). An increase in

response gain was evident in the tuning curves of predictable animals with respect to control

animals at multiple depths along the tonotopic axis of the inferior colliculus (Fig 2C). The pre-

dictable group had homogenously high levels of activity across all depths (see Fig 2C, red, for

mean). The random group had high activity localized to the putative dorsal cortex (<200 μm

depth) and to depths with best frequencies (BFs; the frequency that elicits the strongest

response in a given location) around 16 kHz (500–550 μm: Fig 2C and S2E Fig, green). This

pattern of responses in the predictable and random groups was confirmed by quantification of

peak firing rates in depth zones (S3A Fig). The overall mean peak of firing rate of the control

group was similar to age-matched animals reared under standard conditions (home cage

group) but significantly smaller than the predictable group (S3B Fig). Thus, sound exposure,

whether predictable or random, generated an increase in collicular evoked activity compared

to control animals. While in the random group, the increase was localized to depths with good

Auditory midbrain coding of statistical learning
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Fig 2. Sound exposure results in increases in response gain in the inferior colliculus. (A) Left, schematic representation of the

recording approach in the inferior colliculus using linear multielectrode array. Inset: Schematic representation of positioning of most

superficial recording site, aligned with dura. (B) Right, representative dorsoventral electrode penetration track (DiI) through dorsal cortex

and central nucleus. “DC”: dorsal cortex; “ICC”: central nucleus; “LC”: lateral cortex. Scale bar 500 μm. (C) Mean tuning curves of

Auditory midbrain coding of statistical learning
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responses at and near 16 kHz; in the predictable group, it was homogeneously distributed. The

effect was not dependent on the frequency of the exposed tone, since mice in a predictable

group exposed to frequencies other than 16 kHz also showed an increase in response gain

(S3C Fig for group exposed to 8 kHz). The effect was not dependent on the number of expo-

sure days (6–12 days) in the Audiobox (S3D and S3E Fig). When individual tuning curves

were aligned by BF rather than depth, the overall increase in excitability in the predictable

group remained (S3F Fig).

Sound exposure leads to a global suprathreshold shift in BF

Experience-dependent plasticity, such as auditory conditioning, can induce transient shifts in

the BF of collicular neurons [23–25]. Indeed, we noticed that the peaks of the tuning curves of

the predictable group were shifted in multiple depths (Fig 2C, e.g., 300–500 μm) compared to

the control group. Unlike what has been reported before as a result of conditioning, the shift in

BFs that resulted from sound exposure was not toward the conditioned frequency but toward

higher frequencies, even in regions with BFs of 16 kHz or above. The average BFs were consis-

tently higher in the predictable and, to a lesser extent, the random group than in the control

and home cage groups (Fig 2D). Further quantification of the mean difference in BF across

depth with respect to the control group confirmed this effect (Fig 2E).

The BF shift was independent of the frequency of the sound played in the water corner

area. We measured the BFs in animals that were exposed under identical conditions to fre-

quencies different from 16 kHz (either 8 kHz, 13 kHz, or a combination of 8 and 13 kHz).

Except for the group exposed to 8 kHz alone, which did not show a reliable shift in BF with

respect to controls (but note shifts in this group at specific depths, S3C Fig), shifts were similar

in magnitude to those observed in mice exposed to 16 kHz (S4A Fig; see Methods). Interest-

ingly, average BF at threshold intensities was similar between groups (S4B Fig), indicating that

the shift is in suprathreshold tuning rather than a real change in tonotopy. Care was taken dur-

ing the probe insertion to ensure consistency in the location and depth of the electrodes (see

Methods), and small variations from animal to animal cannot explain the systematic group dif-

ferences. Additionally, simultaneous recordings along the rostrocaudal axis of predictable and

control animals (S4C Fig; see Methods) revealed that the upward shift was present throughout

the dorsoventral axis in the rostral and caudal portions of the inferior colliculus. In summary,

there was a homogenous, frequency-unspecific, and suprathreshold shift in tuning in both

exposed groups. The shift was significantly stronger in the predictable group and, unlike previ-

ously described for conditioning paradigms [23–25], the shift was not toward the exposed fre-

quency but upward along the tonotopic axis.

Predictable and random sound exposure increases response gain through

different mechanisms

Experience-dependent plasticity often results in changes in response gain [26,27], which can

take the shape of changes in response reliability, spontaneous activity, signal-to-noise ratio

(SNR), and tuning bandwidth [28,29]. To evaluate which of these variables was responsible for

simultaneously recorded evoked responses (70 dB) for different depths in the inferior colliculus (linear mixed effects model;

group × depth interaction F2,8412 = 4.21, p< 0.05). Animals and recording sites: control n = 10 and 98; predictable n = 14 and 162; and

random n = 7 and 91. (D) Mean collicular BF for different depths in the inferior colliculus (ANOVA, group F3,334 = 10.89; p< 0.0001).

Animals and recording sites for D-E: home cage n = 6 and 72; control n = 10 and 98; predictable n = 14 and 162; and random n = 7 and

91. (E) Mean BF difference across the tonotopic axis with respect to the mean BF of control group (ANOVA, group F3,386 = 9.97,

p< 0.0001. Corrected pair comparisons: �p< 0.05, ��p< 0.01, ���p< 0.001). Error bars represent SEM. Numerical data for this figure

can be found in S1 Data. BF, best frequency; DiI, 1,1’-dioactedecyl-3,3,3,3’-tethramethyl indocarbocyanide.

https://doi.org/10.1371/journal.pbio.2005114.g002
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the increase in response gain in the predictable and random groups in a frequency-specific

manner, we divided recording sites in 2 equally sized regions: one of sites with a BF tuned

around 16 kHz (14–19 kHz, “tuned” hereafter; Fig 3A) and another with sites tuned to 10–13

kHz (“adjacent” hereafter; Fig 3A). We first measured whether the increase in gain was the

result of an increase in firing rate alone or also in the reliability of evoked responses (defined

as the percentage of trials with at least 1 spike during the evoked period, 0–80 ms from stimu-

lus onset; example in Fig 3A, right). In both the tuned and adjacent regions, response reliability

was stronger around the local BF and decreased toward the edges of the frequency range,

mirroring tuning (Fig 3B). In the tuned region (Fig 3B, right), the reliability of the evoked

responses was significantly higher in the random group compared to the other groups, as

quantified for the peak of tuning (Fig 3C, right; see example in Fig 3A, right). On the other

hand, spontaneous activity was similar across groups in the tuned region but higher for the

predictable group in the adjacent region (Fig 3D; see example in Fig 3A, right).

If only adjacent regions showed an increase in spontaneous activity, mice exposed to a tone

in the low frequency range (8 kHz) would show a converse pattern: an increase in spontaneous

activity in the region that we now call tuned (Fig 3E). Indeed, when mice were exposed to 8

instead of 16 kHz, we found that the spontaneous activity was increased in the area with BFs

near 16 kHz and comparable in the regions with BFs near 8 kHz (Fig 3F). The region-specific

increase in spontaneous activity had a direct effect on the SNR (evoked/spontaneous firing

rate), which was significantly smaller in the adjacent region compared to the tuned region in

the predictable group (S5A Fig). We conclude that the SNR increased in the area that responds

to the exposed tone, independently of its frequency, compared to the flanking regions.

Finally, tuning bandwidth was increased in the predictable group with respect to both con-

trol and random groups. The effect was observed at both the base and half-maximum of the

tuning curve (Fig 3G, left and right respectively). Changes in gain were not the result of

changes in overall excitability, since intensity thresholds were similar (35 dB) in all groups

(S5B Fig). Additionally, we quantified response latency (see Methods), which is known to

decrease with the efficiency of the stimulus [30]. In the predictable group, latencies were simi-

lar in both regions compared to the control group (S5C Fig). In the random group, latencies

were lower than the control group in the adjacent region and lower than the predictable group

in the tuned region (S5C Fig).

To conclude, the increase in response gain observed in the predictable and random groups

resulted from different mechanisms (Fig 3H). In the predictable group, the increase in

response gain was frequency unspecific and affected the evoked and the spontaneous activity,

as well as the tuning bandwidths. Moreover, spontaneous activity was reduced in the tuned

region, resulting in a local increase in SNR. In the random group, the increase in evoked activ-

ity was centered around the exposure frequency and was, at least in part, the result of increased

reliability without affecting either spontaneous activity or tuning bandwidth.

Increase in response gain affects population activity, reflected in the

structural tuning

Auditory input evokes responses throughout the tonotopic map. This is reflected in neither

peri-stimulus time histogram (PSTH) nor tuning curves, both of which represent local

responses. Since we recorded simultaneously from 14 locations along 700 μm of the inferior

colliculus, we were able to quantify the simultaneous response to a given frequency along the

collicular tonotopic axis. We will refer to this response as structural tuning (Fig 4A and 4B).

Unspecific increases in bandwidth, such as that observed in the predictable group, would have

the effect of increasing the response gain to a given frequency tone throughout the tonotopic

Auditory midbrain coding of statistical learning
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Fig 3. Predictable and random sound exposure differentially modulate response gain in the inferior colliculus. (A) Left, schematic

representation of the adjacent and tuned regions. Right, example responses to the peak of the tuning in adjacent (top) and tuned (bottom)

regions for each group. Dots are spikes. Vertical axis is trials. Red lines indicate stimulus duration. Black arrows indicate trials without evoked

spikes. (B) Left, mean response reliability (trials with at least 1 evoked spike, 80 ms from stimulus onset, 70 dB) as a function of frequency for the

adjacent area (ANOVA, group F2,2784 = 20.18, p< 0.0001. Corrected pair comparisons: p< 0.0001 control versus predictable; p = 0.081 control

Auditory midbrain coding of statistical learning
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versus random; p< 0.01 predictable versus random). For B-D adjacent: animals and recording sites: control n = 10 and 34; predictable n = 14

and 60; and random n = 7 and 26. Right, same as left for the tuned area (ANOVA, group F2,3336 = 32.29, p< 0.0001. Corrected pair

comparisons: p< 0.01 control versus predictable; p< 0.0001 control versus random; p< 0.0001 predictable versus random). For B-D tuned:

animals and recording sites: control n = 10 and 42; predictable n = 14 and 68; and random n = 7 and 34. (C) Mean response reliability to the

respective BF ± 0.25 octaves for the adjacent (left, ANOVA, F2,112 = 0.66, p = 0.51) and tuned (right, ANOVA, F2,136 = 4.13, p = 0.018. Corrected

pair comparisons: �p< 0.05) regions. (D) Mean spontaneous activity for adjacent (left) and tuned regions (right; ANOVA, F5,255 = 4.71,

p< 0.001. Corrected pair comparisons: �p< 0.05; ��p< 0.01; ���p< 0.001). (E) Schematic representation of adjacent and tuned regions in the

comparison between two predictable groups, one exposed to 8 kHz and the other exposed to 16 kHz. (F) Left, mean firing rate evoked by the BF

in depths with a BF of 8 or 16 kHz, for animals exposed to 8 kHz or 16 kHz. Right, same as left for the spontaneous activity (exposed to 16 kHz

n = 9; exposed to 8 kHz n = 3). (G) Mean bandwidth as a function of sound intensity measured at the base (top) or at the half-maximum

(bottom) of the tuning curve (left, base ANOVA, group F2,674 = 7.85, p< 0.001. Corrected pair comparisons: p< 0.05 control versus predictable;

p< 0.001 predictable versus random; right, half-maximum: ANOVA, group F2,674 = 4.9, p< 0.01. Corrected pair comparisons: p< 0.05 control

versus predictable; p< 0.05 predictable versus random). Animals and recording sites: control n = 7 and 35–43; predictable n = 8 and 61–72;

random n = 7 and 30–35 recording sites. Error bars represent SEM. (H) Model of the differential plasticity produced in the inferior colliculus

upon predictable (left) or random (right) sound exposure. Left, in the predictable group, the increase in response gain was homogenous

(continuous red line) and, excepting the tuned area, also affected spontaneous activity (dotted line). Right, in the random group, the increase in

response gain was the result of increased local reliability in the tuned area without affecting spontaneous activity. Numerical data for this figure

can be found in S1 Data. BF, best frequency.

https://doi.org/10.1371/journal.pbio.2005114.g003

Fig 4. Predictable sound exposure modifies structural tuning. (A) Scheme of the local tuning curves and the structural tuning along the collicular

tonotopic axis for the predictable (red) and the control (black) groups. (B) Same as A for the random (green) and the control (black) groups. (C) Mean

normalized structural tuning, evoked response across depths, for a subset of frequencies (ANOVA, group × depth × frequency interaction F168,1869 =

2.34, p< 0.0001). Animals and recording sites: control n = 10 and 98; predictable n = 14 and 162; random n = 7 and 91. Numerical data for this figure

found in S1 Data.

https://doi.org/10.1371/journal.pbio.2005114.g004
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map (Fig 4A, light red versus dashed structural tuning). Increases in reliability that are not

accompanied by changes in tuning bandwidth, such as that observed in the random group,

would have the effect of increasing a structural tuning curve’s gain at a local depth without

much change elsewhere (Fig 4B, light green versus dashed structural tuning curves). Indeed,

sound exposure affected structural tuning curves of different frequencies for the predictable

and random groups, which were more distinct across frequencies compared to those of control

animals (Fig 4C). The effect this has on coding will be assessed below.

Differential increase in response gain results in differential frequency

coding and discrimination

We assessed how different changes in response gain across groups both locally (region specific,

tuning curves) and globally (structural tuning) affected frequency coding and discrimination.

We measured between-frequency discrimination and within-frequency response consistency

using receiver operating characteristic (ROC) curve analysis and classification accuracy mea-

sures, respectively. ROC analysis is used to assess discriminability between two stimuli [31] by

comparing the cumulative probability distributions of responses to these stimuli for different

discrimination criteria (Fig 5A and 5B). For the local tuning, we used individual tuning curves

with a BF of 11.3 kHz ± 1.1% (adjacent region) or 16 kHz ± 1.1% (tuned region) and generated

ROC curves for comparison between the BF and the to-be-compared frequency (f1 and f2 in

Fig 5A). We then used the area under the ROC curve (AUROCC, Fig 5B) as the index of

discriminability. ROC curves obtained from tuning curves in the adjacent region were not dif-

ferent between predictable and random groups (Fig 5D). In the tuned region, however, the

random group showed better discrimination (larger AUROCC) for all ΔFs than both the con-

trol and predictable groups, who do not differ between them (Fig 5E). This region-specific

increase in discriminability in the random group parallels the region-specific increase in both

gain and reliability in this group, in the absence of a change in bandwidth. In the predictable

group, there was no change in discriminability in either region, which is consistent with the

region-unspecific increase in both gain and bandwidth (Fig 5D and 5E). This consistency

derives from the fact that ROC curves are not sensitive to changes in response size, only to

changes in distributions, and these are not necessarily changed when gain and bandwidth

increase together.

We then performed the same analysis for the structural tuning. This was performed for

individual responses to a given frequency compared to the mean response (across trials) to

11.3 kHz (Fig 5F) and 16 kHz (Fig 5G). Here, the predictable group shows less discriminabil-

ity between frequency pairs (Fig 5F, in which f1 = 11.3 kHz, and Fig 5G, in which f1 = 16

kHz) than both the random and control groups. This decrease in discriminability in the pre-

dictable group is consistent with the increase in bandwidth and the concomitant increase in

activity throughout the structural tuning curve (see Fig 4A), which ultimately changes

response distribution across the tonotopic axis and increases overlap between structural tun-

ing curves.

To a certain extent, ROC analysis reflects the variability in the response to each of the sti-

muli compared. Yet this is not true for the structural tuning ROC curves, because their wide

response distributions (responses across all depths) and their asymmetrical shapes (Fig 5C)

increase the level of overlap between the distribution curves without reflecting the trial-to-trial

variability at the peak of the distribution (Fig 5H). Trial-to-trial response consistency can be

measured using classification accuracy probabilities. We used structural tuning curves to train

a classifier [32,33] to predict the played frequency (see Methods). The probability of predicting

a given frequency correctly was significantly higher in both predictable and random groups

Auditory midbrain coding of statistical learning
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Fig 5. Predictable sound exposure leads to increased overlap in structural tuning and better classification accuracy. (A) Scheme

that illustrates the computing of the ROC curves using the local tuning curves, in which f1 is the BF. (B) Scheme that illustrates the

example of a ROC curve. (C) Same as D but for the structural tuning. (D) AUROCC calculated from the tuning curves with BF of 16

kHz ± 1.1% (tuned region) across groups and ΔF. Each point is the comparison between an f1 of 16 kHz and an f2 of a frequency

separated by a given ΔF. (ANOVA, group F2,324 = 11.78, p< 0.0001, ΔF F11,324 = 14.49, p< 0.0001). Animals: control n = 10; predictable

Auditory midbrain coding of statistical learning
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with respect to control. In both groups, accuracy was higher in the tuned versus the adjacent

region (Fig 5I).

Overall, the data suggest that statistical learning is accompanied by changes in neuronal

coding in the inferior colliculus that affect frequency discrimination and response classifica-

tion accuracy.

Predictable sound exposure decreases behavioral spontaneous frequency

discrimination acuity

The described changes in frequency coding could, potentially, have different effects on

behavioral measures of frequency discrimination. We next tested this using a behavioral mea-

sure of spontaneous frequency discrimination. We used the prepulse inhibition of the audi-

tory startle reflex (PPI), a behavioral assay that is known to engage the inferior colliculus

[34,35] and has been successfully used to determine frequency discrimination acuity in mice

in the absence of training (Fig 6A). When assessed in the presence of a constant background

tone, the percentage of PPI is proportional to the difference between the background and

prepulse tones [36–38]. Predictable and random groups were exposed as before to a 16 kHz

tone for 6–12 days in the Audiobox. PPI was then measured in a separate apparatus, using a

background tone of 16 kHz and progressively different prepulse tones up to 1 octave (see

Methods). The percentage of PPI elicited was significantly smaller in the predictable group

than in the control and random groups at multiple prepulse frequencies tested (Fig 6B). Simi-

larly, the average discrimination threshold (50% of inhibition of maximum response, see

Methods) of the predictable group was higher than both the control and random groups but

only reached significance against the latter (S5D Fig). The increased generalization in the

predictable group was not specific to frequencies around 16 kHz. PPI measured with a back-

ground tone of 11.3 kHz in animals exposed to 16 kHz (Fig 6D) also showed a significant

increase in frequency generalization (Fig 6E). Thus, only predictable sound exposure resulted

in greater frequency generalization.

Next, we questioned whether changes in behavioral frequency discrimination were related

to the collicular changes observed in frequency coding described above. We calculated ROC

curves from the PPI data to be able to compare the behavioral and neuronal responses under

the same method [31]. Surprisingly, the predictable and random groups showed larger AUR-

OCCs when the background tone was 16 kHz, although the effect was not significant (Fig 6C).

This is surprising because lower PPI is typically attributed to decreased discrimination acuity.

The effect was specific to the frequencies around the exposed tone. When the background tone

n = 14; random n = 7. Corrected pair comparisons: p< 0.0001 random versus control, p< 0.0001 random versus predictable. (E) Same

as D for tuning curves with BF of 11.31 kHz 1.1% (adjacent region). Here, f1 was 11.3 kHz throughout. (ANOVA, group F2,552 = 8.17,

p< 0.0001, ΔF F11,552 = 17.08, p< 0.0001). Animals: control n = 10; predictable n = 14; random n = 7. Corrected pair comparisons:

p = 0.019 random versus control, p = 0.0003 predictable versus control. (F) AUROCC calculated from the structural tuning curves with

BF of 16 kHz ± 1.1% (tuned region) across groups and ΔF. Each point is the comparison between the mean of responses to f1 of 16 kHz

and individual responses to f2. (ANOVA, group F2,336 = 9.37, p = 0.0001, ΔF F11,336 = 12.1, p< 0.0001). Animals: control n = 10;

predictable n = 14; random n = 7. Corrected pair comparisons: p = 0.0003 predictable versus control, p = 0.0053 predictable versus

random. (G) Same as in F, using an f1 of 11.3 kHz. (ANOVA, group F2,335 = 33.34, p< 0.0001, ΔF F11,335 = 3.94, p< 0.0001). Animals:

control n = 10; predictable n = 14; random n = 7. Corrected pair comparisons: p< 0.0001 predictable versus control, p = 0.023 random

versus control, p = 0.0001 predictable versus random. (H) Scheme illustrating the relationship between ROC and classification accuracy

(labeled “c.a.”). Upward arrow equals increased classification accuracy. (I) Mean classification accuracy probability for frequencies in

the adjacent (BF of 10–13 kHz) and tuned (BF of 16–19 kHz) regions. Error bars represent SEM. (ANOVA, group F2,247 = 7.37,

p = 0.0008, region F1,247 = 5.78, p = 0.017, frequency F3,247 = 2.49, p = 0.061. In the tuned region: ANOVA, group F2,123 = 9.44, p = 0.000,

corrected pair comparisons: p = 0.011 predictable versus control, p = 0.0001 random versus control. For control group: ANOVA, region

F1,79 = 0.07, p = 0.78. For predictable group: ANOVA, region F1,111 = 4.04, p = 0.046. For random group: ANOVA, region F1,55 = 7.01,

p = 0.010). Animals: control n = 10; predictable n = 14; random n = 7. Numerical data for this figure found in S1 Data. AUROCC, area

under the ROC curve; BF, best frequency; ROC, receiver operating characteristic.

https://doi.org/10.1371/journal.pbio.2005114.g005
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was 11.3 kHz, the increased generalization observed in the PPI for the predictable group was

paralleled by diminished discrimination, as reflected in the lower AUROCCs, in this group

with respect to the control group (Fig 6F).

In conclusion, the increased generalization observed in the PPI in the predictable group is

consistent with the ROC analysis of the structural but not the local tuning for the same group

(Fig 5F and 5G). This increase in generalization paradoxically did not reflect a decrease in dis-

crimination, which was normal in both predictable and random groups for frequencies in the

tuned region. That this effect was frequency specific, since discrimination was reduced for fre-

quencies in the adjacent region, is consistent with the physiological classification accuracy

measures (Fig 5D, 5E and 5I).

Fig 6. Predictable sound exposure increases behavioral spontaneous frequency generalization but reduces trial-to-trial variability. (A) Scheme of a

single PPI trial: startle noise was preceded by a prepulse tone with a Δf of between 0% and 50% below the background tone of 16 kHz. (B) Normalized

PPI as a function of frequency change between the prepulse and the background tone of 16 kHz for control, predictable, and random groups.

Continuous line indicates a fitted logistic function (ANOVA, group F2,189 = 13.59, p< 0.01; corrected pair comparisons: p< 0.001 predictable versus

control and p< 0.01 predictable versus random). Dash line: discrimination threshold. Control n = 7; predictable n = 8; random n = 9. (C) Mean

AUROCCs calculated from the behavioral data in B. Continuous line indicates a fitted logistic function (ANOVA, group F2,189 = 1.3, p = 0.27. Control

n = 7; predictable n = 8; random n = 9). (D) Scheme of a single PPI trial with a tone background of 11.3 kHz. (E) Normalized PPI as a function of

frequency change between the prepulse and the background tone of 11.3 kHz for control and predictable groups. Continuous line indicates a fitted

logistic function (ANOVA, group F2,81 = 18.92, p< 0.0001; group × frequency interaction F2,81 = 3.06, p< 0.01). Control n = 4; predictable n = 7. (F)

Mean AUROCCs calculated from the behavioral data in E. Continuous line indicates a fitted logistic function (ANOVA, group F2,81 = 10.36,

p = 0.0019). Control n = 4; predictable n = 7. Error bars represent SEM. Numerical data for this figure found in S1 Data. AUROCC, area under ROC

curve; PPI, prepulse inhibition of the auditory startle reflex.

https://doi.org/10.1371/journal.pbio.2005114.g006
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Corticofugal input has a minor role on collicular plasticity induced by

predictable sound exposure

Auditory conditioning studies have shown that collicular plasticity depends on direct cortical

feedback through descending projections from layer V of the AC [39,40]. To test whether the

maintenance of the changes in collicular response that had been triggered by predictable

sound exposure were also dependent on cortical feedback, we performed simultaneous inacti-

vation of the AC with muscimol and recordings in the inferior colliculus on a subset of control

and predictable animals (see Methods, Fig 7A and S6A Fig). Cortical inactivation generated an

increase in collicular evoked activity in both groups without affecting the differences in overall

tuning between groups, including the BF shift (see tuning curves at 600 μm in Fig 7B; and S6B

and S6C Fig). The increase in the activity of individual recording sites before and after cortical

inactivation was comparable between groups (Fig 7C). Cortical inactivation affected neither

reliability (Fig 7D) nor the difference in spontaneous activity in the adjacent region (Fig 7E,

Fig 7. Cortical feedback does not influence sound exposure–induced collicular plasticity. (A) Schematic representation of simultaneous collicular

recordings and cortical inactivation. (B) Average tuning curves at 600 μm for control (left) and predictable (right) groups before (continuous lines) and

after cortical inactivation (dashed lines). (C) Pairwise comparison between activity before and after cortical inactivation (wilcoxon rank sum test,

p = 0.4). Animals and recording sites: control n = 7 and 62, predictable n = 6 and 64. (D) Mean response reliability for the adjacent (left, ANOVA, group

F1,88 = 1.22, p = 0.27) and tuned (right, ANOVA, group F1,90 = 1.62, p = 0.2) areas, before and after cortical inactivation. (E) Mean spontaneous activity

for the adjacent (left, ANOVA, group F1,92 = 13.23, p< 0.001) and tuned (right, ANOVA, group F1,94 = 3.98, p< 0.05. Corrected pair comparisons:
�p< 0.05) areas, before and after cortical inactivation. (F) Mean bandwidth as a function of sound intensity measured at the base (left, ANOVA, group

F1,229 = 0.71, p = 0.4; muscimol F1,229 = 9.17, p< 0.01) or at the half-maximum (right, ANOVA, group F1,229 = 0.76, p = 0.38; muscimol F1,229 = 4.86,

p< 0.05) of the tuning curve before and after cortical inactivation. Animals and recording sites: control n = 7 and 30; predictable n = 6 and 34. Error

bars represent SEM. Numerical data for this figure found in S1 Data. AC, auditory cortex; IC, inferior colliculus.

https://doi.org/10.1371/journal.pbio.2005114.g007
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left). However, upon cortical inactivation, spontaneous activity of the predictable group

increased in the tuned region (Fig 7E, right). This increase reveals a cortical control of collicu-

lar excitability that occurs specifically in the region tuned to the exposed sound. Cortical inac-

tivation slightly increased the bandwidths for both groups without affecting the difference

between them (Fig 7F). In summary, cortical inactivation resulted in an overall increase in the

amplitude of the tuning curves that did not affect the difference in gain between the groups.

The relatively lower spontaneous activity in the tuned region disappeared after cortical inacti-

vation, revealing a frequency-specific form of cortical control on the inferior colliculus SNR.

These data suggest that cortical feedback plays a minor role in the maintenance of sound expo-

sure–triggered collicular plasticity.

Predictable exposure does not lead to changes in the cochlear nucleus or

AC

We next asked whether the changes in evoked activity and frequency representation were

the result of an overall increase in excitability throughout the auditory pathway. Single-

unit recordings in the cochlear nucleus—the main ascending input into the inferior collicu-

lus—of animals in the control and predictable groups were similar in tuning, evoked, and

spontaneous activity (Fig 8A–8C). Additionally, predictable sound exposure had no effect

on either thresholds or bandwidths (S7A–S7D Fig), suggesting that exposure-triggered

changes in the inferior colliculus were not the result of upstream plasticity. Similarly,

evoked responses recorded in the primary auditory cortices of control and predictable mice

were similar in overall tuning, temporal response pattern, and BF distribution (S7E–S7H

Fig). Changes observed in the inferior colliculus were thus not inherited from the main

upstream input, the cochlear nucleus. They also did not result in an obvious change in corti-

cal tuning, although it is possible that more subtle effects would be observable in a behaving

animal.

Fig 8. Predictable sound exposure does not affect evoked activity in the cochlear nucleus. (A) Average frequency response areas of cochlear nucleus

neurons evoked by 70 dB tone bursts, classified as bushy cells. Units with a CF between 6 and 24 kHz were grouped by CF into 2 octave bins (CF group

6–12 kHz, control n = 3, predictable n = 2; and CF group 12–24 kHz, control n = 11; predictable n = 6; wilcoxon signed rank test, p> 0.05 for all

comparisons). (B) Same as in A but for other cell types, mostly unipolar (CF group 6–12 kHz, control n = 9, predictable n = 11; and CF group 12–24

kHz, control n = 19, predictable n = 39; wilcoxon signed rank test, p> 0.05 for all comparisons). (C) Spontaneous firing rate distributions of cochlear

nucleus units were comparable between control and predictable group (binning as in A-B, two-sample Kolmogorov-Smirnov test, p> 0.05 for all

comparisons). Error bars represent SEM. Numerical data for this figure found in S1 Data. CF, characteristic frequency.

https://doi.org/10.1371/journal.pbio.2005114.g008
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Predictable sound exposure results in long-lasting changes in postsynaptic

excitation/inhibition balance

Fast neuronal adaptation, previously described in the inferior colliculus [3,41], occurs within

tens of seconds and would not necessarily be expected to be accompanied by changes in gene

or protein expression. Sparse sound exposure, however, requires the integration of informa-

tion across minutes and over several visits to the context associated with the sound. To investi-

gate whether the observed changes were paralleled at the molecular level after predictable

exposure, our key experimental condition, we measured gene expression in the predictable

and control groups, using the home cage group as reference. We assessed the expression of

neuronal genes reported to change their expression levels upon sound exposure, acoustic

learning, or environmental enrichment [42–47]. In most cases, the expression was similar

between the control and predictable groups and different from the home cage group (S1

Table), suggesting that the largest effect was triggered by the placement of animals in the

Audiobox itself. Exceptions were the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) receptor subunits gria1 and gria2 and brain-derived neurotrophic factor (BDNF),
which were significantly reduced only in the control group with respect to the home cage

group. The ratio between the expressions of the presynaptic markers glutamate vesicular trans-

porter 2 (vglut2) and the GABA vesicular transporter (vgat) showed a significant increase for

control and predictable groups.

To investigate whether the increase in the Vglut2/VGAT ratio at the level of gene expres-

sion were accompanied by molecular changes in protein expression at specific locations of the

inferior colliculus, we measured immunoreactivity to VGAT and Vglut2 proteins at two

depths (300 and 600 μm), corresponding roughly to the “adjacent” and “tuned” areas used

before, in the central nucleus of the inferior colliculus of control and predictable animals (S8A

Fig, see Methods). This ratio was used as an expression of excitation/inhibition balance, since

this ratio has been shown to change upon environmental manipulations and to be a signature

of synaptic plasticity [46]. We found that the number of Vglut2 puncta in the dorsal (“adja-

cent”) area was similar between groups, while VGAT was significantly reduced in the predict-

able group. This resulted in a significant increase in the Vglut2/VGAT ratio (S8B Fig, left). At

600 μm in depth (“tuned”), there was a decrease in Vglut2 in the predictable animals but only

a trend in the same direction for VGAT, with no difference in the Vglut2/VGAT ratio between

groups (S8B Fig, right). Thus, predictable and sparse sound exposure results in changes in

gene and protein expression that are characteristic of long-term memory.

Discussion

Statistical learning is essential for a correct interpretation of the sensory input. This form of

learning is likely to be distributed throughout different brain regions, depending on the stimu-

lus patterns to be learned, their modalities, and spatiotemporal combinations [48–50]. Some

forms of statistical processing must happen at the level of subcortical structures as part of

sensory gating. Neuronal adaptation—changes in firing rate as a result of continuous stimula-

tion—is maybe the best-studied mechanism of experience-dependent plasticity believed to be

underlying statistical learning of environmental regularities that occur within the recent stimu-

lation history. It has been hypothesized to increase the dynamic range of neurons as well as

gating of specific inputs [51] and is observed in cortical [2,7, 52–54] and subcortical structures

[2–4]. Meta-adaptation has been observed across 5-second windows in a continuously alter-

nating sensory stimulation paradigm in the inferior colliculus [4]. Yet the circuits underlying

statistical learning of temporally sparse patterns have not been characterized. This timescale of

statistical learning is reflected in the sensitivity of neurons in the auditory system for natural
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sounds [12–14, 55–58]. Neuronal adaptation is achieved through short-term plasticity [59–

61]; therefore, it is unlikely to be the mechanism underlying the type of statistical learning that

needs to be accumulated across bouts of exposure that are separated by minutes to hours, like

the one we describe here.

Using a combination of electrophysiological, behavioral, and molecular approaches, we

show that the inferior colliculus, an auditory subcortical structure, was sensitive to statistical

learning of temporally sparse auditory patterns. We exposed mice to sounds that were fully

predictable (predictable group). This exposure was self-initiated, limited to visits to the water

corner (context specific), and lasted only for the duration of the individual visits (temporally

sparse). Exposure to these patterns resulted in an increase in response gain that was frequency

unspecific and was not due to mere sound exposure, since the random group (exposed to a

sound in a fixed context but at random time intervals) showed a different pattern of collicular

plasticity. Increase in response gain changed the pattern of population activity, resulting in

increased between-frequency overlap in the structural tuning but a more consistent trial-to-

trial within-frequency coding. These effects were paralleled at the behavioral level, at which

increased response generalization was, paradoxically, not paralleled by a decrease in frequency

discrimination as is discussed below. Cortical feedback played a minor role in the maintenance

of collicular plasticity, and changes were not observed in the main input structure, the cochlear

nucleus [62,63]. This suggests that plasticity was initiated in the inferior colliculus, as further

supported by changes in gene expression indicative of long-term plasticity.

The combined analysis of local (region-specific tuning curves) and global (structural tun-

ing) neuronal responses allowed us to uncover 2 coexisting mechanisms of frequency coding

in the predictable group. On one hand, consistency in frequency coding was increased, as

reflected in frequency-specific increase in classification accuracy. On the other hand, the

potential for increased generalization was reflected in the increased overlap between structural

tuning curves in the predictable group. Both increased discrimination and increased generali-

zation were paralleled at the behavioral level. While, typically, a decrease in PPI has been inter-

preted as a decrease in frequency discrimination, here we found that different prepulse tones

can generate discriminable startle responses and yet be less effective in generating PPI near the

background tone. Thus, at the behavioral level, increased generalization in the startle’s inhibi-

tion was found to coexist with normal frequency discrimination near the exposed frequency.

This highlights the relevance of responses across spatially distributed neuronal populations, in

which even increased responses away from the tuned region (the tail of the structural tuning)

might have an impact on behavioral output. Predictable sounds, when highly repetitive and

consistent, are less salient. It is maybe because of this that behavioral responses to pure tones

are largely more inhibited in the predictable group. In striking contrast, mice in the random

group showed no evidence of diminished discrimination at either the neuronal population

level or behaviorally, probably reflecting the saliency of randomness. Indeed, in this group,

changes in response gain were—unlike in the predictable group—typically constrained to the

tuned region.

Corticocollicular projections are believed to modulate collicular sensory filters [23,64–

67]. The narrow corridors of the Audiobox prevented us from optogenetically modulating

cortical activity during the exposure. Cortical inactivation during the recording, however,

subtly increased the size of the evoked responses in both control and predictable groups

and had no effect on either the suprathreshold tonotopic shift induced by sound exposure or

the increase in bandwidth. However, it affected the levels of spontaneous activity. The fre-

quency-specific low level in spontaneous activity in the tuned region disappeared upon inac-

tivation, meaning that the cortical feedback can locally reduce spontaneous activity in one

region of the inferior colliculus to increase the SNR. Nonetheless, overall, the cortical
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inactivation data suggest that the AC plays a small role in the maintenance of learning-

induced plasticity and that this is limited to local modulations of spontaneous activity.

Whether corticofugal feedback is required to initiate this plasticity in the early times of expo-

sure will require further investigation.

Recently, Slee and David [68] reported increases in spontaneous activity in the inferior col-

liculus that resulted in suppression of responses to the target sound during an auditory detec-

tion task. Differences in excitability can be attributed to changes in interactions within the

local circuit. In the predictable group, we observed changes in excitation/inhibition ratios at

the presynaptic level that had no parallel at the postsynaptic level. Together, this might reflect

the implementation of a switch that can be either turned on or off depending on, for example,

the presence of a global signal in the form of a neuromodulator or brain state [69,70]. Indeed,

a frequency-specific decrease in spontaneous activity in the predictable group resulted in an

increase in SNR (evoked/spontaneous activity). SNRs have been studied in the context of

speech saliency in noisy backgrounds [71–73] and have been hypothesized to contribute to

compromised sensory gating in neuropsychiatric diseases, highlighting their importance for

auditory processing [74]. Recordings were performed in anaesthetized animals, and although

anesthesia does not prevent the expression of preattentive mechanisms, the exact implementa-

tion of the proposed switch might be different in the behaving animal [75,76].

In both exposed groups, we observed a surprising shift in suprathreshold tonotopy with

respect to the control group. This was reflected in a homogeneous shift in BFs across all depths

measured. This shift was significantly larger in the predictable group than in the random

group. While reinforcement-driven plasticity is characterized by locally measured shifts

toward a conditioned frequency in both inferior colliculus and AC [77,78], spatially broad fre-

quency shifts cannot always be measured. In the one case in which this was done [64], the shift

was also found to extend beyond the directly activated frequency band. Whether the inferior

colliculus uses the BF shift as a coding mechanism or this is rather a byproduct of other plastic

changes will require further investigation. In fact, BF might not be a very reliable coding vari-

able [79,80]. Measurements such as structural tuning, in which simultaneous responses across

a widespread neuronal population are measured, might better represent the information that

the brain is using at any given point in time.

Differences in sensory filtering at the level of the inferior colliculus are likely to influence

how information is conveyed downstream to thalamus and cortex. Depending on whether the

change impinges primarily on the excitatory or inhibitory ascending input into the thalamus,

the overall effect might be either to enhance or suppress selective responses. The collicular

inhibitory input into the thalamus acts monosynaptically on thalamocortical projecting neu-

rons [81], potentially regulating the magnitude and timing of cortical activity and thus playing

a crucial role in sensory gating. We did not find obvious changes in excitability or frequency

representation at the cortical level after predictable sound exposure. In the auditory system,

which processes a constant input of stimuli arising from all directions, preselection of to-be-

attended stimuli might happen at the level of subcortical structures. In other sensory systems,

filtering of stimuli might involve different circuit mechanisms [82,83].

Taken together, our results demonstrate that the inferior colliculus, a subcortical structure,

plays a significant role in the detection of statistical regularities that arise from temporally

sparse interactions with a naturalistic environment. The effect this learning had on subsequent

behavior suggests that the observed changes in coding modulate the filtering of the exposed

sounds to control behavioral outcomes. Our study places the inferior colliculus as a key player

in the processing of context–sound associations, which are of great relevance in sound gating.

This role might be the basis for the link between the inferior colliculus and autism, in which

patients exhibit alterations in sensory gating [84–86]. The finding that neuronal responses are
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sensitive to the context in which sounds appear suggests that the inferior colliculus might inte-

grate stimuli across a parameter space that goes beyond the auditory domain. Thus, the infe-

rior colliculus could be acting as an early multimodal warning system.

Methods

Ethics statement

All animal experiments were approved by the local Animal Care and Use Committee (LAVES,

Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, Oldenburg,

Germany) in accordance with the German Animal Protection Law. Project license number

33.14-42502-04-10/0288 and 33.19-42502-04-11/0658.

Experimental model and subject details

Female mice C57BL/6JRj (Janvier labs, France) between 5 and 8 weeks old were used for all

experiments.

Audiobox

A sterile transponder (IS0 compliant 11784 transponder, 12 mm long, TSE, Germany) was

implanted subcutaneously in the back of the anaesthetized mice. The small wound caused by

the injection was closed with a drop of a topical skin adhesive (Histoacryl, Braun, United States

of America). After 1 to 2 days of recovery, animals were placed in the Audiobox (New Behav-

iour/TSE, Germany).

The Audiobox is an automatic testing chamber consisting of 2 compartments connected by

a corridor (Fig 1A), where mice lived in groups of up to 10 animals. The first compartment—

the “food area”—consists of a normal mouse cage, where animals have ad libitum access to

food. Water was available in the second compartment—the “water corner”—located inside a

sound-attenuated chamber. An antenna located in the entrance of the corner identified the

individual mouse transponder. The individual visits to the corner were detected by coincident

activity of a heat sensor and the reading of the transponder. Visits occurred mainly during the

dark cycle [15]. A water port is present at either side of the corner and can be closed by a slid-

ing door. To open the door and gain access to the water, animals needed to nose-poke. Nose-

pokes were detected by a sensor located by the door. The end of the visit was signaled by deac-

tivation of the heat sensor and the absence of transponder reading. Individual-mouse data

(start and end of visit, time and number of nose-pokes) were recorded for each single visit.

Visits to the corner could be accompanied by a sound, depending on the identity of the

mouse. A loudspeaker (22TAF/G, Seas Prestige) was located above the corner to present

sound stimuli. The sounds presented were generated in MATLAB (The MathWorks, USA) at

a sampling rate of 48 kHz and consisted of 30 ms pure tones with 5 ms slope, repeated at 3 Hz

for the duration of the visit and at variable intensity of 70 dB ± 5 dB (measured at the center of

the corner in the predictable group or the center of the home cage in the random group). The

sound intensity was calibrated with a Bruël & Kjaer (4939 ¼” free field) microphone. The

microphone was placed at different positions within the corner, as well as outside the corner,

while pure tones (1–40 kHz) were played at 60–70 dB. Microphone signals were sampled at 96

kHz and analyzed in MATLAB. Tones between 3 kHz and 19 kHz did not show harmonic dis-

tortions within 40 dB from the main signal. The sounds presented inside the corner were

attenuated by over 20 dB outside the attenuated box. Since little attenuation occurred in the

corridor located inside the attenuated box immediately connected to the corner, mice in this

location could hear the sound played in the corner.
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Sound exposure

All the experimental groups were first habituated to the Audiobox for 3 days without sound

presentation. After the habituation phase, the exposed group heard a fixed-tone pip of a spe-

cific frequency for the duration of every visit, regardless of nose-poke activity and water

intake. The random group was exposed to a fixed-tone pip in the mouse cage at random

intervals. The sound was delivered by a loudspeaker located above the cage and calibrated

such that sound intensity in the center of the cage was comparable to that inside the corner.

The presentation of the sound was triggered by corner visits of a mouse living in another

Audiobox, in a yoke control design. This ensured that the pattern (mainly at night) and dura-

tion of sound presentation in the cage was comparable to that experienced by each mouse in

the predictable group when making corner visits. The control group consisted of age-

matched animals that lived during the same amount of time in a different Audiobox without

sound presentation. The number of mice reported in Fig 1C–1E corresponds to exposed ani-

mals to 16 kHz used for recordings in the inferior colliculus and AC. The sounds used during

the exposure phase were fixed for each mouse and replication: 8, 13, or 16 kHz, depending

on the experiment. One group of animals (8 and 13 kHz group) was exposed in 71% of the

visits to 8 kHz and the remaining 29% of the visits to 13 kHz, similar to the preconditioned

phase of the LI protocol.

LI

The experiment consisted of 4 phases: habituation, safe, exposure, and conditioning [15]. Ani-

mals were divided in 3 different groups that differed only in the exposure phase before condi-

tioning. During the habituation phase (3 days), no sound was presented, and the sliding doors

remained open. In the safe phase (7 days), a safe tone of 8 kHz was paired with every visit to

the corner, and the sliding doors opened only after nose-poke. In the exposure phase (5 days),

groups were exposed to different frequencies as follows: (i) for the control group, 71% of the

visits were paired with an 8 kHz tone, and 29% were paired with a 4 kHz tone; (ii) for the pre-

dictable group, 71% of the visits were paired with an 8 kHz tone, and 29% were paired with a

16 kHz tone; (iii) for the random group, 100% of the visits were paired with 8 kHz, and a 16

kHz tone—played in the home cage—was paired to 29% of the visits of a mouse living in

another Audiobox to its corresponding corner. Up to this point, all nose-pokes resulted in

access to water independently of the sound played. In the conditioning phase, 71% of visits

were paired with an 8 kHz tone, and 29% were paired with a 16 kHz, which was conditioned

such that a nose-poke resulted in an air puff and no access to water. During this phase, mice

had to learn to avoid nose-poking when they heard 16 kHz (conditioned visit). To assess dis-

crimination performance, the discriminability index (d’) was calculated. d’ used in signal

detection theory is defined as

d0 ¼ ZðHRÞ � ZðFARÞ;

in which Z(p), p 2 [0 1] is the inverse of the cumulative of the gaussian distribution; HR is the

hit rate, in which a hit is the correct avoidance of a nose-poke during a conditioned visit; and

FAR is the false alarm rate, in which a false alarm is the avoidance of a nose-poke during a safe

visit. Since d’ cannot be calculated when either the hits or the false alarms reach levels of 100%

or 0%, in the few cases when this happened, 99% and 1%, respectively, were used for these

calculations.
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Electrophysiology

Mice were anesthetized with avertin before acute electrophysiological recordings in the infe-

rior colliculus (induction with 1.6 mL/100 grs and 0.16 mL/100 grs ip to maintain the level of

anesthesia as needed). Anesthetized mice were fixed with blunt ear bars on a stereotaxic appa-

ratus (Kopf, Germany). The temperature of the animal was monitored by a rectal probe and

maintained constant at 36 ˚C (ATC 1000, WPI, Germany). The scalp was removed to expose

the skull, and bregma and lambda were aligned vertically (± 50 μm). A metal head-holder was

glued to the skull 1.3 mm rostral to lambda to hold the mouse, and the ear bars were removed.

To access the left inferior colliculus, a craniotomy of 2.8 × 3 mm was made, with the center 1

mm lateral to the midline and 0.75 mm caudal to lambda. The inferior colliculus was identified

by its position posterior to the transverse sinus and anterior to the sigmoid sinus.

The tip of the left inferior colliculus became visible after the craniotomy, and measurements

from the rostrocaudal and mediolateral borders were made to place the recording electrode

exactly in the middle of the inferior colliculus, targeting the central nucleus. The probe was

inserted such that the most dorsal electrode was aligned with the dura (Fig 2B), thus minimiz-

ing the error in depth alignment. An error in depth assessment might arise from the topmost

recording site (with a diameter of 13 μm) not being exactly aligned with dura. Since the elec-

trode sites are visible under microscope, the depth error is unlikely to have been more

than ± 25 μm (half the distance between electrode sites). Other measures were in place to

ensure reliability of the positioning: (1) before inserting the probe, bregma and lambda were

aligned to the same horizontal plane; (2) the probe was lowered at a fixed rostrocaudal and

mediolateral position with respect to bregma; (3) the probe angle was 90˚ with respect to the

bregma–lambda plane; (4) dura was intact; and (5) penetration was very slow. Extracellular

multiunit recordings were made using mainly multielectrode silicon arrays (Neuronexus

Technologies, USA) of 16 electrode sites in either a single shank (most data; 177 μm2 area/site

and 50 μm spacing between sites) or 4 shanks (rostrocaudal analysis; 150 μm intershank spac-

ing). Glass-coated single electrodes were used to collect data on exposure to frequencies other

than 16 kHz. These were either glass-coated tungsten electrodes with a typical impedance of

900 mOhm and an external diameter of 140 μm (AlphaOmega, Germany) or glass-coated plat-

inum/tungsten electrodes with a typical impedance of 1 mOhm (Thomas Recordings, Ger-

many). The electrodes were inserted in the central part orthogonally to the dorsal surface of

the inferior colliculus and lowered with a micromanipulator (Kopf, Germany). In the case of

single electrodes, recordings were made every 50–100 μm. When multielectrode silicon arrays

were used, they were lowered (at a rate of 100 μm/5 minutes) until the upper electrode was in

contact with the inferior colliculus surface, visualized with a microscope (750 μm depth). The

electrodes were labeled with DiI (1,1’-dioactedecyl-3,3,3,3’-tethramethyl indocarbocyanide,

Invitrogen, Germany) to allow the reconstruction of the electrode track in postmortem sec-

tions using standard histological techniques (Fig 2B).

Data acquisition

The electrophysiological signal was amplified (HS-36 or HS-18, Neuralynx, USA) and sent to

acquisition board (Digital Lynx 4SX, Neuralynx, USA). The raw signal was acquired at 32 kHz

sampling rate, band-pass filtered (0.1–9,000 Hz), and stored for offline analysis. Recording and

visualization were made by Cheetah Data Acquisition System (Neuralynx, USA).

Acoustic stimulation during electrophysiological recordings

The sound was synthesized using MATLAB, produced by an USB interphase (Octa capture,

Roland, USA), amplified (Portable Ultrasonic Power Amplifier, Avisoft, Germany), and played
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in a free-field ultrasonic speaker (Ultrasonic Dynamic Speaker Vifa, Avisoft, Germany) located

15 cm horizontal to the right ear. The sound intensity was calibrated at the position of the ani-

mal’s right ear with a Bruël & Kjaer (4939 ¼” free field) microphone. Microphone signals were

sampled at 96 kHz and analyzed in MATLAB. Tones between 2 kHz and 30 kHz did not show

harmonic distortion within 40 dB from the main signal. Sound stimuli consisted of 30 ms

pure-tone pips with 5 ms rise/fall slope played at a rate of 2 Hz. We used 24 frequencies (3.3–

24.6 kHz, 0.125 octave spacing) at different intensities (0–80 dB with steps of 5 or 10 dB)

played in a pseudorandom order. Each frequency-level combination was played 5 times. For

the analysis of SNRs, data were bundled in “adjacent” and “tuned” regions. Each of these

regions comprised 4 steps in the frequency sweep (14.6, 16, 17.6, and 19 kHz for the tuned;

10.3, 11.3, 12.3, and 13.4 kHz for the adjacent region) and ranges of frequencies with a ΔF of

30%. For the two-tone inhibition protocol, a fixed tone (16 kHz, 50 dB) was played simulta-

neously with a variable tone of a specific frequency-intensity combination (3.3–24.6 kHz,

0.125 octave spacing; 0–80 dB with steps of 5 or 10 dB).

Analysis of electrophysiological recordings

The stored signals were high-pass filtered (450 Hz). To improve the SNR in the recordings

with the silicon probes, the common average reference was calculated from all the functional

channels and subtracted from each channel [87]. Multiunit spikes were then detected by find-

ing local minima that crossed a threshold that was 6 times the median absolute deviation of

each channel (S2A Fig). Recorded sites were classified as sound driven when they fulfilled 2

criteria: (1) Significant evoked responses: a PSTH was built, with 1 ms bin size, combining all

the frequencies and the intensities above 30 dB. The overall spike counts over 80 ms windows

before and after tone onset were compared (p< 0.05, unpaired t test). (2) Responses were

excitatory: they crossed an empirically set threshold (evoked spikes–baseline spikes) of 45

spikes. Responses that were inhibitory (less evoked spikes than baseline, <10% of cases) were

not used. Using these criteria, 85% of the recorded sites where classified as sound driven.

In auditory-driven recording sites and for each testing protocol, the spikes across all the tri-

als for each frequency-intensity combination were summed at 1 ms bins. Evoked firing rates

were calculated in an 80 ms window, starting with stimulus onset expressed as spikes per sec-

ond. This yielded a specific spike rate per each frequency-intensity combination that was used

to build iso-intensity tuning curves. The peak in collicular activity for each group was com-

puted by averaging the peak of the tuning curve at 70 dB for each recording site along the

tonotopic axis.

The BF (frequency that elicited the best response in a given recording depth) was selected

as that with the highest spike count when responses were summed over all intensities. In the

rare cases in which more than one frequency elicited the highest response, the mean was used

as BF. The difference in BF along the tonotopic axis was computed as the mean across depths

of each individual BF minus the average control BF at each depth.

Reliability was calculated for recording sites with a BF within a specific range. For each

selected site, reliability was calculated as the percentage of trials in which the BF in the selected

range evoked at least 1 spike at 70 dB. The spontaneous activity was calculated as the firing

rate within a window of 80 ms previous stimulus onset. The SNR was the ratio between the

activity evoked by a specific frequency at 70 dB (calculated as described above) and the sponta-

neous activity.

The intensity threshold—the lowest sound intensity that elicited a reliable response—was

calculated from the FRA as the lowest sound intensity that elicited a spike count 1.5 times

higher than the spontaneous activity [88].
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The bandwidth at the base, for each sound intensity above threshold, was calculated from

the smoothed FRA (4-point averaging [88]) as the width in octaves of the frequencies that

evoked at least 20% of the maximum response. The bandwidth at half-maximum, for each

sound intensity above threshold, was calculated from the smoothed FRA as the width in

octaves of the frequencies that evoked 50% of the maximum response at each intensity level.

Only recording sites with a BF of 9 to 16 kHz were included in the analysis to avoid the inclu-

sion of incomplete tuning curves due to the frequency range we used as stimuli.

The intensity-specific BF corresponded to the frequency that elicited the strongest response

at each sound intensity. Latencies corresponded to the time after sound offset of the first

evoked spike.

ROC analysis

ROC analysis was used to assess the discriminability across frequencies in the tuning curves,

across structural tuning curves, and across prepulse frequencies in the behavioral PPI.

For the tuning curves (local tuning), we generated response distributions (perfcurve func-

tion, MATLAB) based on the number of spikes elicited by a given tone across trials (Fig 5A

left). The probability that a given frequency f2 will be bigger than a growing criterion of num-

ber of spikes will go from 1 to 0 as the criterion traverses the range of spike numbers elicited

by f2 (Fig 5A right). For the blue f2 in the figure, the criteria that elicit probabilities above 0

will overlap with those of f1 (yellow), while for the brown f2, there will be no overlap. The

ROC curve will therefore be largest for the comparison between the brown f2 and f1 and shal-

lower for the comparison between the blue f2 and f1 (Fig 5B).

The ROC analysis of the structural tuning was based on the variability in the size of the

response across depths (250 to 750 μm), rather than trials, and was calculated for structural

tuning curves elicited by individual tone presentations (trials, Fig 5C). The number of spikes

was used to generate depth distributions in the same way that the number of trials was used to

generate spike distributions for the local tuning. In this case, f1 was either the average struc-

tural tuning of 16 kHz or 11.3 kHz, while f2 was the trial-by-trial structural tuning of frequen-

cies below f1. The trial-by-trial ROC values for each frequency were averaged before they were

plotted.

The ROC analysis for the behavioral data was based on the variability in the startle response

across prepulse presentations of a given frequency (see PPI methods below). Distributions

were constructed, like for the local tuning, from the individual trial values. For each PPI test, f1

was whatever frequency was the background frequency (16 or 11.3 kHz), and f2 varied across

the range of prepulse frequencies.

Classification accuracy model

Structural tuning–based classification [32,33] was performed as follows. The input to the

model is a spike-counts dataset of size S × T ×N in which S is the total number of stimuli

(S = 24 frequencies), T is the number of repetitions for each stimulus (T = 5), and N is the

number of recorded depths (N = 14). The vector Vs,t = (Vs,t
1,. . .,Vs,t

N) represents a single-trial

response of the neural population to stimulus s, in which s goes from 1 to S, and t goes from 1

to T. The model is then “trained” to create individual response templates for each stimulus s

calculated by averaging the vector Vs,t over the T − 1 trials in the training set. The single trial

left out of the training set is used to generate a prediction and classified as being generated by a

given stimulus if the euclidean distance between the single trial and the template correspond-

ing to that stimulus is minimal compared to all the other distances. We classified all S × T sin-

gle trials using this scheme and summarized the results in a confusion matrix C of size S × S, in
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which the i,j-th element Ci,j is the fraction of trials with stimulus i being classified as stimulus j.

The individual confusion matrices, representing the probability of correctly predicting the

actual frequency, were averaged across groups and used to estimate classification accuracy.

PPI

Animals were placed in a custom-made acrylic chamber of 12 cm long and 4 cm in diameter.

Movement was detected by a piezoelectric sensor located below the chamber. The protocol

was as previously reported by others [36,37].

The experiment was divided in 5 phases following one after the other uninterruptedly. (1)

Chamber habituation: at the start of each session, animals were placed in the test chamber and

allowed to habituate for 10 minutes; (2) Sound habituation: a constant background tone (f1: 16

kHz, 70 dB SPL) was played for 5 minutes; (3) Startle-only trials: 10 startle-only trials were pre-

sented on the background of 16 kHz to allow for short-term habituation to the startle sound;

(4) Test phase: 10 pre-pulse trials and 10 startle only trials were presented to assess frequency

discrimination; (5) Startle-only trials: 5 startle-only trials were presented to check for habitua-

tion over the duration experiment. Trials consisted of a frequency change from the back-

ground tone (f1) to the prepulse tone (f2, 80 ms long, 1 ms ramp) at constant 70 dB SPL (Fig

1F). This was immediately followed by 20 ms broadband noise (BBN) at approximately 100

dB, which was in turn followed by the background tone at 70 dB until the following trial in a

seamless manner. For the “startle-only trials,” f1 and f2 were 16 kHz, and for prepulse trials, f2

was 15.92, 15.84, 15.68, 15.472, 15.2, 14.72, 14, or 8 kHz, corresponding to Δf of 0.5%, 1%, 2%,

3.3%, 5%, 8%, 12.5%, and 50%, respectively, relative to f1. For animals in which f1 was 11.3

kHz, f2 was 11.31, 11.25, 11.19, 11.08, 10.93, 10.74, 10.4, 9.89, or 5.65 kHz. Trials had pseudo-

random lengths between 8 and 25 seconds.

The mouse acoustic startle reflex was measured as the maximal vertical force exerted on the

piezo within a 200 ms window starting with the onset of the startle noise, minus the mean of

the force for 50 ms before the startle noise. For each animal, the startle-only trials of the test

phase and the prepulse trials of each frequency were averaged. The percent of PPI for each pre-

pulse frequency PPI (%) was calculated as follows:

PPI %ð Þ ¼ 100 �
ASRnopps � ASRpps

ASRnopps
;

in which ASRnopps is the mean response of the startle-only trials, and ASRpps is the mean

response of the prepulse trials for that particular frequency. Discrimination thresholds for

each animal, defined as the Δf that caused 50% of inhibition of the maximum response, were

calculated from parametric fit to a generalized logistic function (fit function MATLAB) [37]

PPI ¼ �
a
2
þ

a
1 þ expðb þ cDf Þ

:

Animals with a fit coefficient of the curve (R2) below 0.7 were excluded from statistical anal-

ysis (3 control animals, 2 exposed animals, and 1 random animal). Additionally, the pooled

data for each group were also fitted to a generalized logistic function.

Simultaneous cortical inactivation and recordings in the inferior colliculus

In a subset of the animals and after the surgery in the inferior colliculus, a 4x3 mm craniotomy

medial to squamosal suture and rostral of the lambdoid suture was made to expose the left AC.

The AC was located dorsal and posterior of the transverse sinus [89]. A small amount of Vase-

line was applied to the boundaries of the craniotomy to form a well. A single electrode or a
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16-channel multielectrode array was inserted. Evoked responses to the tone pips were con-

stantly monitored. A small amount of volume of phosphate-buffered saline solution (Sigma,

USA) was applied (3–5 μL) every 10–15 minutes during baseline recordings in the inferior col-

liculus. Then, 3–5 μL of muscimol were applied over the AC (1 mg/mL, dissolved in phos-

phate-buffered saline solution, Sigma, USA). AC evoked activity was monitored using

frequency sweeps at 70 dB SPL or BBN of different intensities every 5 minutes. AC was usually

inactivated 15–20 minutes after muscimol application. Once cortical inactivation was con-

firmed, recordings in the inferior colliculus were repeated.

Single-unit recording from cochlear nucleus

Six to 12 days after the beginning of sound exposure (8 kHz), mice were removed from the

Audiobox one at a time for acute electrophysiology. Mice were anesthetized with urethane

(1.32 mg/kg, ip) and xylazine (5 mg/kg, ip). Animal temperature was maintained at 36.5 ˚C

using a custom-designed heating pad in a soundproof chamber with ambient temperature of

30 ˚C. A tracheotomy was performed, and the cartilaginous ear canals were removed before

the mouse was positioned in a custom-designed head-holder and stereotaxic apparatus. Then,

a craniotomy was performed on part of the occipital bone, and part of the cerebellum was aspi-

rated to visualize the superior semicircular canal as a reference point. A glass microelectrode

filled with 2 M NaCl and 1% methylene blue was advanced in 4 μm steps (Inchworm microma-

nipulator, EXFO Burleigh, Germany), aiming for the anterior part of the anteroventral

cochlear nucleus. Extracellular signals were amplified and band-pass filtered (300–3,000 Hz)

using an ELC-03X amplifier (NPI Electronic, Tamm, Germany). Digitized signals (TDT sys-

tem 3) were saved for offline analysis using custom-written MATLAB software. Once a sound-

responsive neuron was isolated, the spontaneous rate, CF, and best threshold were determined

as described by Jing and colleagues [90]. Unit classification was based on the response pattern

to 200 repetitions of 50 ms tone burst at CF (2.5 ms cos2 rise/fall, 10 Hz repetition rate), as

described by Taberner and Liberman [91]. The analysis for “other cell types” includes mostly

chopper units, some onset units, and a few pauser/build-up units. Likewise, responses to 8 kHz

tone bursts were recorded, and the receptive area of each unit was mapped using 30 ms tone

bursts at 70 dB (10 repetitions per sweep, 3 Hz repetition rate) for a total of 13 frequencies

ranging from 4 kHz to 30 kHz.

AC recordings

A 4 × 3 mm craniotomy medial to squamosal suture and rostral of the lambdoid suture was

made to expose the left AC. The AC was located dorsal and posterior of the transverse sinus

[89]. Single-electrode penetrations (400–450 μm) were made along the exposed cortical surface

spaced between 200–250 μm. Auditory core fields (A1 and AAF) were identified according to

their response latencies and tonotopic distribution [89]. Data acquisition and acoustic stimula-

tion were similar as with inferior colliculus recordings.

Gene expression analysis

A separate set of mice was used for gene expression analysis. After 3 days of habituation and 7

days of sound exposure in the Audiobox, mice were anesthetized with avertin and killed by

cervical dislocation; immediately, the brain was extracted; and both inferior colliculi were dis-

sected and immediately frozen at −80 ˚C and stored for later analysis. RNA was isolated from

inferior colliculi using the RNAeasy Kit (Qiagen), following manufacturer’s instructions.

cDNA was synthesized from 1 μg of RNA using the Superscript III Kit (Invitrogen) and ran-

dom nonamer primers. For quantitative real-time PCR, SyBr Green Master Mix kit (Applied
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Biosystems, Germany) was used, and amplification reactions were run on a Roche LC480

Detection System (384-well plates) or 7500 Fast Real-Time PCR System (96-well plates). Reac-

tions were run in 4 replicates. The efficiency (E) of each pair of primers was estimated based

on the slope (m) of a standard curve of the Ct values from 5 serial logarithmic dilutions of a

template cDNA, using the following formula:

E ¼ 10
� 1
mð Þ:

The goodness of fit (R2) of all the standard curves was>0.98.

We used the gene of the ribosomal protein L13a (rpl13a) as a reference gene, since it has

been reported as the best candidate gene for brain gene expression analysis [92]. The relative

expression of Rpl13a showed no change between the three groups tested (F2,17 = 0.8, p = 0.47,

n = 7, 8, and 5 for exposed, control, and home cage groups, respectively).

Gene expression relative to the housekeeping gene (Rpl13a) was calculated with the method

used by [93], in which corrections for different efficiencies between target gene and house-

keeping gene are made:

RE ¼
EkhgCThkg

EtgCTtg
;

in which RE is the relative expression, Ekhg is the efficiency of the housekeeping gene, CThkg
is the Ct value of the housekeeping gene, Etg is the efficiency of the target gene, and CTtg is the

Ct value of the target gene.

Statistical analysis

After testing for normality distribution using the Jarque-Bera test, group comparisons were

made using multiple way ANOVAs, accordingly. For experiments with multiple measures per

animal, we used mixed-design ANOVA, with mouse identity as a nested random effect. To

test the effect of days on frequency representation and collicular activity, we used a linear

mixed effects model (fitlme, MATLAB, with mouse identity as a random effect). For data in

which normality test failed, a Kruskal-Wallis test or wilcoxon signed rank test for paired data

was used. Where possible, post hoc Bonferroni corrections for multiple comparisons were

used. Means are expressed ± SEM. Statistical significance was considered if p< 0.05.

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for figure panels Figs 1D–1E, 2C–2E, 3B–3C, 3B–3D, 3F–3G, 4C, 5D–5G, 5I, 6B–6C, 6E–

6F, 7B–7F, and 8A–8C.

(XLSX)

S2 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for figure panels S1A–B, S1EF, S2E, S3A–F, S4A–C, S5A–D, S6B–C, S7A–G, and S8B.

(XLSX)

S1 Fig. Predictable and random sound exposure have different effect on subsequent condi-

tioning in the Audiobox. (A) Cumulative distribution of the visit duration to the water corner

area. (B) Mean daily percentage of visits without NPs was similar between groups (ANOVA,

F2,60 = 1.47, p = 0.23). (C) Scheme of the latent inhibition protocol. All phases were identical

across groups except for the exposure phase. Colored boxes indicate the frequency of sound

exposure (30% of visits). To avoid sound novelty effects, 8 kHz was used in remaining visits
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(safe visits). Conditioning took place only during the conditioning phase and only in visits in

which 16 kHz was played (black bars). (D) Schematic representation of the conditioning phase

in the latent inhibition paradigm. Safe visits were accompanied by an 8 kHz tone (left, gray

color). Conditioned visits were accompanied by a 16 kHz sound, and NP on either side

resulted in an air puff (right, orange color). (E) Mean discriminability index (d’) during the

first day of conditioning was lower for the predictable group (ANOVA, F2,49 = 13.69, p< 0.01;
���p< 0.0001; ��p< 0.001). Control n = 15; predictable n = 18; random n = 19. (F) Mean visits

without NPs per day and group during the first 5 days of conditioning for the conditioning vis-

its only. Error bars represent SEM. Numerical data for this figure found in S2 Data. NP, nose-

poke.

(TIF)

S2 Fig. Extracellular recordings in the inferior colliculus. (A) Representative examples of

spike waveforms recorded from a given electrode at a given depth (300–600 μm) for the con-

trol (upper row), predictable (middle row), and random (lower row) groups. (B-D) Represen-

tative examples of raster plots recorded at 70 dB SPL at different depths from one control (B),

one predictable (C), and one random animal (D). Each dot represents a spike and each line,

one of 5 repetitions of a 30 ms tone. Vertical red lines indicate the onset and offset of the tone.

(E) Individual tuning curves for animals in the control (blue), predictable (red), and random

(green) groups for depths with BF of 16 kHz in the mice in the predictable and random groups.

Numerical data for this figure found in S2 Data.

(TIF)

S3 Fig. Predictable and random sound exposure increase evoked activity in different region

of the inferior colliculus. (A) Mean firing rate per collicular zone (100–150 μm: ANOVA,

group F2,1080 = 22.64, p< 0.0001; 200–300 μm: ANOVA, group F2,1944 = 15.21, p< 0.001;

350–450 μm: ANOVA, group F2,1680 = 9.54, p< 0.001; 500–600 μm: ANOVA, group F2,1848 =

21.46, p< 0.0001; 650–750 μm: ANOVA, group F2,1512 = 21.31, p< 0.0001. Corrected pair

comparisons ���p< 0.0001, ��p< 0.01). For A-B, D-E: animals and recording sites: home

cage n = 6 and 72; control n = 10 and 98; predictable n = 14 and 162; random n = 7 and 91.

(B) Mean maximum firing rate (ANOVA, group F3,367 = 4.2, p< 0.01; corrected pair compari-

sons: �p< 0.05). (C) Group mean tuning curves of responses at 200 μm of animals in control

and 8 kHz–exposed predictable group (ANOVA, group × frequency interaction F23,276 =

4.22, p< 0.05). Control n = 10; 8 kHz n = 4. (D) Distribution of number of days in the

Audiobox per group. Animals: control n = 10; predictable n = 14; random n = 7. (E) Peak

response per mouse across days in the Audiobox per group as in (D). Overall ANOVA

(group × days) revealed no effect of group F2,22 = 1.63, p = 0.22; or days F6,22 = 1.44, p = 0.25.

There was no effect of days within each group: control, F3,6 = 2.62, p = 0.15; predictable, F6,7 =

3.06, p = 0.08; random, F4,2 < 1. (F) Tuning curves aligned by BF ± 0.05% for BFs with at least

4 mice/group. An overall ANOVA (group × tuning BF × frequency played) revealed an effect

of group F2,4752 = 12.55, p< 0.001; BF F9,4752 = 10.01, p< 0.001; and frequency F23,4752 =

40.96, p< 0.001; and an interaction between group and BF F18,4752 = 12.81, p< 0.001; and BF

and frequency F207,4752 = 5.21, p< 0.001. Within each BF range, all group comparisons

revealed an effect of group: 9,510 Hz, ANOVA, group F2,384 = 15.46, p< 0.001; 10,370 Hz,

ANOVA, group F2,456 = 4.91, p< 0.001; 11,310 Hz, ANOVA, group F2,504 = 4.98, p< 0.01;

12,340 Hz, ANOVA, group F2,336 = 1.51, p = 0.22; 13,450 Hz, ANOVA, group F2,528 = 7.54,

p< 0.001; 14,670 Hz, ANOVA, group F2,456 = 8.15, p< 0.001; 16,000 Hz, ANOVA, group

F2,528 = 7, p< 0.001; 17,450 Hz, ANOVA, group F2,528 = 4.93, p< 0.01; 19,030 Hz, ANOVA,

group F2,528 = 3.34, p< 0.05; 20,750 Hz, ANOVA, group F2,504 = 99.84, p< 0.0001. Error bars
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represent SEM. Numerical data for this figure found in S2 Data. BF, best frequency.

(TIF)

S4 Fig. Predictable sound exposure induces a shift in frequency representation along the

inferior colliculus. (A) Across depth mean difference in BF with respect to mean BF of control

group for groups exposed to frequencies other than 16 kHz (ANOVA, F4,223 = 20.69,

p< 0.0001; corrected pair comparisons: �p< 0.05, ��p< 0.01, ���p< 0.001). Animals and

recording sites: control n = 10 and 58; 8 kHz n = 5 and 21; 13 kHz n = 3 and 18; 8 and 13 kHz

n = 6 and 41; 16 kHz n = 14 and 90. (B) Mean BF at threshold along the tonotopic axis

(ANOVA, group F2,309 = 2.21; p = 0.11; depth F13,309 = 8.19, p< 0.001). Animals and recording

sites: control n = 10 and 98; predictable n = 14 and 162; and random n = 7 and 91. Error bars

represent SEM. (C) Left, schematic representation of a sagittal section of the inferior colliculus

illustrating the anatomical distribution of the frequency laminas (color lines) and the position-

ing of the 4 × 4 multielectrode arrays. Right, mean BF along the dorsoventral axis at different

rostrocaudal locations for control (dashed lines) and predictable (continuous line) groups (Ro:

ANOVA, group F1,126 = 5.97, p< 0.05; Ca: ANOVA, group F1,110 = 4.23, p< 0.05). Error bars

are omitted for clarity. Animals and recording sites: control n = 6 and 277; predictable n = 7

and 289. Numerical data for this figure found in S2 Data. BF, best frequency; Ca, caudal; Ce1,

central 1; Ce2, central 2; Ro, rostral.

(TIF)

S5 Fig. Predictable sound exposure locally modifies SNR and increases behavioral sponta-

neous frequency generalization. (A) SNR between depth, at which BF matches the exposed

frequency and depth with maximum spontaneous activity for animals exposed to 8 kHz or 16

kHz (wilcoxon signed rank test, ��p< 0.01, n = 12 pairs, 9 exposed to 16 kHz and 3 exposed to

8 kHz). Inset, PSTHs of the responses of an example mouse (gray dots) for the depth with

highest spontaneous activity (black) and depth at which BF matched the exposed frequency

(pink). (B) Mean intensity threshold for each recording site (ANOVA, F2,308 = 0.85, p = 0.42).

Animals and recording sites: control n = 10 and 98; predictable n = 14 and 162; random n = 7

and 91. (C) Mean latency to the response to the corresponding BF ± 0.25 octaves for the adja-

cent (left) or tuned (right) regions (left, adjacent ANOVA, group F2,115 = 3.51, p< 0.05; right,

tuned: ANOVA, group F2,138 = 4.56, p< 0.05). Animals and recording sites: adjacent: control

n = 10 and 34; predictable n = 14 and 60; and random n = 7 and 26; tuned: control n = 10

and 42; predictable n = 14 and 68; and random n = 7 and 34. Corrected pair comparisons
�p< 0.05, ��p< 0.01. (D) Classification accuracy probability for decoded frequencies between

10 and 14 kHz (adjacent region) and 14 and 20 kHz (tuned region) across groups. (ANOVA,

group F2,242 = 7.33, p = 0.0008, range F1,242 = 5.75, p = 0.017, no interaction F2,242 = 2.29,

p = 0.10). Animals: control n = 10; predictable n = 14; random n = 7. Corrected pair compari-

sons: p = 0.034 predictable versus control, p = 0.0005 random versus control. (E) PPI mean

and individual discrimination thresholds (ANOVA, group F2,21 = 4.32, p< 0.05. Corrected

pair comparisons: �p< 0.05). Control n = 7; predictable n = 8; random n = 9. Error bars repre-

sent SEM. Numerical data for this figure found in S2 Data. BF, best frequency; PPI, prepulse

inhibition of the auditory startle reflex; PSTH, peri-stimulus time histogram; SNR, signal-to-

noise ratio.

(TIF)

S6 Fig. Cortical inactivation subtly increases collicular activity without affecting tuning.

(A) Representative color plots showing the simultaneous evoked LFP at different depths in the

AC to stimulation with broadband noise at different sound intensities before (top) and 20 min-

utes after muscimol application over the cortical surface (bottom). The vertical white dashed
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lines in each subplot represent the duration of the stimulus (100 ms). (B) Mean BF across

depths obtained before and after cortical inactivation (ANOVA, group F1,196 = 15.06,

p< 0.01). For B-C: animals and recording sites: control n = 7 and 62; predictable n = 6 and 64.

(C) Mean tuning curves at 70 dB for different depths in the inferior colliculus for control

(blue) and predictable (red) group, before (continuous line) and after (dashed lines) cortical

inactivation. Error bars represent SEM. Numerical data for this figure found in S2 Data. AC,

auditory cortex; BF, best frequency; LFP, local field potential.

(TIF)

S7 Fig. Predictable sound exposure does not affect tuning in the cochlear nucleus or the

AC. (A-B) Box–whisker plot of evoked spike rates in response to CF and 8 kHz tone bursts of

units with (A) CF 6–12kHz and (B) CF 12–24Hz (wilcoxon signed rank test, p> 0.5 for all

comparisons). (C-D) Analysis of thresholds and sharpness of tuning (Q10dB, CF divided by

the bandwidth of threshold tuning curve 10 dB above threshold) of all recorded cochlear

nucleus units. Units with CF between 6 and 24 kHz were grouped by CF into 2 octave bins

(CF group 6–12kHz and CF group 12–24kHz; unpaired t test, p> 0.5 for all comparisons).

(E) Mean tuning curves in the primary auditory cortices (A1 and AAF) of recording sites with

a BF of 11–20 kHz (ANOVA, group F2,240 = 0.17, p = 0.086). Control n = 5; predictable n = 4;

random n = 4. (F) Mean PSTH of individual-mouse BF evoked at 70 dB. Vertical lines delimit

sound duration. Responses were divided in onset (0–30 ms) and late (31–80 ms) (onset, Krus-

kal-Wallis test, X2
2,88 = 0.26, p = 0.87; late, X2

2,127 = 3.07, p = 0.21). Control n = 5; predictable

n = 4; random n = 4. (G) Distribution of cortical BF across all recording sites. Frequency cate-

gories are ±0.5 octaves–wide bins. Error bars represent SEM. Numerical data for this figure

found in S2 Data. AC, auditory cortex; BF, best frequency; CF, characteristic frequency; PSTH,

peri-stimulus time histogram.

(TIF)

S8 Fig. Sound exposure results in changes in presynaptic markers and asymmetrical effects

on lateral inhibition and facilitation. (A) Representative photomicrographs of an area of the

inferior colliculus centered at 300 μm in depth double-labeled for VGAT and Vglut2 for control

(upper panels) and predictable (lower panels) groups. Scale bar 10 μm. (B) Quantification of the

positive puncta for VGAT and Vglut2 in the dorsal (300 μm) and ventral (600 μm) areas (wil-

coxon signed rank test, �p< 0.05, n = 7 for each group). Numerical data for this figure found in

S2 Data. VGAT, GABA vesicular transporter; Vglut2, glutamate vesicular transporter 2.

(TIF)

S1 Table. Quantification of relative gene expression measured by quantitative real-time

PCR.

(XLSX)
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